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ABSTRACT  

This paper examines the assembly of interdisciplinary teams in emerging scientific fields. We develop 

and validate a hybrid systems dynamics and agent-based computational model using data over a 15 year 
period from the assembly of teams in the emerging scientific field of Oncofertility. We found that, when a 

new field emerges, team assembly is influenced by the reputation and seniority of the researchers, prior 

collaborators, prior collaborators’ collaborators, and the prior popularity of an individual as a collaborator 

by all others. We also found that individuals are more likely to assemble into an Oncofertility team when 
there is a modicum of overlap across its global ecosystem of teams; the ecosystem is defined as the 

collection of  teams that share members with other teams that share members with the Oncofertility team. 

1! INTRODUCTION 

Interdisciplinary scientific teams are frequently at the root of innovative breakthroughs (Uzzi and Spiro 

2005). As a result, understanding the mechanisms behind the assembly of scientific teams has attracted 

scholarly interest. A first step has been to examine the compositional and relational mechanisms affecting 
the formation of scientific teams (Guimera et al. 2005; Lungeanu and Contractor 2015; Lungeanu, Huang, 

and Contractor 2014). Most prior research has treated teams as well-defined entities with a stable set of 

members who work interdependently toward a common goal (Cohen and Bailey 1997). However, the 

reality is that most knowledge workers hold membership in multiple teams simultaneously (O'Leary, 
Mortensen, and Woolley 2011), making membership in an ecosystem consisting of multiple teams with 

overlapping members the rule rather than the exception. Such ecosystems are dynamic and complex 

networks of prior collaborations (Poole and Contractor 2011) which enable and constrain the assembly of 
future scientific teams. Yet the effects of the ecosystem on team assembly have not been explored, 

perhaps because it entails complex statistical analyses across multiple levels. 

 In response to this research gap we develop a multi-theoretical multilevel model that incorporates the 
impact of ecosystem factors on the assembly of interdisciplinary teams. Specifically, we draw upon 
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theories on the formation of social networks (Contractor, Wasserman, and Faust 2006) and their 
application to the assembly of teams (Contractor 2013), as well as the more extensive research on groups 

and teams (Levine and Moreland 1998), to examine factors leading to assembly of interdisciplinary 

scientific teams.  

 We implement a hybrid - agent-based and system dynamics - computational model that articulates the 
multilevel multi-theoretical mechanisms team assembly. We empirically validate our model with data on 

the assembly of teams in the emerging scientific field of Oncofertility from its inception in 1996 until 

2010. Oncofertility is an appropriate context to study assembly mechanisms because (1) teams are often 
assembled on an ad-hoc basis reflecting the autonomous and individual choices of scientists in the 

absence of confounding outside influences and (2) the emergence of the field allows us to have a natural 

starting point to explore how individuals change their motivations in choosing their collaborators as the 
field grows and begins to attract systemic institutionalized funding.  

We begin by reviewing, in Section 2, the theoretical rationale and empirical evidence for factors that 

affect the assembly of interdisciplinary teams during the emergence of a scientific field. Section 3 

provides the rationale for the hybrid computational modeling approach. Section 4 describes the 
implementation of the hybrid model. Finally, section 5 summarizes our findings and its implications. 

2! HYPOTHESIZED MECHANISMS FOR TEAM ASSEMBLY 

Members of interdisciplinary scientific team need to hold knowledge mutually understood by all parties 
and know how to coordinate their collaborative tasks (Teasley and Wolinsky 2001). In order to be 

innovative they also need to incorporate diverse expertise, concepts, methodologies, and theoretical 

approaches, which produces significant heterogeneity within the team and increases the risk of 
assembling teams in a suboptimal manner.  

To mitigate against these challenges, we propose investigating the assembly of teams based on (i) 

compositional level mechanisms that focus on the attributes of individuals, (ii) relational level 

mechanisms that focus on prior relationships among members, and (iii) the ecosystem level mechanisms 
that focus on the extent to which team members are currently or previously embedded in multiple other 

teams that have overlapping team membership. These three sets of factors, summarized in Table 1, 

operate at different levels of analyses and incorporate different theoretical mechanisms prompting the 
development of a multi-theory, multilevel model of team assembly.  

Table 1: Hypothesized theoretical mechanism. 

Mechanism Description Citation/studies 

Compositional mechanisms 

M1: Seniority Researchers prefer to collaborate with senior researchers. (Bozeman and Corley 2004; 

Lungeanu et al. 2014) 

M2: H-index Researchers prefer to collaborate with high performing 

researchers (h-index) 

(Lungeanu et al. 2014) 

M3: Gender 

inertia 

Researchers’ preferences for (or against) gender homophily 

when choosing new collaborators will remain the same as 

their preferences in choosing prior collaborators. 

(Cummings and Kiesler 2005; 

Lungeanu and Contractor 2015; 

Moody 2004) 

M4: Institution 
affiliation 

inertia 

Researchers’ preferences for (or against) institution 
homophily when choosing new collaborators will remain 

the same as their preferences in choosing prior 

collaborators. 

(Cummings and Kiesler 2005; 
Lungeanu and Contractor 2015; 

Moody 2004) 

Relational mechanisms 

M5: Prior 

successful 

Researchers are more likely to collaborate with prior 

successful collaborators in a proportion equal to the 

(Guimera et al. 2005; Lungeanu 

and Contractor 2015; Lungeanu 
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Mechanism Description Citation/studies 

collaboration success of their prior collaboration.  et al. 2014) 

M6: Friend of 

a friend 

Researchers with prior common collaborators are more 

likely to collaborate. 

(Newman 2001) 

M7: 

Preferential 
attachment 

Researchers prefer to collaborate with well-connected 

researchers. However, well-connected researchers are less 
likely to accept collaborations with less well-connected 

researchers. 

(Barabási and Albert 1999; 

Newman 2002) 

Ecosystem mechanisms 

M8: Global 
ecosystem 

closure 

Scientific teams are more likely to be assembled when their 
scientific ecosystem represents a “coherent intellectual 

neighborhood.” 

(O'Leary et al. 2011; Poole and 
Contractor 2011) 

M9: Local 
ecosystem 

brokerage 

Scientific teams are more likely to be assembled when their 
immediate scientific neighborhood is not redundant. 

(O'Leary et al. 2011; Poole and 
Contractor 2011) 

3! HYBRID COMPUTATIONAL MODELING OF TEAM ASSEMBLY  

To test our hypothesized mechanisms we use a hybrid agent-based system dynamics simulation (other 
hybrid models are reviewed in Lattila, Hilletofth, and Lin 2010). While system dynamics (SD) (Forrester 

1961) and agent-based (ABM) simulation models have been used for studying complex systems (North 

and Macal 2007), these models are complementary paradigms: SD is a top-down approach based on 
modeling factors (Akkermans 2001; Sterman and Wittenberg 1999), while ABM is a bottom-up approach 

based on modeling actors (Macy and Willer 2002).  

SD is a well-established and commonly used technique that has been applied to explore the impact of 

factors on dynamics of a system. SD models resources (stocks) and dynamics (flows) within the system as 
a whole. Stocks are aggregated representations of the system’s entities, while flows capture the rates at 

which entities within the system change state. SD captures feedback and delay processes to model system 

behavior over time. This approach has the advantage of looking systemically and simultaneously at the 
impact of multiple positive and negative feedback loops on overall system dynamics. However, many SD 

models assume homogeneity of the population (i.e. differences in individuals’ characteristics and their 

social network ties to other individuals). Compartmentalized SD models have been used to reflect the 
different behaviors of subpopulation. However, within the subpopulation, behavior is still assumed to be 

homogeneous (Hethcote 2000).  

ABM, on the other hand, represents system entities as actors (i.e., agents). In ABM, autonomous 

agents interact with each other and their environment based on using simple behavior rules to act on local 
information. The agents learn from their interactions and adapt their behavior accordingly (Macal 2010; 

Macy and Willer 2002). Hence ABMs overcome the limitations of SD models by incorporating 

heterogeneity in individual attributes and their social networks. However, a limitation of ABMs is that 
they restrict knowledge of the system to an agent’s local point of reference, although the behaviors of all 

agents together frequently generate emergent patterns that may be unexpected (Holland 1998).  

Although SD models and ABMs have been utilized separately to model the assembly of scientific 

teams and the evolution of new scientific fields (Bettencourt et al. 2008; Guimera et al. 2005; Sun et al. 
2013), a hybrid approach enables us to simultaneously examine the effect of heterogeneous individual 

attributes and relations on the assembly of teams in emerging scientific fields, as well as, in turn, the 

impact of systemic characteristics of the scientific field on subsequent team assembly. Therefore, a hybrid 
model has the potential to explore more realistically (and accurately) the assembly of teams in emerging 

scientific fields.  
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4! IMPLEMENTATION OF COMPUTATIONAL MODEL 

4.1! The Oncofertility Field and Dataset 

The field of Oncofertility represents an appropriate context in which to examine the compositional, 

relational, and ecosystem mechanisms that affect the assembly of interdisciplinary teams. Oncofertility 

investigates fertility preservation for young patients with fertility-threatening diseases. This explicitly 
requires interdisciplinary collaboration among researchers from two different research areas – oncology 

and fertility. Although the term ‘oncofertility’ was first used in 2006, publications in the Oncofertility 

field can be traced as far back as 1993, thus providing sufficient history to empirically test the model. We 
first identified all scientific articles that were published in the Oncofertility field using the keywords 

oncofertility, or cancer and ovarian tissue cryopreservation, or cancer and fertility preservation. We used 

the Web of Science (WoS) database provided by Thomson Reuters to construct researchers’ bibliometric 
information. Since there were articles that were not indexed in the WoS database, we supplemented the 

dataset with the articles’ index in the PubMed database. This yielded a total of 553 publications by 1,696 

authors between 1996 to 2010. 

Demographic and institution information were manually coded. We obtained gender information 
using text (e.g., text references such as “her work”) and image searches on researchers’ institutional Web 

pages. Institution affiliation was extracted from researchers’ vitae and publication information. Additional 

bibliometric data, such as prior co-authorship and citation, were extracted from the WoS database. 
Our goal was to model the compositional, relational and ecosystem mechanisms that influenced the 

assembly of teams carrying out scientific collaborations. Compositional mechanisms, which focus on 

characteristics of the individuals, include Seniority (M1), H-index (M2), Gender (M3) and Institution 

affiliation (M4) inertia preference. Relational mechanisms, which focus on relations among the 

individuals, include Prior successful collaboration (M5), Friend of a friend (M6) and Preferential 

attachment (M7). Ecosystems mechanisms focus on characteristics of the ecosystem in which the 

potential team would be embedded. Global ecosystem closure (M8) was computed as the average 
clustering coefficient of the relevant team’s immediate and distal neighborhood in the Oncofertility 

ecosystem. The clustering coefficient is defined as the total number of closed triads in the network 

relative to the number of possible triads, where a closed triad represents a unit of clustering with all 
people connected to each other. In other words, clustering means that researchers tend to collaborate with 

the collaborators of their collaborators. Relevant team’s neighborhood was considered as the total number 

of researchers and collaborations links (teams) three-steps away from the focal team. Finally, Local 

ecosystem brokerage (M9) was computed as the relevant team’s inverse clustering coefficient in the 
immediate Oncofertility ecosystem. We followed a process of initiating and accepting/rejecting 

invitations to collaborate, steps that act as generative mechanisms for team assembly. 

4.2! Model Description 

As mentioned previously, we use a hybrid simulation approach to implement our mechanisms and we use 

empirical data to estimate the extent to which our hypothesized mechanisms are in fact influencing team 

assembly. The evolution of a new scientific field shares similarities to both the spread of a disease and to 
the adoption of a new innovation, which have traditionally used SIR (Susceptible, Infected, Recovered) 

models as modeling techniques. Bettencourt et al. (2008) use an SIR model to represent the evolution of 

several academic fields, which we adapt for our model. Our model has three populations: Unaware agents 

that have not heard of the oncofertility field, Aware agents that have heard of the field but have not yet 
published, and Active agents that have already published in the field. 
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4.2.1!Hybrid Agent-Based System Dynamics Model Implementation 

The development of the computational model relies heavily on empirical data and is focused on team-

level properties such as number of teams and distribution of team sizes. In order to simulate team 

assembly, we assume that the distribution of team sizes and an individual’s participation in a certain set of 

team sizes in a given year are constant and equal to what was empirically observed. In order to preserve 
the distribution of team sizes, we do not require that those who are already Active have to publish every 

year. Rather, if they do become Active in a year, then they are assigned a team size distribution of the 

teams in which that individual participated in that specific year. For example, if a particular Active agent 
is invited to participate in a team of size 3, then the actor is assigned the entire list of team sizes in which 

an individual from the empirical data participated. Consequently, !"###$ %&'()*+, would indicate that an 

individual %&(collaborated on two papers in the year 2000, one with three authors (including herself), and 

the other with five other collaborators. In the next year, she may or may not collaborate again and, if she 
was, would be assigned a new set of co-authorship teams.  

Model initialization. When the model is initialized, each agent is assigned an age, H-index, gender 

and institution that match those of a person from the empirical data. The agent is also assigned the prior 
collaboration network of that person with weighted ties that represent the number of times that agent 

collaborated with other agents outside of the oncofertility field. Next, each pair of agents receives a 

success score that represents the number of citations received by the papers the two agents co-authored. 
All agents except one, which is set as Aware, are initially set as Unaware. The model starts in 1996 and 

loads the distribution of collaboration teams for that year: one team of two, one team of three, and one 

team of five. As a result, the 1996 team distribution is [1996; 2,3,5] and the Aware agent receives a 

randomly picked team size (either 2, or 3, or 5).  
Team assembly. First, a random Aware or Active agent decides to form a team. An Active agent is 

assigned a team size distribution for that year, and will decide on forming a team with size based on that 

distribution. For an Aware agent, a team size is randomly picked from the remaining sizes for that year, 
and a distribution is assigned to the agent that contains a team of that size. Preference in team formation is 

given to agents who are already Active and have other teams in which they must participate in that year. 

Next, the agent starts to build the team. The founding agent will always be the first to invite other 

agents to join. Preference is given to Active agents who must be on a team of that size in that year. In 
order to decide whether to invite another agent to join the team, each agent calculates a score for the other 

agent based on the theoretical mechanisms defined above. The invited agents compute a utility function 

score to decide whether to accept the collaboration invite. This decision is based on all properties of the 
current team members, not just on the properties of the inviting agent. If the invited agent accepts, s/he is 

added to the team, and another round of invitations begins. If the invited agent does not accept, and was 

Unaware, the agent then becomes Aware but does not join the team.  
Appendix A contains the analytical representation of the scores for each hypothesized mechanisms. 

Each score is normalized, so its value is between 0 and 1, and each mechanism has an equal influence on 

the decision to assemble the team. So, the total score is:  

-./012&3 4 56

7

689
:;<(.563

7

689
 

(1) 

where /012& is the team i to be assembled, and 56 represents the score for the mechanism k. The final 

score is then compared to a random uniform number (i.e., a floating point number uniformly distributed 

between 0 and 1) to see whether /012& will be formed.  

Each team member invites other prior collaborators to join sequentially, or if they have none, another 

random agent. This process continues until all the spots on the team have been filled. The team members 

then add all the other members of the team to their oncofertility collaboration network. 
Moving to the next year. Once all the teams for the particular year have been formed, the simulation 

moves to the next year. While the oncofertility collaboration network is determined by the model, the 
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prior non-oncofertility collaboration is obtained from the empirical data and it is loaded in the model each 
year. For example, when the model starts the simulation for year 2000, the collaboration network outside 

the oncofertility field prior 2000 is loaded into the model. Then the team assembly process begins again. 

The simulation ends when all the teams from the last year, 2010, have been formed. 

4.2.2! Exogenous Event Affecting the Emergence of a Scientific Discipline  

The computational model includes an exogenous event that influences the field evolution. In 2007, the 

National Institutes of Health (NIH) provided a $6.5 million dollar grant to fund the Oncofertility 

Consortium to promote the field and make it more visible to researchers and practitioners 
(https://www.woodrufflab.org/ul1-oncofertility-consortium). Thus, before 2007, scientists that were 

Active agents in the field were more likely to promote it, while after 2007, Aware agents also began to 

promote the field in order to have access to institutional funds. Therefore, we used the number of prior 
Actives to determine when the NIH grant was made and the following equation to describe the analytical 

representation of this event: 

=> =? 4 (@A9 B ( .% C(D "3 E B F @ EGH @ AI B % CD E B .EGH3( (2) 

where U represents the number of people unaware about the field (inactive) at time ?, A represents the 

number of actives at time ?, W represents the number of aware at time ?, and N represents the size of the 

population modeled. A9 represents the contact rate before NIH intervention, and AI represents the contact 

rate after NIH intervention. This equation is called every time a new team is assembled in order to capture 
the current number of Unaware, Aware, and Active agents. 

4.3! Model Validation 

4.3.1! Parameter Estimation  

The model was implemented in the Netlogo ABM platform (Wilensky 1999) using the process described 
above. Once the model was built, the parameters were fitted to the empirical data to assess the relative 

importance of the hypothesized team assembly mechanisms. The parameters were fit using the 

BehaviorSearch tool (Stonedahl and Wilensky 2010). BehaviorSearch is a powerful and robust tool that 
calibrates models implemented in NetLogo (Thiele, Kurth, and Grimm 2014). Calibration simply 

describes the process of manipulating a model to get closer to a desired behavior. In this case, the desired 

behavior is matching the simulated teams to the empirical teams as closely as possible. The objective 

function used was to minimize the mean squared error between the average clustering coefficients of the 
simulated teams and the empirical teams.  

To investigate our space of parameters, we used the standard genetic algorithm (GA) search method, 

with ‘‘GrayBinaryChromosome” representation. GAs offer a flexible meta-heuristic search mechanism 
which has been successful in combinatorial optimization and search problems. Gray codes have generally 

been found to give better performance for search representations. The optimization function was 

measured as the minimum objective function over 100 simulations. Each simulation contained 1000 
model runs with 100 replications of each previous best model obtained. Two separate analyses were 

performed to empirically fit the model. First, the BehaviorSearch minimization was run across all years. 

This analysis yields one set of parameters. Additionally, the BehaviorSearch minimization was run for 

each year separately. This yields a distinct set of parameters for each year. 

4.3.2! Results and Analysis 

All variables were weighted to fall between 0 and 1. Additionally, all parameters were specified to range 

between 0 and 1 because of the positive relationship hypothesized the model. This analytical strategy 
allows us to compare directly the effect sizes of all parameters specified. The magnitude of the parameter 
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is a measure of the effect size for each mechanism and describes how important each factor is relative to 
the others. Important effects are defined as effects that have larger effect sizes relative to the other factors 

assessed. Table 2 shows the value of parameters when the analysis was run for the entire dataset. 

Table 2: Model parameters estimated across entire period from the empirical data. 

Mechanism Parameter estimate 

Compositional mechanisms 

M1: Seniority 0.79 

M2: H-index 0.99 

M3: Gender inertia 0.12 

M4: Institution affiliation inertia 0.19 

Relational mechanisms 

M5: Prior successful collaboration 0.44 

M6: Friend of a friend 0.88 

M7: Preferential attachment 0.64 

Ecosystem mechanisms 

M8: Global ecosystem closure 0.45 

M9: Local ecosystem brokerage 0.12 

 

The computational model shows that of the four compositional mechanisms, H-index is the most 
important factor, followed by seniority. Gender and institution affiliation preferences are much less 

important factors when deciding collaboration relationships. Out of the three relational mechanisms, 

friend of a friend is the most important factor, followed by preferential attachment and prior successful 
collaboration factors. Out of the two ecosystem mechanisms, global ecosystem closure is the most 

important factor. Overall, these results suggest that, when a new field emerges, team assembly is 

influenced at the compositional level by the reputation and seniority of the researchers. At the relational 
level, team assembly is influenced by choosing prior collaborators, collaborators’ collaborators or the 

prior popularity of an individual as a collaborator by all others. At the ecosystem level, individuals are 

more likely to assemble into a focal team when there is a modicum of overlap across the global ecosystem 

of teams comprising members who are on teams that share members with other teams that share members 
with the focal team. However, the local ecosystem brokerage, the lack of overlap among teams in which 

members of the focal team participated, was among the least important factors. One would expect that the 

team having access to novel information from their participation in teams that do not overlap would make 
it more likely to assemble in an emerging scientific field. Instead the results suggest that assembling into 

teams with others who are on teams that do not share collaborators might be considered risky, at least at 

the beginning of a new field. 

The results of the computational model presented above reflect an aggregate snapshot across all 15 
years from 1996 to 2010 and we should not expect that these results are stable over time. Therefore, we 

examined whether the factors affecting team assembly vary in strength and/or influence during the life-

cycle of the emerging field. Table 3 presents the results of this post-hoc analysis. Given the small team 
network at the beginning of the field (1996 – 2000), our analysis focuses on the period 2001 – 2010. 

Table 3: Model parameters estimated across each year from the empirical data. 

  Parameter estimate by year 

  2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 

Compositional mechanisms  

M1: Seniority 0.67 0.30 0.15 0.15 0.18 0.50 0.72 0.17 0.18 0.94 
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  Parameter estimate by year 

  2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 

M2: H-index 0.51 0.22 0.49 0.13 0.27 0.71 0.89 0.47 0.18 0.84 

M3: Gender inertia 0.12 0.69 0.95 0.96 0.89 0.81 0.50 0.74 0.82 0.34 

M4: Institutional affiliation inertia 0.94 0.89 0.91 0.89 0.74 0.89 0.94 0.87 0.72 0.14 

Relational mechanisms 

M4: Prior successful collaboration  0.41 0.82 0.75 0.96 0.94 0.78 0.52 0.50 0.52 0.49 

M5: Friend of a friend  0.30 0.74 0.60 0.64 0.93 0.34 0.50 0.85 0.59 0.86 

M6: Preferential attachment 0.30 0.11 0.95 0.64 0.81 0.87 0.57 0.79 0.54 0.24 

Ecosystem mechanisms 

M7: Global ecosystem closure 0.67 0.64 0.64 0.69 0.44 0.43 0.40 0.25 0.22 0.26 

M8: Local ecosystem brokerage 0.30 0.42 0.26 0.12 0.10 0.12 0.12 0.14 0.15 0.15 

 

The impact of the four compositional mechanisms on team assembly vary greatly with three of the 

factors (i.e., seniority, H-index, and institution affiliation inertia) recording a peak in year 2007. Prior 
successful collaboration is stable with a small decline starting in 2007. The preferential attachment factor 

is very low at the beginning of the field, increases gradually, and then decreases after 2006-2007. Both 

ecosystem mechanisms decrease over time. It is noteworthy that the changes that appear around 2006-

2007 coincide with NIH funding the creation of the Oncofertility Consortium. This illustrates the impact 
of external events such as funding on the motivations of individuals to assemble into teams.  

4.3.3! Model validation 

Finally, we tested the significance of the parameters obtained from the computational model. First, we 
generated individual attributes using the same mean and standard deviation from the empirical data. Then, 

we generated the prior non-oncofertility network using the same degree distribution from the empirical 

data. Then, we ran the computational model keeping the parameters constant. We repeated this process 

100 times for each year. The simulations were run in R using the RNetLogo package (Thiele 2014). 
Finally, a one sample t-test was performed to determine whether the set of errors estimated with the 

proposed computational model are less than those estimated using the null model. Results show that the 

computational model performs better than the null model for all years (p < 0.01). 

5! CONCLUSION 

We developed a hybrid agent-based and system dynamics computational model to understand what 

factors affect the assembly of interdisciplinary teams in an emerging scientific field. Our research makes 
three important contributions. First, we propose a multilevel framework that incorporates compositional, 

relational, and ecosystem mechanisms to study the assembly of teams. Second, we implemented and 

validated a hybrid agent-based and system dynamics computational model to examine team assembly 

using data from the emerging scientific field of Oncofertility. Future research could examine the 
applicability of our methods and conclusions to other new or to mature scientific fields. Finally, the 

changes in motivations for team assembly observed in 2007 illustrate the impact of funding decisions by 

agencies such as the NIH.  

ACKNOWLEDGMENTS 

The preparation of this manuscript was supported by funding from the US Army Research Laboratory 

(W911NF-09-2-0053), the Army Research Office (W911NF-14-10686), and the National Institutes of 
Health (UL1DE019587, UL1RR025741, UL1RR024146-06S2, 1U01GM112623). The views, opinions, 

4064



Lungeanu, Sullivan, Wilensky, and Contractor 
 

and/or findings contained in this manuscript are those of the authors, and should not be construed as an 
official Department of the Army or National Institutes of Health position, policy, or decision, unless so 

designated by other documents.. 

APPENDIX A 

When agent %& decides whether to invite agent %J to join the team or not, %& calculates an invite score 

KLMN06 %& O %J , where k is the theoretical mechanism. Next, agent %J decides whether to accept the 

invite to join the team or not. Agent %J calculates an acceptance score of the team, KLMN06.%J O /012&3, 

based on the characteristics of the agents already members of /012&. The mechanism score is 5& 4 (P& B

(KLMN0&, where 5& represents the final score for mechanism i, P& represents the parameter estimate for 

mechanism i , and KLMN0& represents the invite / acceptance score. Tables 4 and 5 present the analytical 

representation of invite and acceptance actions for each mechanism. 

Table 4: Analytical representation of the invite score. 

 Invite score 

M1 KLMN09 %& O %J 4 1Q0 %J RST
6UVWXYZ[6

(.;\].%633( 

where ;\](.%&3 represents the seniority of agent %J 

M2 KLMN0I %& O %J 4 ^_`=0a %J RST
6UVWXYZ[6

(.bcde]<.%633( 

where bcde]<(.%&3 represents the H-index of agent %J 

M3 KLMN0f %& O %J 4 g hi8hj
B -h& C g hikhj

B F @ -h&  

where g!hi8hj, and g!hikhjl, are indicator functions that have a value of 1 if the genders of %& and 

%J are the same, and 1 if the genders of %& and %J are different respectively, and zero otherwise, 

and -h& is the proportion of prior collaborators of agent %& with the same gender as %&. 

M4 KLMN0m %& O %J 4 g!ni8nj, B -n& C g!niknj, B F @ -n&  

where g!ni8nj, and g!niknjl, are indicator functions that have a value of 1 if the institutions of %& and 

%J are the same, and 1 if the institutions of %& and %J are different respectively, and zero otherwise, 

and -nJ is the proportion of prior collaborators of agent %J with the same institution as %J 

M5 KLMN0o %& O %J 4 pqLL0pp %& @ %J RST
6UVWXYZ[6

(.pqLL0pp.%&@%633( 

where pqLL0pp %&@%J  represents the number of citations of all papers co-authored by %& and %J 

M6 KLMN0r %& (O %J 4 .s?_0tiutvws?_0tjutv3

6UVWXYZ[6

(e]\(.%&3 

where e]\(.%&3 represents the degree centrality of agent %J in the entire network 

M7 KLMN0x %& O %J 4 e]\(.%J3 RST
6UZVyZzW[X&{&X|(VWXYZ[6

(.e]\ ( %6 3( 

where e]\(.%J3 represents the degree centrality of agent %J in the simulated oncofertility network 

M8 (KLMN0} /012&( 4 %~Q���W��i(
� (��LL 

where %~Q���W��i(
represents the average clustering coefficient of /012& neighborhood, and 

��LL represents the average clustering coefficient of a random simulated network with the same 

size as /012& neighborhood 

M9 KLMN07 /012&( 4 %~Q���W��i
�(���W��i

 

where %~Q���W��i(
represents the average clustering coefficient of /012& neighborhood, and 

���W��i
represents the clustering coefficient of /012& 
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Table 5: Analytical representation of the acceptance score. 

 Acceptance score 

M1 KLMN09.%J O (/012&3 4 :;<
6U�W��i

KLMN09 %J (O %6(  

where KLMN09 represents the invite Score 1 from %J to %6 

M2 KLMN0I.%J O (/012&3 4 :;<
6U�W��i

KLMN0I %J (O %6(  

where KLMN0I represents the invite Score 2 from %J to %6 
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where -hJ is the proportion of prior collaborators of agent %J with the same gender as %J 
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where -nJ is the proportion of prior collaborators of agent %J with the same institution as %J 

M5 KLMN0o.%J O (/012&3 4 :;<
6U�W��i

KLMN0o %J (O %6(  

where KLMN0o represents the invite Score 5 from %J to %6 

M6 KLMN0r.%J O (/012&3 4 :;<
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KLMN0r %J (O %6(  

where KLMN0r represents the invite Score 6 from %J to %6 
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where e]\(.%J3 represents the degree centrality of agent %J in the simulated oncofertility network 

M8 (KLMN0} /012&( 4 %~Q���W��i(
� (��LL 

where %~Q���W��i(
represents the average clustering coefficient of /012& neighborhood, and ��LL 

represents the average clustering coefficient of a random simulated network with the same size as 

/012& neighborhood 
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M9 KLMN07 /012&( 4 %~Q���W��i
�(���W��i

 

where %~Q���W��i(
represents the average clustering coefficient of /012& neighborhood, and 

���W��i
represents the clustering coefficient of /012& 
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