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ABSTRACT

This article uses Bayesian simulation algoritims& checkerboard matrix framework in order to study
whether competition can be statistically detected among living sp&¢estudy an exhaustive set of
binary coeccurrence matrices for habitation data. We categorize the living species into five distinct
groups: (1) Mammals; (2) Plants; (3) Birds; (4) Marine Life; &B)Y Reptiles. We implement the
Holdingswap and Metropoliswap simulation algorithms to statistically detect the presence of
competition for habitation. We find that for ~50% of our dataset, there is statistically significant presence
of competition. We observe the following ranking for percentage of dataset with significanbpfievel
competition: (1) 90% of birds show competition; (2) 50% of the dataset of reptiles show competition; (3)
40% of mammals and plants; and (4) 20% of theimadife exhibit statistically significant presence of
competition. We conclude that birds value habitation more strongly than marine life.

1 INTRODUCTION

There has been considerable recent interests in quantitatively studying aspects of the classiaf science
evolutionary theoryOne of the key tenets of this science is the idea of the "survival of the fittest"
(Darwin 1979. The fundamental notion here is that "competition" among species decides which one
survives and which one does not. There has been interest in using quantitative computational methods to
statistically quantify the presence oabsence of competition among habitation.

Therehas been some conflicting academic literature regarding the question or alisesopetition
for habitation. Initially, ecologists came up with a set of sevéaabkembly rules” to model the
competition for "survival of the fittest'Djamond 1975). In this model, it was stated that competition
among species was a nmandom procesand can be modeled deterministically. Specifically, he argued
that constraints on species composition are due to resource competition as it related to breadth and the
minimization of nondtilized resources. An economic analogy would be that resource naptisno
demand curves will match resource production supply curves. However, there has been a direct
contradiction to Diamond's "assembly rules" of competition (Connor and Simberloff. 13&@ it is
argued that "... every assembly rule is either a tagittl consequence of the definitions employed, a
trivial logical deduction from stated circumstances, or a pattern which would largely be expected were
species distributed randomly...." (Connor and Simberloff 1979). In addition, “Fill algorithms” (Sanderson
2000) and metaanalysis (Gotelli and McCabe 2002) have attempted to take further steps to answer the
above disagreement. Sanderson reported his conclusion as the following: “I have shown, for example,
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that bird species on the islands ... are naoidomly distributed.... But my work has also shown that
judgments about perceived patterns must be reserved ... as Connor and Simberloff first argued.”
(Sanderson 2000)

However recent work by statisticians (Chen et al. 2005) have argued the presanbm®fwhen
using "Fill algorithms". The authors argue that Sanderson's method introduces statistically biased results.
Specifically they showed that using a specific case study where there are fivgpassddilities,
Sanderson's method did not generate each configuration with a 1/5 chance (i.e. generate uniformly). Thus,
they argue that since one of the key assumptions of Sanderson's method is the ability to uniformly
generate tableghe statistical conclusions are questionable. The authors primary contribution is to
mathematically demonstrate the use $&quential Importance Samplifigr studying 0-1 contingency
tables. Anotable point is that @ery limited data set is studied in these aforementioned articles.

The goal of this paper is to perform axhaustive study of species habitation (across different types
of mutually exclusive living species) and statistically determine in an unbiased manner the
presence/absence of competition. We implement both the Metrgp@als-and Holding algorithm as
Bayesian simulation methods to test for ttmmpetition. We hope to shed light on the debate in the
ecological community as to whether living species distribute themselves randomly or whether there exists
competition which naturally selects species' habitat

2 BRIEF ECOLOGICAL BACKGROUND AND DATASETS

To study the presence of competition for habitation among species, ecologists collect binary co
occurrence matrices. Walhow an example of a coecurrence matriConnor and Simberloff 1979pr
the distribution of finches in the Galapagos islandBahle 1 below.

Table 1. Sample binary emccurrence matrix of the 13 species afcfies (shown in the rows) which
reside in the 17 islands of Gataos

al|lblc|d|e|flgh]: |7 |kK]|1 m|n]|o|p|g
Species 1 Oloj1]1)1|1]|1]1|1|1fO]1] 1f{1]1]1f1
Species 2 111 1f1j1)j1|{1]1f{1]O]1|] O]j1]1[0O]O
Species 3 1j1j1j1f1j1)j1j1j1f1j1]1| Oo]1]1[{0O]O
Species 4 O0l]O|1]1]1]0]0]1]0[1]0|1 11O 1]1]1
Species 5 1|1|1]of1]1]|]1|1]1|[1]O|1| O|]1]1[0O]O
Species 6 0]0|]0]0|]0]0]0]0]0O|O]1]0O|] 1]O]O|JO]O
Species 7 0OlO|1]1])]1]1|1]1]1]0]J0O|1] O|1]1|0]JO
Species 8 0] 0]/0]0|0]|0|0O0|]0|]0O|0O|0O|1]|] O|O]O|0]|O
Species 9 OlOo|1]1]|]1|J1|1]1]1]1]0]|1] O|O]1|0]|O
Species 10 |O|O| 1] 1| 1]1]1]1]1]1]0|1] O[1]1[]0O]O
Species 11 |O|O|1]1|1]O|1|1]|]O|[1]0]|0| O]O|]O[0O]O
Species 12 |O] O] 1] 1] 0]0] 0] 0] 0| O] O] O] O] O] O] O] O
Species 13 | 1| 1| 1| 1|1]1|1|1]1f1)1)1f 1]1]1f1]1

In Table 1, the value of “0” in the (i, j) element corresponds to the absence Bfsgiexies on thé"j
island while a “1” corresponds to the presence of that particular spatidse specific island. The
ecological question of interest is the following: Given the knowledge of the binaogcoorence
matrices, how can one detect the presence or absence of competition for habitation?

From the binary c@ccurrence matrix such as thatTdble 1, ecologists define several notions of
competition. The first is the idea of a checkerboard @biamond 1975) An island pair and a species
pair form a checkerboard unit if each species appears exactly on only one of the two islands and each of
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the islands has the presence of only one of the two species. In mathematical terms corresponding to the
co-ocaurrence matrices, the checkerboard upjtd@an be written as eithef the following 2 x 2 matrices

(0 1) (i o)

where the rows represent the species and the columns the geographical location.
An alternative approach for testing habitat competition is the use of the test st&fisfior testing
the degree of competition (Roberts and Stone 1990)

52 = 5 Ty} (1)
where m is the number of species, S ="Aand A = (g) is cooccurrence matrixas shown in Table 1)
The higher the value 6%, the stronger the evidence of intra-specific competition for habitation.

In the ecological community there is general concession that one can use either the checkerboard
units or theS? test statistic as a measure of competition. Onencam formulate the problem as a
statistical hypothesis testing problem. The null hypothesjsjsithat the distribution of the particular
living species on the islands of habitation is a matter of chance rather than any specific force, namely
competition. The chance expectations are defined based on two assumptions (Connor and Simberloff
1979). The first assumption isof every island there is a fixed number of species (this is determined by
the column sum for the amecurrence matrix)The second is that there is a fixed number of observations
for each species (this is determined by the row sungvery island.

Thus, the alternative hypothesis,,His that the species do not distribute themselves randomly, but
rather due to competitive forces. In otherwords, statistically speaking the null hypothesis refers to the fact
that the observed O-1l® is a "representative sample" drawn uniformly from the set of all possible tables
with the observed row and column marginal suifiserefore, the ecological problem can now be
formulated as a statistical problem (Chen and Cobb 2003): Given the knowledge of a binary co
occurrence matrix, what is the probability that a matrix randomly generated with the same row and
column marginalsum as the original matrix will show a level of competition at least as high as the
original cooccurrence matrix®or examplefor the case shown in Table 1, there are 333 checkerboard

units in all out of(123) (127) = 10,608 submatrices. So in principle to answer the above, one can list all

matrices with the correct marginal totals of equal weight, and find the proportion thattHaest the
same number of checkerboards as found in the ecological dataset. For the classical Darwin's finches
example in Table 1, it has been estimated that there are approximately more than'8 maxrit@s with
the same marginal totals. Thus thiscomes a problem gbmputational feasibility since many other €o
occurrence matrices are even larger (e.g. typically of the magnitude of 30 x 28, the Darwin's finches is a
well-studied table and is thus shown as an example).

We use the approach whichvolves uniformly generating random matrices. Here we employ the law
of large numbers to estimate the probabilitygs the following(this can also be thought of as the
statistical pvalue)

_ Total Number of Random Matrices exhibiting competition
Total Number of Random Matrices generated

p ()

We obtain an exhaustive populatioas(available) of nonverlapping binary coccurrence matrices
for various specimens. Weivide the dataset into five distinct categories: (1) Plants; (2) Birds; (3)
Reptiles; (4) Marine Life; and (5) Mammals (hot including Birds and Marine Life).
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3 SIMULATION METHDOLOGY

We study this problem using both the Holding and Metromoliap algorithms from Bayesian
simulation. We use the notion of checkerboard units as the measure of competition to calciiate the
defined in equation (2). The detailed statistical theory can be found by the previous work (Chen et al.
2005). We summarize the main aspects below.

3.1 Holding Algorithm

The Holding algorithm is derived from the basic “swap” algorithm. To motivate the Holding algorithm,
we start by describing the “swap” algorithm for ecological binarpcodrrence matrices.

Checkerboard unit Swap Algorithm:
I. Choose two rows and two columns uniformly at random without replacement.
. Is the resulting 2x2 matrix a checkerboard unit?
A. If yes, swap the resulting 2x2 matrix with its counterpart checkerboard unit (i.e. if the 2x2 matrix
is the identity, change it to the other checkerboard unit matrix and vice versa).
B. If no, go to step (I) and do not count this as a step of iteration.

The idea is to iterate the above algorithm for a large humber of steps toabtaimdom” matrix.
The first question to naturally ask is why is the swap algorithm an instance of MCMC? The simplest way
to answer this question is iftustrate it withan example.
Let the matrix o represent a specific binary co-occurrence matrix with the pre-defined row sums
of (3, 2, 1) and column sums of (2, 1, 1, 1) (Chen and Cobb)2068 A(r, c) be the set of all co
occurrence matrices with the aforementioned prescribed row sums r and column sums c. The generic
representation of a is shown in Table 2 below.

Table2: Cooccurrence matrix with row sums (3,1,1) and column sums of (1,1,1,2).

—_ = 1)

For any given matrix a, there are six other co-occurrence matrices with tisame row and column sum.
All the possible cas@se shownn Table 3 below.

Table3: A(r, ) for the prescribed row and column sums as shown in matrix o from Table2.
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So, we begin with matrixa (as shown in &ble 3). We illustrate one sample step of the swap
algorithm below in lgure 1. The idea is to iterate many steps like the one shokigure 1. Notice that
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the matrix a (shown in Figure 1) is the same as matrixn&able3. To show how this process can be
represented as a Markov chain, f@em a grapfcal representation for all possible cases when one starts
from thematrix a. The set A(r, @nd all the possible 2x2 checkerboard units form a graph. The vertex
set of the graph is represented by the matrices of A(gnd) the edge set is represented by the
checkerboard unit swaps as showniguke 2.

From Figure 2, t is clear that starting from matri, one can go directly to the following set of
matrices: p, c, d, e, f, g}. However, if one starts frormatrix b, the only possible choices for the next
matrix are the following: &, c, e, g}. The random walk of thetateX; is defined aghe 2x2 checkerboard
unit swaps in the swap algorithm. When one is in stgt¢h¥ transition probability of going from, X
X1 is solely dependent on,dndnot on any previous time. Therefore, we have the first condition of a
Markov chain, i.e. the property that at state t, the probability of mawistate t+1 does not dependent on
any of the past history except that of state t.

Next in Hgure 3, weshow both the adjacency matrix and the correspongdamgition matrix. The
adjacency matrix is defined ag & 1 if and only if there is an edge from vertex i to vertex j. If we
normalize the adjacency matrix by dividing each element of row i, by the row sumarwebtaina
transition matrix. Thus we now have a Markov chain representation for the 2x2 checkerboard unit swap
algorithm.

[1 1 1 0]

aa=(0 0 0 1| 1) randomly choose say rows (1.2) and cohunns (3.4)
[o 0o 0 1]

[1 0]
) | ‘ —+  2) Isthus a checkerboard? Yes, swap it
)
0 1 :
o ‘ —>  3) Change the onginal matrix rows (1.2) & colunms (3.4%

1 1 0 1
a0 10 as 4) End of 1-step of swap alzontlun
0 0 0 1

Figure T One sample iteration of the swap algorithm

Figure 2: Graphical representation of the set
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Figure 3 (A) Adjacency matrix for the graph representation in Fig. 2; (B) Transition matrix for the graph
representation in Fig. 2.

In order to test whether this algorithm will give truly "random" matrices, we have to analyze the
limiting (stationary) distribution. Following the work of (Chen and Cobb 2003), we proceed with a
further mathematical explanation. Suppos® pe a vector of probabilities whose élement represents
the chance that the chain is in stagdtern steps, which gives the probability distribution over the states
of the chain at time. Under certain regularity conditions (Chen and Cobb 2003)cenvergesd a
unique limiting/stationary distribution, say 7 (regardless of where the chain starts, i.e. ). Since we want
a "random" matrix, the stationary distribution must converge to a uniform distribution. To test this, one
must use the Chapman-Kolmogorov equations"6P s p™T, where Tis the transition matrix. So for the
limiting distribution, we can findtationary vector sucthat =P = n. Now for any graph this can be found
by letting d be the degree of vertex(iwhere degrees of a vertex of a drap the number of edges
incident to the vertexwvhile loops are counted twice), and &gt= 1 if {i, j} is an edge and O otherwise.
Then the probability of going from vertéxo j, p; = a/d;, and alsoY;a;; = d;. Now if we set m; =
d/Y, d; , one can easily show that 7P = z. This showsthat in the limit, the visiting rate of a vertex is
directly proportional to the number of neighbors. Thus, usingeramplefrom above, thealue ofz is
(6,4,4,4,4,4,4)/30. Thidlustratesthe bias in th results The following algorithm correcthis bias

Checkerboard unit Holding Algorithm:
I. Choose two rows and two columns randomly without replacement.
II. Is the resulting 2x2 matrix a checkerboard unit?
A. If yes, swap the resulting 2xmatrix with itscounterpart checkerboard unit.
B. If no, go to step (I) and count this as a step of iteration.

Now we have allowed the graph to self-loop (i.e. go back to itself after one iteratis)with this
correction, the Holding algorithm will generate a uniform limiting distribution.

3.2  Metropolis-Swap Algorithm

While theHolding algorithm is avalid MCMC method, itends to be computationally inefficient. This is
mainly due tothe configuration of the ecological dataset. Sincehasebeen using checkerboard unit

as the measure of competition, the probability of the Holding algorithm moving forward depends entirely
on the number of checkerboard units presents. In the dataset as siH@bteih,for example, only 3%fo
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the 2x2 sulmatrices form a checkerboard unit. This implies that it will take roughly 30 iterations (on the
average) before one can make a swap (for the finch data set). In general, the percentage of checkerboard
units tend to be small for most ecological habitation data sets. Therefore, it would take a large number of
iterations to properly sample the entire dataset.

To eliminate some of this inefficiency, the Metropolis-swap algorithm has been proposed (Chen et al.
2005). It has been shown that swap walks oroamrence matrices are reversible, and thus the
Metropolis algorithm can be usethe Metropolisswap algorithm is defined as the following:

Checkerboard unit Metropolis-Swap Algorithm:
I.  Choose two rows and two columns randomly without replacement.
II. Is the resulting 2x2 matrix a checkerboard unit?
A. If yes, swap the resulting 2x2 matrix with its counterpart checkerboard unit.
B. If no, go to step (I) and count this as a step of iteration.
lll. DenoteA; as the sulmnatrix obtained by swapping matrix with its other checkerboard unit
counterpart. Le®; andd; represent the number of checkerboard units irnsatix A and
A, respectively. Defing = min(1, §/6;) and generate a uniform random number uin [0, 1].
A. If u< g, then accept; (this moves from matrix 4 A;)
B. Else reject; (remains at)A

The main advantage in using the Metropeligp algorithm is that itakes into account the
reversibility property of Markov Chains. In other words, it allotie case of going from; A~ A; as well
asA; — Ai. Since it has been shown that swap walks oocoerrence matrices are reversible (Chen et al.
2005) it is a major computational benefit to take advantage of the reversibility property of the Metropolis
algorithm. We implement both algorithms for our dataset to calculate the value of p

4 RESULTSAND DISCUSSIONS

We begin by showing some Bayesian Simulation diagnostics before proceeding to the ecological data set
results.

4.1  Simulation Diagnostics

Since we are dealing with simulations of the MCMC type, it is important to pedeveral diagnosis
tests before runng on realife data (ecological data). Wiest start with generating a known example
where the truths known regarding whether there exists competition or notrakéomly choose ax4
binary coeccurrence matrix, Xas giverbelow:

0 0 1 1

1 1 0 0

1 0 1 0

I 1 1 0

It can be easilylownthat there are a total of 27 matrices with the sammesum of (2,2,2,3) and
column sum of (3,2,3,1as the above matrix X-or all of these matrices, weomputed the number of
checkerboard units in each of the other twesitycases besides the origl matrix X. For the original
matrix X as shown above, there were 8 checkerboard unitsp Thealue) is determined as the
proportionof matrices which haat least eight checkerboard units. The actuadlpe in thiscaseequas
to 21/27 or approximately 77.8%.

Both Holding and the Metropoliswap algorithms are testddr several different iteration values
using matrix X as our initial state and the resafes showrin Table4 below.
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Table 4: p values from running the Holding and Metropdisap algorithms for several different
iteration values using as input X; note that the trvalpe here is 21/27.

Iteration # 10 100 1000 10000 100000
Holding 0924+0.17 |0.760£0.13 |0.782+£0.04 [0.771+£0.02 |0.779+0.002
Metropolis | 0.895+0.24 | 0.776 £0.12 [0.783+0.05 |0.772+0.01 |[0.776=0.006

As shown in the tablabove both the Holding and the Metropobsvap algorithms converge rapidly
after one hundred iterations to nehe true p-valueTo extend the test, wapply the Holding and the
Metropolis to the finch dataset given in Table 1 and results are show in Table 5.

Table 5: p values from running the Holding and Metropdisap algorithms for several different
iteration values using finch data set in Table 1; note that the wale¢here is = 0.01.

Tteration # 10 100 1000 10000 100000
Holding 0.86+031 ]0.33+£0.29 0.038 + 0.03 [0.003 +0.003 | 0.005 + 0.005
Metropolis | 0.83 £0.29 [0.38+0.32 0.03+0.03 0.003 £ 0.005 | 0.004 £ 0.003

Note thatthe finch data has been extensively studied (CherCabt 2003, Chen et al. 200&and the
authors tend to agree that theglue should be around 0.005. From the resnliBables 4-5, it is clear
that after around 10,000 iterations, both algorithms are converging to close ¢ortieet'p-value.

4.2 Simulation Burn-in Estimates

In the above cases, wi@d notanalyzethe “burnin” period for the MCMCsimulations (both Holding and
the Metropolisswap). There are several ways to estimate the “linimes (Brooks et al. 2011and to
provide a detailed mathematical analysis on estimating the convergence rates based on eigenvalue
analysis of the transition matr{Chen and Cobb 2003)Since it is impractical to compute the transition
matrix for large ecological datasets, the analysis presented befofar more theoretical implications
(Chen and Cobb 2003) thats practicaity. There is statistical literature on ways determinea
diagnostic program to estimate the number of iterations needed based on a pilot sample run of an MCMC
simulation (Raftey and Lewis 1992) This methodology assumes a Bayesian framework, while the
methodology used here is primarily that of a frequentist. In this modéiaweelittle or no information
about the “prior” distribution. Thus, since the Rafteswis diagnostic is derived from a Bayesian
framework and is also an estimate, we do not solely rely on this to estimate e beriod.

We simulated multiple pilot runs for both algorithms shown next.

Number of Checkerboard Units
i
(I
-y
i

0

. .
10 10" 107

107
lteration Number

Figure4: 5 pilot runs each consisting of 5 million iterations of Holding algorithm using the finch data set
in Table 1 as a sample; notice after approximately 7,000 iterations, the MCMC simulations "stabilize".

4040



Guharay and Chang

10%5=

. l: Il LJ
il e

T b '.ﬁlﬂih--h”'*‘

Number of Checkerboard Units

| ]
10* 10°
Iteration Mumber

Figure 5: 5 pilot runs each consisting of 5 million iterations of Metropolis-swap algorithm using the finch
data set in Table 1; notice after approximately 3,000 iterations, the MCMC simulations "stabilize".

Notice in both Figures 4 and 5, all of the MCMC simulation chains converge in the long-run. We
expected that the Metropolssvap will converge faster and indeed Figure 5 shows evidence of this
phenomenon. All five curves in Figure 5 seem to stabilize after approximately 3,000 iterations. In the
case of the Holding algorithm, it seems that after around 7,000 iterations or so, the chain has stabilized (as
shown in Fig. 4). Since these pictorial representations are an approximation, we use a conservative
figure of 10,000 iterations as the “burn-in” period.

43  Mixing of the MCM C Simulations

Besides the burn in period, the other pertinent question related to MCMC methods is how well does the
MCMC chainin question mix? To test thigje computed the autoerrelation function (acf) for the data
after the estimatedotirn-in” period.

It is very clear from Figure ®elow that both the Holding and the Metropaigap have a long
mixing period. The autgerrelation function decays slowly to zero fboth cases.For the Holding
algorithm, theacf decays ta@eroafter roughly 3000 lags while for the Metropolis swap, the acf decays
to 0 by around 2000 lags.dtinteresting to note is that the Metropeisap mixes faster than the Holding
(as expected from the theoryy.e computed the palues for the finch data set whene incorporates the
mixing property. In other words, weomputed the p-value by sampling every 2000 iterations (for the
Metropolisswap algorithm) and by sampling every 3000 iterations for the Holding algokiflernbtain
similar p values (to the thirdetimal place) with respect to that of not incorporating the mixing property.
This gives us confidence in that the slowxing of these MCMC simulationsill not greatly affect the
overall outcomes of th@ results. Also previous work has argutt if a pilot run for the MCMC
simulations Brooks et al. 2011) is made long enough (for both Holding and Metropolis), the burn-in and
the mixing effects will not affect the final results in the leng. With thisin mind, wesimulateboth the
Holding and the Metropoliswap on the entire population dataset using the first 10,000 iterations as the
burnin and iterating for a minimum of 100,000 simulations (higher for larger matrices)th@ve
computed the fingh values (pvalues) for each ecological dataset.
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Figure 6: Left shows the Aut@orrelationfunction (ACF)for the Holding algorithm using the finch
dataset in Table 1; Right shows the AfoFthe Metropolisswap algorithm using finch dataset in Table 1

44  Simulation Resultsfor Ecological Datasets

Wefirst show ahistogramof the p-waluesfor all the speciesstudiedbelow in Fgure 7. It seems that the
histograms ofestimatedp-values for boththe Metropolisswapand theHolding smulationsfollow an
exponentialdistribuion. Sincethe histogramsn Figure 7 donot comefrom continuousdata,we camot
usethe Kolmogomv-Smirmov goodness diit testto assessvhether thehistogram followssome type of
anexponential distribution.

For thedatasetve studiedwe foundthatappoximately50% ofthe datahasp-values lesshan10%
(for both the Holding andMetropolisswap simulationanalysis). Tius, basedon the checkerboardinit
definition of the competition,we find abouthalf of the casesin which we can safely rejecthe null
hypothesis thathe speciesdistributethemselvesandomly. Howeer, since we have about halfof the
cases where whil to detectcompetition,we breakdown thecases basedn the categoryin which the
speciess classified(i.e. marine life,or plant, etc.).

In Figure 8 belowwe show the average yerlues for each group. This platis generated using the
Holding simulationoutput. The results are the same (they differ in the third decimal place eVaheep
for the Metropolis-swap algorithm. It is interesting to note that birds show the strongest sign of
competition, while mammals show the least sign. Also, notice in Figure 9 that again birds dominate in the
percentage of statisticallignificant pvalues (pvalue less than 10p60ne can hypotlsize from these
results that birds value their habitation highly and are willing to “fight” for it more than other species.

-
= &
&
& o
[=
| | - — — [ ]
= i T T i
0.0 0.z 0.4 0.6 [:B:] 1.0
astimated p-valuas
P —
-1
g e
=
&
= I
= ! | 1 I 1 [ 1
T T T T 1
0.0 0.2 0.4 0.8 os 1.0

astimated p-values

Figure 7: Histogram of the p-values for all of the species studied; top figure shows for the Holding
simulations and the bottom figure is for the Metropeidsp simulations.
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Figure 8: Plot of the averagevplues for all of the species classified in each group
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Figure 9: Plot of the percentage of statistically significantlpes (p < 10%) for each group of species.

5 CONCLUSIONS & FUTURE WORK

In this article we implement two instances of MCMC simulatiapplications to a problem in ecology.

We test the "bunin” times along with the mixing rate through graphical and aoteelation function
analysis, respectively. Througimexhaustive studywe have found evidence for competition among 50%

of theliving species studied. Wind that among the living groups the following order of competition
exists (ranked from highest level of competition to least): Birds, Reptiles, Plants, Mammals and finally
Marine life. Also we have found thillowing ranking for percentage of dataset with significant
competition (pvalue < 10%): 90% for birds, 50% for reptiles, 40% for mammals, 40% for plants and

finally 20% for marinelife. We arguefrom these resultshat birds valuetheir habitation ery highly

and thus comgte hedily amongst themselves far‘suitable” habitation. Mammals reptiles, plats and
marine life on the other hand, may compete in general, but perhaps value habitation to a far lesser extent
than birds. In the case of marine life, since theranis‘abundance” of space for habitation it seems
reasonable that the marine life category shalesser degree of habitat competition than say those of the
birds who always migrate and keep looking for new habitats.

The results for the Holding algorithm versus the Metropolis swap algorithm matches very precisely
(up to the third decimal place). This gives further evidénaair overall results in that these two different
methods yield the same ecological conclusion& alsovalidatedboth the Holding and the Metropolis-
swap algorithms by running them on previously establishedla@aketicallyknown results.

For future work, we plan to develop a regression model for competition. However, we believe that a
more sophisticated regression model can measure the les@inpktition and provide inference. Also, it
is worth exploring whether one can represent theaurrence matrices as cooperation vs. competition
framework. For this idea, we plan on implementing hybrid MCM&hods.
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