
Proceedings of the 2015 Winter Simulation Conference 

L. Yilmaz, W. K. V. Chan, I. Moon, T. M. K. Roeder, C. Macal, and M. D. Rossetti, eds. 

 

 

 

WHICH MODELS ARE USED IN SOCIAL SIMULATION TO GENERATE SOCIAL 

NETWORKS? A REVIEW OF 17 YEARS OF PUBLICATIONS IN JASSS 

 

 

Frédéric Amblard 

Audren Bouadjio-Boulic 

Carlos Sureda Gutiérrez  

Benoit Gaudou 

 

UMR 5505 CNRS, IRIT 

University Toulouse 1 Capitole 

2 Rue du Doyen-Gabriel-Marty 

Toulouse, FRANCE 

 

 

 

ABSTRACT 

Aiming at producing more realistic and informed agent-based simulations of social systems, one often 

need to build realistic synthetic populations. Apart of this synthetic population generation, the question of 

generating realistic social networks is an important phase. We examined the articles published in the 

Journal of Artificial Societies and Social Simulation (JASSS) in between 1998 and 2015 in order to 

identify the models of social networks that were actually used by the community. After presenting the 

main models (regular networks, random graphs, small-world networks, scale-free networks, spatial 

networks), we discuss the evolution of the use of each one of these models. We then present different 

existing alternatives to those kind of models and discuss the combined use of both simple and more 

elaborated or data-driven models to different aims along the process of developing agent-based social 

simulation with realistic synthetic populations. 

1 INTRODUCTION 

When wanting to develop agent-based social simulation of a phenomenon on a specific area (let’s take as 

an example a model of H1N1 propagation in the region of Danang, Vietnam), modellers face the problem 

of synthetic population generation. Aiming at populating their models with realistic individuals, they 

often have access to global statistics (age pyramid, income distribution...) they have to disaggregate in 

order to generate a realistic synthetic population of agents on their case study. Dealing with individual 

attributes (age, sex, income…) the problem is tractable; it is more or less the case of their location when 

they want to include a spatial dimension to their model. But in the case of social networks generation they 

face a dilemma, the data are usually not available or they are very limited and the most known models 

(Small-world networks, scale-free networks for instance) seems far too abstract to capture the 

corresponding social structure on their case study.  

Before entering into the presentation of the existing possibilities for synthetic social networks 

generation from the literature, let us summarize the issue faced by the modeller when wanting to generate 

such a network. In order to present it simply, the generation of social network may take place hereafter 

the generation of the synthetic population and eventually its geographical localization in an environment. 

Therefore we can consider that before entering this final step we have a population of agents that possess 

attributes (age, sex, income, home location, work location …) and we want to interconnect them through 

a social network that will model the possible interactions taking place among the individuals. The social 
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network component is in particular useful when modelling epidemic spreading (Eubank et al. 2006), 

opinion dynamics (Amblard and Deffuant 2004) or economic transactions (Tesfatsion 2002) in a 

population.  

The social network we want to generate at the initialization of the simulation is therefore a static 

graph composed of nodes (representing the individuals/agents) and links among them. The nodes may be 

described by different attributes (as the ones generated from the preceding step) as it may be the case of 

the links. Concerning the main properties that could be associated to links, we generally find the 

following ones: 

• links may be oriented or not (I lent you money or we work together) 

• links may be weighted or not (how much I lent you) 

• links may be labelled or not 

• several kinds of links may be considered (multiplex networks) or not. 

These different options strongly depend on the model and modeller’s approach of the issue. As 

concerning the static or dynamic property of this graph we placed a clear limit in between the generation 

of the initial state of the model (that is clearly our scope) and the modelling part (for instance the possible 

evolution of the social network, that corresponds to hypotheses taken by the modeller and are clearly, at 

least for the moment, out of the scope of our approach). Even if the generation of this initial static graph 

may be the result of a dynamic process modelling social network evolution (as it is the case for instance 

of the Preferential Attachment model (Barabasi and Albert 2001)), we are, in this case, only interested in 

the final output of this dynamics and not for instance in the psycho-sociological soundness of the process 

that enables such a generation. Moreover, and although it is a very promising perspective, we won’t 

mention multiplex networks and will only consider they can be generated by the repetition of some of the 

listed approach applied independently on the different layers, even if it is a strong assumption and if we 

anticipate some co-dependencies in between the layers of a multiplex network. 

Therefore dealing with the generation of this initial static graph, one can distinguish in between two 

main features that enable to generate the network as well as two different scales for this generation. 

Concerning the generation of the network, we can basically take two kind of information: the attributes or 

profiles of the nodes (making the creation of links depends on the profiles of the two concerned agents 

following for instance an homophilic process) and the structural properties of those nodes (considered in 

general by dynamical generation processes, when searching for instance to mate individuals that have 

similar number of links). The two different scales considered enable also to categorize the solutions. 

Basically we can distinguish in between local processes where agents apply rules to their local 

neighbourhood in order to generate or not corresponding links, and global or macroscopic approaches 

where one consider the graph as a whole and apply link creation rules from a top-down approach. 

 In order to clarify and structure our presentation of the state of the art, we will first focus on a 

representative journal for the community of social simulation, namely the Journal of Artificial Societies 

and Social Simulation (JASSS). From this journal we made a systematic review of the models used to 

generate social networks in the different models. We will present this study in the section 2 and at the 

same time the models used by the community. We will end the section 2 by discussing the evolution of 

models used for the generation of social networks in this field along its 17 years of existence. In the 

section 3 we will extend qualitatively our study presenting other kinds of social networks generations 

published outside of JASSS to broaden the scope. Finally we will present other approaches for which we 

didn’t find yet any related agent-based model but for which we see an interesting potential. 

2 DATA COLLECTED ON JASSS 

Searching for a representative dataset of the practices at play in the social simulation community, we 

decided to focus in the Journal of Artificial Societies and Social Simulation (JASSS) which exists since 

1998, created by Nigel Gilbert and is one of the main journal of the social simulation community (other 

journals are for instance Computational and Mathematical Organization Theory, Advances in Complex 
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Systems, Complexity). The two main interests to choose this journal is on the one hand it is in open 

access and on the other hand it explicitly focus on social simulation whereas other journals could have a 

broader scope on complex systems in general. From its creation in 1998 to its last issue in March 2015, 

JASSS published 628 articles. Among these 628 articles that we browse one by one we selected the 

papers that were mentioning explicitly the terms “social network” in the description of an original model 

(then excluding surveys as well as methodological papers). Then searching for these papers the methods 

used to generate the initial social network, we excluded again: papers concerning the modelling and 

simulation of network dynamics for which the initial state is either an empty graph or a full graph 

(making evolve, as it is the case for several papers, the weights of the links depending on agents’ 

behaviours) ; papers concerning supply-chain simulation, although they can be considered more or less as 

a social network in-between agents, they composed a quite specific family, and the generated networks 

are trivial (linear ones) and rarely includes more than a decade of agents ; papers concerning 

infrastructure networks (either roads, or communication channels) ; moreover we also excluded 4 other 

papers because of the lack of specification concerning the social network models they used.  

 At the end of this filtering, we finally kept in our dataset 93 papers, published in between 1998 and 

2015. From this dataset, we classified the set of models used and their representativeness from the dataset 

(cf. Fig.1). 

We sorted the different models referenced into 9 categories: 

• Regular lattices (27%) inherited quite naturally from the cellular automata approach and regroup 

mainly 2D-lattices with either Von Neumann or Moore neighbourhood, but also (even if it is a 

minority) 1D-lattices.  

• Random networks (29%) correspond mainly to the Erdös-Rényi model. 

• Small-world networks (21%) correspond in fact to the �-model (Watts 1998). 

• Scale-free networks (19%) correspond mainly to the Preferential Attachment model of (Barabasi 

and Albert 2001) but not exclusively.  

• Spatial networks (20%) correspond to networks built from spatial distribution of the agents using 

for instance a distance below which agents are either systematically or stochastically connected. 

• Hierarchical structures (5%) correspond to tree-like graphs and are used in general either to 

generate organizational structures or familial networks 

• Kinship networks (5%) correspond to the generation of networks modelling familial networks and 

using in general bi-partite graphs to distinguish in between males and females. 

• Empirical networks (3%) correspond to cases where empirical data on social networks are used to 

generated the social network, where the empirical data that are used do not necessarily concerns 

the target system to be modelled but may concerns another system.  

• Other kind of models (13%) regroup mainly ad hoc models of social networks strongly related to 

the population being modelled and also very ideal networks (star-network, linear ones), these 

latter being a minority for this category. 
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Figure 1: Number of JASSS articles where the related models are used in between 1998 and 2015. 

 The scrupulous reader has yet noticed that the total of the percentages are actually far upon 100%, it 

is due to the fact that in certain papers, several networks models are used in order for instance to test the 

influence of the kind of network on the results of the simulation (for instance, for several papers, testing 

an agent-based simulation on random networks, small-worlds and scale-free networks (Suo and Chen 

2008)).  

 We will now present into more details the different models in question and then the evolution of the 

use along the 17 years of JASSS the first four being presented in chronological order. 

3 MODELS USED IN AGENT-BASED SOCIAL SIMULATION FROM THE JASSS SURVEY 

3.1 Regular networks 

The field of social simulation inherited of many tools coming from the complex systems field and in 

particular of cellular automata (Wolfram 1986). The corresponding underlying interaction structure is 

then in general the one of a regular grid and in many cases a torus. The agents are then represented by the 

cells of the automata and their social neighbourhood is defined from the regular grid with a von 

Neumann’s or a Moore’s neighbourhood. The Newman’s neighbourhood links a cell to its four 

neighbours (North, East, South, West) as Moore’s neighbourhood adds four more neighbours (NE, SE, 

SW, NW) and extended Moore neighbourhood adds other cells depending from their distance (in terms of 

number of cells) to the central agent. A representative instance of such approach is the article of 

Leydesdorff (2001) concerning innovation diffusion in socio-economic networks. 

 However they are quite unrealistic, each agent having the exact same number of neighbours that are 

either 4, 8, 24 … They have been and actually still used as they present a big advantage compared to other 

existing models: they enable a clear visualization of the simulated phenomenon. As for instance with 
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diffusion process, one can easily visualize the spread happening spatially as there is a perfect mapping in 

between the social structure and the underlying space. 

3.2 Erdös Rényi random graph model 

From there, some modellers defined the interaction structure of their models by using a random graph 

following the model of Erdos and Renyi (1960). A random graph is a set of N nodes connected by n edges 

which are chosen randomly from the N(N-1)/2 possible edges. A great advantage of this model compared 

to the regular graphs is that you can easily play on the average connectivity of the graph, as it was fixed to 

4, 8, 24 … n in the former case; also, on a pragmatically side, this model is quite easy to implement.  

 Dealing with the features and properties of such random networks, once the population (number of 

nodes) is fixed, the only parameter of the model is the links density (or the average connectivity of the 

nodes). The links density presents a percolation threshold at ln N / N. Under this critical threshold, the 

network is very likely to be disconnected and presents several components; above it the model exhibits a 

single giant component. Moreover, the model presents low clustering as well as low diameter (or a low 

average path length among pairs of nodes). Dealing with the nodes’ degree distribution, it follows a 

Poisson law centred on the average connectivity. The clustering is lower than regular networks of the 

same size. A representative publication from our dataset using ER model is the consensus model 

proposed by Stocker et al. (2001). 

3.3 Small world models 

The arising question at this stage was: do some graphs between these two extremes (regular and ER 

networks) that may have other characteristics exist? A first class of models comes from the Watts and 

Strogatz’s work, i.e. the class of Small World graphs (Watts and Strogatz 1998; Watts 1999). They 

propose algorithms that enable to fill the gap between regular structures and random graphs. The second 

one they proposed, the �-model, which is actually the one that is effectively used in agent-based social 

simulations, is based on a substrate, a starting structure that is regular. Hereafter, depending on the � 

variable, between 0 and 1, it keeps or rewires at random each link of the existing graph. 

 It yields to the introduction on a regular structure of random graphs characteristics especially the 

reduction of the average path length among the agents. These Small World graphs inherit in a way of each 

one of the properties of both regular and random graphs. They have both a high clustering coefficient and 

a low averaging distance. It follows, for the scientists who test their models on this class of graphs that 

their models were functioning very differently (Axtell 2000; Soorapanth et al. 2001). 

 From these different models, the �-model is definitely the most used, as in Huang at al. (2005). The 

fact is that this model is very simple to implement and enables very easily to play both on average 

connectivity and the randomness degree of the graph. The clustering property in particular that is 

identified from real social networks was enabled by such model. However, a property that is not present 

in the generated graphs from this model concerns the degree distribution (or connectivity of nodes). In 

several empirical social networks a strong inequality has been shown concerning such distribution with a 

vast majority of the individuals having few links whereas few ones have many (Liljeros et al. (2001) for 

instance on sexual networks). Dealing with this property the small world graphs exhibits rather a Poisson 

law distribution smoother and smoother as the � parameter grows. 

3.4 Scale-free networks 

Confronting models to empirical data on several kinds of networks, as the Internet or the metabolic 

network, Barabasi’s team exhibits a power-law distribution of nodes’ degree (Albert et al. 1999). It is a 

property they do not encounter in the existing theoretical models. Then they propose the model of 

preferential attachment (Barabasi et al. 2000) which has the degree distribution as an input, but is random 
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in all other aspects. The preferential attachment model follows an iterative process. Starting from a seed 

of nodes and adding new ones, it adds also corresponding links following the rule that the more a node is 

connected the more it has chance to receive new ones. This probability is tuned by a parameter of the 

model. Then the model of scale-free networks can be applied in particular to generate random graphs with 

a degree distribution that follows a power-law. 

 Within this class of graphs several directions are proposed to modify it. In Albert and Barabasi (2000) 

they propose a rewiring edges dynamics that also provides a links dilution over time. Dorogovtsev and 

Mendes (2000) propose in the same way a stochastic algorithm that add edges between old sites and that 

can remove existing edges, the probability of link creation between two nodes being proportional to the 

product of the their degrees. Amaral et al. (2000) propose an aging cost or a capacity constraint to new 

link creation that refrain the process of power-law degree distribution. 

 The use of such generated networks (as in Stauffer et al. (2001)) is still subject to discussions as on 

the one hand, the properties of such networks are very particular compared to others and their use is 

therefore informative concerning the behaviour of the model. On the other hand, the features of scale-free 

networks and especially the strong inequalities among nodes concerning their connectivity, if they are 

identified in some cases of social networks (Liljeros et al. 2001) do not fit with underlying assumptions in 

many social systems. 

3.5 Spatial networks 

Models which are regrouped in this category are basically built from an underlying space, often 

geographical but sometimes interpreted as a social space (where each dimension covers an individual 

attribute). Agents are then located in this space and a distance threshold is applied in order to build the 

corresponding network linking closest agents either in a deterministic or stochastic (applying probabilities 

of connections) way. The social circles model (Hamill and Gilbert 2009) is a good instance of this kind of 

models. Dividing agent in several group with different range, we can obtain a social network with some 

desired properties, like strong clustering, assortativity and correct path length, as well as fat tail degree 

distribution, depending on the agent group’s distribution. In the case of a social space, the process at play 

is built upon homophily among agents. Barthélémy (2011) published a survey dedicated to spatial 

networks where he proposed some spatial variations of the most used models, e.g. ER graph, small world, 

or preferential attachment. Basically, a cost is associated with the distance between the nodes to be linked, 

affecting the probability of the association. It will then have consequences on the network properties, 

increasing clustering and average shorter path, or raising the correlation between position and centrality to 

the one between centrality and degree, for example. 

3.6 Other kinds of models used 

In this latter group we won’t detail the models proposed as they are very heterogeneous. However, some 

of them could be regrouped depending on the type of network they are searching to generate. In the case 

of organizational networks, hierarchic networks (basically trees that could integrate some probabilistic 

rewiring) are used intuitively (Kim 2009), whereas for the generation of kinship networks (Yang et al. 

2009), the models proposed are more focused on the building of couples (random bi-partite graph in 

between men and women) and then the growth of those proto-familial network integrating children 

(linked to their parents) sometimes over several generations.  

 As dealing with empirical networks, none of the article published in JASSS is built upon empirical 

network corresponding to the modelled system (the reason behind is of course linked to the lack of 

availability of such precise data). However, Cointet and Roth (2007) evaluated several social network 

models as well as empirical networks in order to determine their capacity to enable and reproduce 

knowledge diffusion process. Their conclusion is surprizing and interesting as using an other empirical 

social network of roughly the same size is far better than using the abstract models available. Two other 

more recent articles published follow the same methodology successfully.   
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 To conclude with the social networks models used in JASSS, the last category “others” corresponds 

to ad hoc models of social networks that follow strongly the modelled system. However interesting, they 

are poorly generic and cannot really be adapted to model other systems. 

4 RESULTS OF THE JASSS CORPUS ANALYSIS 

The presentation of the different models being done, one could wonder if the usage of a particular model 

evolved along time in the community or if they do remain more or less constant in time. In order to obtain 

a clear picture of such an evolution, rather than using a yearly representation (the samples being too poor 

to represent correctly tendencies in time), we regrouped the articles into periods of 5 years (for the first 

and last segments as they correspond to less publications) and 4 years (the two other segments 2003-2006 

and 2007-2010). The result (cf. Fig. 2) illustrates well the main tendencies in the field. 

 

 

Figure 2: Number of publications including each type of networks on 4 and 5 years segments in between 

1998 and 2015. (ER: Erdos and Renyi, SW: Small World, SFN: Scale Free Network). 

 

 To draw a rough picture of these evolutions in the domain of social simulation, we have to start back 

at the origins and especially from the cellular automaton ancestor. As agent-based simulation was 

originally built from this approach, first models (like the segregation model of Schelling for an instance) 

were built on checkerboards or regular grids. It appears from there a kind of bifurcation concerning the 

interpretation of this grid.  

 For a first category of the modellers, this grid represented a discretization of a geographical space, 

agents in their models being able to move on this grid, it quickly evolved into models of the environment 

that were no more discrete but continuous (as far as possible in computer science) and agents moving no 

more from square to square but rather continuously (think about the Boids model of Reynolds for 

instance). When, following the mood, they then wanted to integrate social networks into their models, it 

was quite natural to build them using distance among agents, it is probably one of the ways spatial 

networks have been adopted (rather than actually proposed) by the social simulation community. 

4027



Amblard, Bouadjio-Boulic, Sureda Gutiérrez, and Gaudou 

 

 For the second category the original grid of the cellular automata was rather interpreted more 

abstractly as an interaction structure, that they very soon called a social network. Then probably to test 

different properties of the corresponding social structures, the models were integrated progressively: 

Erdös-Rényi model enabling to test easily the sensitivity of simulation outputs to the density of the 

network, Small-world enabling to test moreover the sensitivity to the randomness of the network (and 

eventually the clustering), scale-free networks enabling to test the sensitivity to high inequalities of the 

connectivity among nodes. 

 The global picture can be probably more precise when looking at the aim of the modelers when then 

use social networks models. If in the first periods those models were envisaged as quite reliable or 

realistic representation of the social networks (these are actually the kind of arguments given in the 

publications) compared to regular grids, the “social network effect”, i.e. the fact that the shape of the 

social network has an impact on the simulation outputs, conducted progressively many of the modelers to 

actually test such a network effect by using different models of social networks. In the last two periods it 

is for instance very frequent to actually see the conjoint use of Erdös-Rényi, small-worlds networks and 

scale-free networks to try and evaluate this network effect. Therefore as a part of sensitivity analysis those 

models, even quite far from realistic social networks, are actually useful.  

 However, two problematic issues remain: on the one hand the use of such models (ER, SW, SFN) as 

synthetic representation of social networks (see again the argument of Cointet and Roth (2007)) and on 

the other hand the use of ad hoc models that are difficult to reproduce, not very well specified and that 

add usually to the model a bunch of new parameters. 

5 PERSPECTIVES: WHAT WOULD BE THE ALTERNATIVES? 

From this situation, three directions can be envisaged for social networks models that are developed in 

this part. The first one concerns further development and use of abstract models. The second one is 

dedicated to the generation of social networks from sample data. Finally we will present a more robust 

solution to build modelled population on a network (as opposed to ad hoc network models). 

5.1 Is there a future to abstract models? 

As such the four main representative models of this category, namely regular, random, small-world and 

scale-free networks, when used in the frame of a sensitivity analysis to test density-dependence effects for 

instance, are totally credible. Moreover one of the big advantages of these models is that they are very 

easy to implement, enabling then the reproducibility of the experiments as well as a facilitated access to 

such tests for any modeler. Probably we should wonder whether we should wait for yet another abstract 

model of the same kind?  

The Forest Fire model (Leskovec et al. 2007) enables to create networks having most of the properties 

observed in real networks, in particular communities and skewed distribution of degrees. We didn’t find 

any agent-based social simulation where such model was used to generate the social networks, however it 

is a promising one, just as other models or benchmarks (Lancichinetti et al. 2008) that would enable to 

test community effects or mixing of populations in the model. However interesting such models will 

difficultly appear as convincing solution for the generation of synthetic social networks for agent-based 

social simulation. 

5.2 Sampling approaches 

Another set of approaches that can be used in this particular frame to generate synthetic networks are 

different methods and tools enabling to do some sampling approaches. The very basic idea of the process 

in this case is to start from a network sample on the target system, then to find a model (functional or 

statistical) describing this sample and from there generate the network needed to connect the synthetic 

population of the agent-based model.  
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 Exponential Random Graph Model (ERGM) (Snijders et al. 2006; Robins et al. 2007a,b) are a family 

of statistical models that allow to represent empirically observed networks. Each network tie is regarded 

as a random variable and relations between agents are considered stochastic. It is a generalisation of 

Markov Random Graph Model (MRGM) that takes into account some parameters like edge, triangle and 

k-star count but has a degenerate nature that prevents to represent well transitivity as observed in many 

social network, since in almost all graphs generated by MRGM the transitivity is either quite weak or 

much too strong. A discussion on ERGM and an alternative, the Link Probability Model is presented in 

(McCulloh et al. 2010). 

 Among the possible solutions to find the corresponding model, we can also use Kronecker graphs (in 

particular stochastic Kronecker graphs) as proposed by Leskovec (2008) that enables to find a matrix 

pattern that you will replicate at different scales. However promising the Kronecker graphs do not enable 

to manage accurately the population size that should corresponds to a power of the matrix pattern size.  

Menezes and Roth (2014) proposed a different approach to generate a network based on a sample. Their 

method aims to discover and select plausible generators, i.e. processes and rules for real-world networks 

through a genetic algorithm. Generators can contain operators (arithmetic, classical mathematical 

functions as log, abs, etc., conditional expressions and an “affinity function”), variables (in- and out-

degrees, several distances between two agents and sequential identifiers) and constants.  

Once we do obtain a functional representation of the sample network, the generation of a more complete 

network connecting the synthetic population generated is then possible. 

5.3 Rule-based approach for the generation of social network 

Another alternative is envisaged by Thiriot and Kant (2008) with the corresponding software YANG (Yet 

Another Network Generator) (http://sourceforge.net/projects/yang-j/). The global approach consists in 

generating a synthetic population using Bayesian rules and from there to generate the corresponding 

social network by specifying the rules for the matching in between individuals (for instance agents will 

tend to have friendship relations with agents of the same sex and of approximately the same age). 

Therefore using a Bayesian network and scattered statistics, the software will generate a network under 

the specified constraints. Such approach even if it could be considered as a generator of ad hoc models is 

indeed far more robust than these latter approaches as the global process is formalized, could be 

reproduced and the networks generated can be easily analysed.  

 We have also to reference all the work achieved on the MIDAS and EPISIM projects, developed in 

particular by the team of Stephen Eubank, aiming at building synthetic populations and therefore 

synthetic social networks, in particular in the frame of epidemiological dynamics. All along their project 

they evaluated existing solutions for network generation and proposed very innovative ones with 

promising results (Eubank et al. 2004; Eubank et al. 2006). 

 The question of synthetic network generation is actually moving very quickly, first the increased 

willingness to include social networks representation in agent-based simulation as well as the increased 

use of data-driven approaches to obtain much realistic and reliable models are putting pressure to obtain 

reliable methods to generate such synthetic networks. Moreover the very strong evolution concerning 

availability of data on social networks introduces an important change in the problem definition and in the 

possible solutions to be proposed. Where 10 years ago, very few (and expensive in time and effort) data 

where available on social networks and especially longitudinal social networks, nowadays automatic 

solutions for the collect of social networks data (through either smart devices or RFID chips) enables a 

facilitated access to those data. 

6 CONCLUSION 

In this article we presented a survey of the methods used to generate social networks in the field of social 

simulation, based on the articles published in JASSS in between 1998 and 2015. From this survey it 

appears that the large majority of publications (69%) were actually using very simple models (regular 
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lattices, random graphs, small-world networks or scale-free networks). We analyzed the evolution of this 

use all along these 17 years of publications and identified two streams of evolution issued from the 

original cellular automaton ancestor: on the one hand the spatial approaches and on the other hand the 

approaches corresponding to social structure. We then presented mostly recent (to the exception of 

ERGM models) approaches that could be envisaged as convincing alternatives to simple models for the 

generation of synthetic social networks. 
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