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Abstract

Social networks such as Twitter and Facebook are important and widely used communication environments

that exhibit scale, complexity, node interaction, and emergent behavior. In this paper, we analyze emergent

behavior in Twitter and propose a definition of emergent behavior focused on the pervasiveness of a topic

within a community. We extend an existing stochastic model for user behavior, focusing on advocate-

follower relationships. The new user posting model includes retweets, replies, and mentions as user

responses. To capture emergence, we propose a RPBS (Rising, Plateau, Burst and Stabilization) topic

pervasiveness model with a new metric that captures how frequent and in what form the community is

talking about a particular topic. Our initial validation compares our model with four Twitter datasets. Our

extensive experimental analysis allows us to explore several “what-if” scenarios with respect to topic and

knowledge sharing, showing how a pervasive topic evolves given various popularity scenarios.

1 INTRODUCTION

Systems with a large number of components, and complex and dynamic interconnections are ubiquitous

(Reynolds 1987, Zhan et al. 2008) and exhibit properties that are irreducible to the behavior of their

components (Darley 1994, Deguet et al. 2006, Li et al. 2006, Davis 2005, Johnson 2006, Mogul 2006).

These properties, called emergent properties, are increasingly becoming important as software systems grow

in complexity, coupling, and geographic distribution (Bedau 1997, Holland 1999, Johnson 2006, Mogul

2006). Examples of emergence include connection patterns in data extracted from social networks (Chi

et al. 2009), trends in big data analytics (Fayyad and Uthurusamy 2002), router synchronization problems

(Floyd and Jacobson 1993), and load-balancer failures in a multi-tiered distributed system (Mogul 2006).

Emergent properties may have undesired and unpredictable effects and consequences, and unpredictable

systems are less credible and difficult to manage; therefore, techniques for the identification and validation

of emergent properties are becoming crucial. A plethora of examples of emergent properties have been

identified and classified but most examples focus on simple, small systems, such as flocks of birds or the

game of life, or in-house distributed systems that are not available for study (Chen et al. 2007, Holland

1999, Kubik 2003, Mogul 2006, Szabo and Teo 2012a, Szabo and Teo 2012b, Szabo and Teo 2013).

In recent years, social networks such as Twitter and Facebook have become an important communication

tool, used by a large percentage of the population with access to the Internet. They are regularly used

to disseminate information with respect to current or future events, to help causes and individuals, and

to act as the base platform for various political or community movements (Bakshy et al. 2012). These

movements are often identifiable on Twitter via hashtags such as #gamergate, #climatechange, or

#BlackLivesMatter. Hashtags are also often used in short-term campaigns such as#CancelColbert

or #SaveConstantine. Within these communities, the emergence of established knowledge or under-
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standing can be observed, either in the form of agreement on a particular topic, or as the sharing of URLs.

In this paper, we focus on Twitter as it represents a significant and widely used information dissemination

network, with 284 million active users generating 500 million tweets every day.

In this paper, we define emergence in Twitter as the adherence of groups of users to the opinions of

various topic advocates. We propose a first step to identify emergence by analyzing how pervasive a topic

is within a group of Twitter users. Understanding how a Twitter topic became pervasive, trending, and

the subsequent underlying knowledge within a Twitter community can have significant benefits for social

analysis, and for identifying conflicts and opinions of the general public with respect to various social

matters. It can also be used to identify credible users or, conversely, users that spread rumors (Castillo

et al. 2011). Determining whether a topic has become convention in a social network has been studied

using information diffusion modeling techniques. Proposed methods may require a complete analysis of

the network (Shamma et al. 2011) or only information about nodes involved in discussion at a particular

time (Yang and Leskovec 2010). However, they all require a number of additional resources to understand

the cause of diffusion such as news feeds. This is troublesome on a large-scale, volatile network such as

Twitter, especially considering that data collection tools have their collection rates limited by the Twitter

API. Several methods have been proposed to understand the influence of a user (Yang and Leskovec 2010)

and to predict how influential a topic or a user will be based on several factors such as geographical

proximity and the interest of news media outlets (Toole et al. 2012, Myers et al. 2012, Java et al. 2007).

We propose the modeling and simulation of Twitter user behavior using a advocate-follower model

adopted from Hogg et al. (2013). We extend this model to consider various response types, not just collab-

oration, and propose a topic pervasiveness model called RPBS (Rising, Plateau, Burst, and Stabilization)

that establishes how important the topic is to the community of users under study. The main contributions

of our work include:

• A model for the prediction of topic pervasiveness within a set of Twitter users based on the posting

behavior of two types of users, advocates and followers.

• A comprehensive “what-if” analysis identifying the conditions under which certain topics, such

as #gamergate or #climatechange become pervasive within the selected advocate-follower

user group.

2 RELATED WORK

Emergence in social networks has been defined by several authors. Kooti et al. (2012) and Suagwara

(2014) define emergence in social networks as being the widespread adoption of a norm or convention.

These conventions could be a particular notation, for example, using RT instead of ReTweet when posting

on Twitter, or the use of a particular taxonomy to categorize topics by using hashtags or certain keywords.

Taxonomies created by users, called folksonomies, are emergent processes whereby users collaborate to

categorize topics or things using freely chosen keywords (McAfee 2006, Mika 2007). These folksonomies

exist on several social networks. For example, on Digg, simple keyword tags are used to drive folksonomies

(McAfee 2006). On Twitter, the folksonomies are created through the use of particular hashtags. The

information diffusion community defines emergence in social networks differently, instead focusing on

the appearance and popularity. Myers et al. (2012) considers that topics may appear and become popular

when a number of users begin to use similar information such as a particular URL. Cataldi et al. (2010)

define the appearance and usage of a topic if that topic becomes popular at a particular time interval, but

is not popular in any previous time interval. Their analysis suggests that terms related to a topic fluctuate

before becoming widely adopted. Yang and Leskovec (2010) define that a topic has become popular when

a community adopts a particular way of expression, for example by using a specific hashtag or keyword.

Information diffusion studies whether a topic, taxonomy, or notation has become convention in a social

network. Shamma et al. (2011) developed a model of peaky topics to determine when the discussion

of a topic reaches peak levels or the topic becomes persistent and part of regular conversation. Peaky
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topics requires the observation of the entire social network over a period of time to construct a complete

corpus, as well as the comparison with external sources such as news feeds to validate the cause and time

accuracy of the topic peak. Yang and Leskovec (2010) developed a Linear Influence Model (LIM) which

aims to determine the global influence of a user over time in an implicit network. LIM achieves this by

calculating individual influence functions for each user to determine the volume of users that adopt a piece

of information at a certain time. The authors test LIM on a Twitter dataset to determine the influence of a

hashtag from an external source across several sets of users and observe that user adoption of hashtags is

largely driven by external sources. Lu and Yang (2012) re-defined an algorithm originally used to track the

momentum of stocks, to track the momentum of trends and topics on Twitter to determine whether a topic

was about to disappear or become very popular. However, Lu & Yang focus on external influence of news

topics and prediction of when a topic is likely to become a trend. Java et al. (2007) use a log-likelihood

ratio to determine how important a term is on a particular day of the week. Their model is able to determine

the users within a community who contribute heavily to a particular set of terms and are able to influence

other communities depending on their interaction. Several authors posit that external factors, such as media

and news sources, contribute to the appearance of topics in social networks. Myers et al. (2012) analyze

Twitter data collected over a period of one month to determine the appearance of information in seemingly

random parts of the networks. They established that less than one third of the information on Twitter is

affected by events outside the network. Toole et al. (2012) identified that real-world geographical proximity

and news media are important factors that influence the adoption of topics such as innovations within a

social network. In contrast, our RPBS model determines what state a topic is in according to our topic

pervasiveness metric, while considering topics that may have external or internal influence.

Several models have been proposed to predict the behavior of users on social networks. Hogg et al.

(2013) designed a model to predict when a user will retweet the post of a topic advocate depending on the

user’s interest in both the topic and the advocate. Their model uses a stochastic approach as the activity of

each user on Twitter is largely unpredictable. Hogg et al. (2013) also consider that a user may view the

post of an advocate depending on the position of the post in the timeline of the user. Gatti et al. (2014)

propose an agent-based-model to predict how each user behaves when posting messages related to a topic.

By modeling users that follow a common user, they are able to predict how each user reacts to the posts

of the common users. Their approach employs text mining techniques such as sentiment analysis to train

the parameters of the model. An example of a study on how knowledge becomes convention in a Twitter

community is the work of Kooti et al. (2012) on analyzing Twitter data to determine when a certain notation

for retweets became convention. Their study shows that the notation is driven initially by early adopters,

who are users who are heavily involved with the platform at the time. Over time, the different versions of

the notation spread throughout the network until they became widely used. Romero et al. (2011) analyze

Twitter data and determine that the influence of a topic is controlled by its persistence and the exposure

that each user has to the topic. They determine that topics based around political ideas tend to be the most

persistent. This analysis is used to create a simulation model to examine the effects that a larger active

topic user-base, with more hashtag combinations, has on the influence of a topic. Their method is based on

Latent Dirichlet Allocation to determine the style of a particular Twitter user according to four categories:

style, substance, status, and social (Ramage et al. 2010). This information can then be used to provide

enhanced filtering of Twitter users. To address the current limitations, we extended the model proposed

by Hogg et al. (2013) to include all possible Twitter response types and consider when a user may make

a post on the particular topic or not, by considering how each user interacts with the topic.

3 PROPOSED APPROACH

This section presents our two models and our topic pervasiveness metric. The first model captures the

posting behavior of Twitter users. The second model defines the state of a Twitter topic within a community,

focusing on how pervasive or intensely discussed the topic is within the community.
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3.1 Modeling the Posting Behavior of Twitter Users

Similar to the model proposed by Hogg et al. (2013), our model relies on posts made by advocate users,

which are users with a large following, and a large amount of posts on a single topic. These users are

likely to be the instigators of trends or the crucial links in the passing of information within the network.

For example, a user in one of our datasets has 813 posts on the topic of #climatechange, representing

37.2% of their total posts. The user has 101,695 followers, with an average of 33.96 retweets and 13.70

favorites per post. The model proposed by Hogg et al. (2013) defines two behaviors for advocates and

normal Twitter users respectively and is a statistical model that infers users’ behaviors based on collected

data. In contrast to existing research (Lerman 2007, Hogg and Lerman 2009, Iribarren and Moro 2009,

Castellano et al. 2009) the model focuses on individual user behaviors rather than collective responses. A

normal user u from a population of advocate followers receives a new post p from an advocate a. When a

makes a new post, the post appears in u’s feed; however u may not view it or interact with it immediately.

By the time of u’s later visit, u’s friends, i.e. other accounts u follows, will have generated a number, L, of

newer posts, moving p to position L+1 in u’s feed. u may examine enough of this list to view p. Once

viewed, u may decide to respond to it, by retweeting it to their followers.
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Figure 1: State machine modeling user behavior

We extend this model in two ways. Firstly, we include three types of responses, namely, retweets, replies,

and mentions, and we infer different probabilities for each from the data. We distinguish between these

categories as our insight suggests that collaboration through mentions and responses aids the establishment

of knowledge with a community. Our future work aims to employ sentiment analysis to further distinguish

between agreement and disagreement, which are mostly present in mentions and retweets. This would

help identify community stances on various social issues. Secondly, if the user is not interested in a topic,

the Hogg model assumes that the user will not respond. In contrast, we assign a probability to the user

responding to a tweet even if they are not interested. We also consider the case that a user may not respond

to the advocate but may still post, either on topic or not. We believe this captures more closely real life

relationships between advocates and their followers. An extended state machine is shown in Figure 1, with

dotted lines showing our enhancements. Each state in Figure 1 is annotated with the probability of user u

to perform the action defined by the state. This ensures that the likelihood of u performing an action can

be computed and that model parameters can be estimated from collected Twitter data.

The training phase estimates four parameters, namely ν , µ , λ , and Pact , and calculates each user’s

rate of posting, rate of responding to an advocate, and rate of receiving posts, amongst others. The

four estimated parameters are used to define three probability distributions for each user u. The three

distributions are defined similarly to those presented in Hogg et al. (2013). These parameters are obtained

by performing maximum likelihood estimation similar to the procedure performed in Hogg et al. (2013),
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with the exception that we consider all users that have posted on topic using any type of response, as

opposed to just considering users that retweet at least one advocate post. We maximize the logarithm of

an equation that considers all users, to maximize the probability of observed responses, Prespond(u). We

consider that the estimated parameters form an advocate profile as they apply to each follower of a particular

advocate. At each view of Twitter, each user will see L posts made after the advocate’s last post. For each

u, L is generated from a geometric distribution, Pposts. µ and λ define the shape of the Inverse Gaussian

Distribution for Pview(L), which determines the probability of u to view post p at position L+ 1. Ptopic,

the probability u is interested in a topic is calculated from a Beta Distribution with α set to the number

of posts u has made, and β set to the number of posts on topic u has made. Pinteresting is the product of

Pact and Ptopic. Pvisible is the sum of the product Pposts and Pview(L) for each new post that has appeared in

the user’s timeline. Prespond is the product of Pvisible and Pinteresting. Each user’s rp, rt, and m values are

calculated as the fraction of replies, retweets, and mentions respectively, that are on topic, of the number

of the user’s total tweets, and represent the likelihood that the user would perform each type of action.

3.2 Modeling Twitter Topic Intensity

To advance the understanding of emergence, we propose the RPBS (Rising, Plateau, Burst, Stabilization)

model to define the states of a topic within a Twitter group, as shown in Figure 2.

Rising Plateau

Burst

Stable

Not 

present

Figure 2: Topic State machine in the RPBS Model

When a topic is in the Rising state, the intensity of the topic is increasing. The topic intensity (I) for the

interval [x,y] is defined as:

I[x,y] =
t[x,y] ∗n

T[x,y] ∗u[x,y]

Where T is the total number of tweets in the interval, t is the number of tweets on topic, n is the total

number of users, and u is the number of unique users posting on the topic. In a rising state, the topic

intensity for the interval [y,z] is greater than that for the previous interval [x,y]:

Rising : I[y,z]− I[x,y] > ε

Once the intensity of the topic stops increasing, we define it as reaching a plateau state:

Plateau : I[y,z]− I[x,y] < ε

The plateau state is sometimes followed by another increase in intensity, showing a burst state. This is

a generalized version of the excitement phase in Riemer et al. (2012) but we allow for a burst state to

occur after a gradual increase of interest as opposed to a sudden spike. It is similar to trend momentum

turning positive from negative in Lu and Yang (2012) as we consider the burst state occurring after the

topic intensity becomes more positive but we allow for when the prior momentum is stable for a prolonged

period. The burst state is also similar to persistent terms in Shamma et al. (2011) as we consider the burst

state occurring after a sustained interest in the topic but we allow for the burst state to occur even if the

topic interest has not reached its peak previously. A burst state, in definition, is similar to the rising state:

Burst : I[y,z]− I[x,y] > ε
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Lastly, the topic becomes widespread and accepted within the community as it reaches a stabilization state:

Stabilization : I[y,z]− I[x,y] < ε

4 EXPERIMENTAL ANALYSIS

This section presents our experimental analysis. We employ four datasets for training, focused on two

discussion topics, namely, #gamergate and #climatechange, with advocates posting for and against

the topic respectively. Table 1 presents a summary of each dataset. To collect the data, we employed

Twitter’s API to identify an advocate for/against each topic. An advocate, in our definition, is a user who

has at least 10% of their collected posts dedicated to that topic. We determined whether the advocate was

for or against the topic by reading their tweets. Once an advocate was identified, for each of their followers,

a maximum of 3,200 tweets were collected, as this was the maximum number permitted by the API.

Table 1: Twitter Datasets
Dataset Topic # Tweets # Users # Tweets on Topic # Users on Topic

D1 #gamergate 80,987 58 1,548 33
D2 #gamergate 45,105 35 52 8
D3 #climatechange 54,213 74 3,279 55
D4 #climatechange 587,760 978 26,372 637

We first perform an initial validation of our training module. For each dataset, the training module

extracts the relevant parameters for the user population. The simulation is then run using these parameters,

and a score of topic pervasiveness is calculated. The Topic Pervasiveness Range (TPR) represents a per-step

score for the topic according to the state in the RPBS model. This simulated TPR is compared with that

calculated from the real data. In the second stage of our experimental analysis, we run “what-if” scenarios

to better understand the conditions, with respect to Twitter topology and other simulation parameters, under

which a topic becomes pervasive within the user groups. For three of our datasets (D1 to D3), the advocate

profiles generated from the training phase are relatively similar, with their µ , λ , ν , and Pact parameters

having standard deviations of 1.27, 1.27, 4.73, and 0.02 respectively. Moreover, with the exception of D4,

the profiles are similar to the profile shown in Hogg et al. (2013).

4.1 Initial Validation

In our validation, we compare the evolution of the TPR calculated for the existing datasets and that of the

TPR within our simulation. We perform our validation using ε values of 0, 0.001, and 0.01, and interval

sizes 1, 2, 5, and 10, for 25 runs each. We define an interval size, k, for an interval [x,y], as k = y− x.

We define the similarity between the TPR calculated from a simulation and from the real data as being the

fraction of identical states occurring at the same point in time. The results are summarized in Table 2.

Table 2: TPR similarity with k = 10 and ε = 0

Dataset Mean Median σ
D1 0.50 0.50 0
D2 0.16 0.15 0.03
D3 0.56 0.60 0.13
D4 0.80 0.80 0

We determined that the best overall results were achieved using an interval size of 10 and ε set to 0.

Figure 3 contains a comparison of topic states from our best performing simulation, D4, with the topic

states from the respective real dataset.
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Figure 3: RPBS states for D4: Simulated & Real Data

4.2 Topic Emergence

We experiment with three “what-if” scenarios. In the first scenario, we consider the case in which an

advocate becomes substantially more popular. We recreate this effect by increasing the number of followers

that an advocate has by 10, 100, and 1,000 times. In the second scenario, an advocate becomes substantially

less popular by reducing the number of its followers to a half, a fifth, and a tenth of the original follower

count. The third scenario mimics the case when a topic becomes more popular by adding users from an

additional advocate on the same topic. We also consider how the second advocate’s followers would behave

using the original advocate’s profile, and the effects of a random advocate profile for both these cases.

We run each scenario with four L values namely, user-generated (Lu), 1, 10, and 100, for each parameter

variation unique to the scenario, for 25 times. We chose the L values 1, 10, 100 because they represent a

user visiting Twitter instantly after an advocate posts, shortly after, or long after, respectively. For each

experiment, we examine the final topic state that is determined by the RPBS model. We set the topic

intensity interval size to 10 and ε is set to 0 across all experiments.

4.2.1 Scenario 1: Popular Advocate

For our first scenario, we increase the number of followers of each advocate by 10, 100, and 1,000 times,

and employ the L values generated from the dataset, as shown in Table 3.

Table 3: Final RPBS states for Scenario 1; L is generated from the dataset
Dataset Follower Final Topic

Multiple State

D1
10 Rising
100 Rising
1,000 Rising

D2
10 Rising
100 Rising
1,000 Rising

D3
10 Rising
100 Rising
1,000 Rising

D4
10 Rising
100 Rising
1,000 Rising

We observe that by substantially increasing the number of followers for each advocate, each simulation

terminates while the RPBS model is in the Rising state. We find this same behavior across all of our

different L settings. We observe the behavior that as an advocate accrues followers, discussion of their

respective topic by the followers does not stagnate.
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4.2.2 Scenario 2: Less Popular Advocate

For our second scenario, we employ for the L values, the values as extracted from the dataset, with advocate

follower numbers being reduced to a half, a fifth, and a tenth, as shown in Table 4. Figure 4 illustrates the

case whereby our RPBS model for D1 reaches the final Stabilization state. This particular RPBS model

behavior highlights a case where the particular topic has become emergent.

Table 4: Final RPBS states for Scenario 2; L is generated from the dataset
Dataset Follower Final Topic

Reduction State

D1
1/2 Rising
1/5 Stabilization
1/10 Not Present

D2
1/2 Not Present
1/5 Not Present
1/10 Initial

D3
1/2 Rising
1/5 Burst
1/10 Burst

D4
1/2 Rising
1/5 Rising
1/10 Rising

We observe that reducing the number of followers for each advocate produces interesting results.

Intuitively, by reducing the number of users, the persistence of a topic is more volatile. This is apparent for

the experiments conducted using datasets D1 and D3. For the experiments conducted using D2, reducing

the number of followers causes the discussion of the topic to halt, or in some cases to never begin. For

D3, we observe that the size of the population discussing the topic directly influences the persistence of

the topic. This is shown by the RPBS model progressing to the Burst state when the follower numbers

are a fifth and a tenth of the original number of followers, as opposed to when the number of followers

is half and the RPBS model remains at the Rising state. For D4, the advocate has such a large number of

followers who post on topic, that when we reduce the number to a tenth of the original size, more than 60

followers still remain. This suggests that the followers who post on topic, do so frequently.
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Figure 4: RPBS states over time for D1 Scenario 2

4.2.3 Scenario 3: Topic Becomes Popular

For our third scenario, we present the results whereby all users’ L values are extracted from the dataset,

with followers from both the original advocate and an additional similar advocate, or followers from only

the additional advocate, as shown in Table 5. We chose each additional advocate to have the same stance

on the topic as the original advocate. This is to ensure that we use followers that have similar dispositions

to the followers from the original advocate. We also test using a different advocate profile which contains
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the µ , λ , ν , and Pact values presented in Hogg et al. (2013), which are 14, 14, 38, and 0.12 respectively.

Figure 5 illustrates the case where the RPBS model for D2 terminates at the Burst state.

Table 5: Final RPBS states for Scenario 3; L is generated from the dataset
Dataset Followers Profile Final Topic State

D1

New Advocate Original Not Present
Combined Original Rising
New Advocate Hogg et al. Not Present
Combined Hogg et al. Rising

D2

New Advocate Original Rising
Combined Original Rising
New Advocate Hogg et al. Rising
Combined Hogg et al. Burst

D3

New Advocate Original Rising
Combined Original Rising
New Advocate Hogg et al. Rising
Combined Hogg et al. Rising

D4

New Advocate Original Rising
Combined Original Rising
New Advocate Hogg et al. Rising
Combined Hogg et al. Rising

We observe that replacing the followers of an advocate with those from a similar advocate, as well

as changing the advocate profile, has little effect on the topic persistence. While these appear to be

counterintuitive, especially in the case of using a different advocate profile, we speculate two possibilities.

Firstly, advocates of the same topic are followed by users that tend to behave in similar ways. This is

highlighted in all experiments with the exception of those conducted on D1. Secondly, the values present in

the advocate profiles do not influence the stochastic processes in our user posting model strongly enough.
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Figure 5: RPBS states over time for D2 Scenario 3

4.3 Discussion

Across our experiments, we found that setting each user’s L values did not alter the topic persistence greatly

when compared to the topic persistence whereby each user’s L value was generated from the dataset. Two

main conclusions can be drawn from this. Firstly, as we consider users that follow a particular advocate,

each follower may be invested enough in the topic that the number of posts between the latest advocate post

and when the follower logs in does not influence user posting. Conversely, a user may follow an advocate

but exhibit little or no interest in the topic by not contributing, such as a user that follows an advocate

so they receive updates about a topic without posting on it. Secondly, the stochastic influence across our

simulation may not be greatly affected by selecting an L value as opposed to letting it be generated.

Our experiments were conducted with relatively small datasets, with the smallest containing 45K tweets

and 35 users, and the largest containing 587K tweets and 978 users. In the scope of the topics we focused

on, these datasets are very small for their respective communities. Our initial validation determined that
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the accuracy of our simulated data was greatest when more users were present, and the least when fewer

users were present. This highlights two main issues with our models. Firstly, our user behavior model

performs better when there are more users for our training phase. This is to be expected, but if we were

to focus on a topic that has a dedicated but small community, our user behavior model may not provide

enough information to train an accurate model. Secondly, it suggests that our RPBS model may not be

fine-tuned enough to track topic persistence when used with a subset of, or a very small, community.

Alternatively, it may suggest that the interval size and/or the ε value needs to be determined dynamically.

Despite the obvious correlation between number of users in a dataset and accuracy, our most interesting

results appeared in Scenario 2, where each advocate had heavily reduced follower counts.

The topics we focused on, #climatechange and #gamergate, are moderately different, with

respect to their existence and usage. The #climatechange topic has been around for a considerable

amount of time and is likely to be greatly influenced from outside sources such as news sources and other

websites. This suggests that many Twitter users have been exposed to the #climatechange topic.

Conversely, the #gamergate topic originated on Twitter in mid-late 2014 and has only permeated a

small, albeit very active, subset of the total Twitter population and has also had limited external presence.

While our user posting model can capture the key behaviors of Twitter users, it has three main drawbacks.

Firstly, our model dictates that a user will make a post regardless of the topic by following a uniform

random distribution depending on how many times a day the user inspects Twitter. It is highly likely that

other distributions could accurately determine when a user makes a post not on topic. This would require

deeper analysis of Twitter user behavior and would require estimating more parameters. Secondly, a few

pertinent features of users are not utilized, such as rapid succession of posts, how involved a user is with

their own followers, and the influence of an advocate’s followers on the advocate. Thirdly, our model is

unable to utilize information not easily attainable from Twitter data such as how strongly a user is affected

by external sources, multiple person user accounts, and bots or automated users.

5 CONCLUSION

Emergence in social networks is a recent phenomenon that provides significant challenges. As new topics

can appear at anytime due to either internal or external causes, being able to capture and determine when

they reach certain stages in a topic’s evolution may provide useful insight into how a topic is affecting one

or more communities. Moreover, modeling the behavior of users on a social network allows us to predict

when topics reach a certain stage of evolution. In this paper we present two models. The first, a user

posting model, aims to capture how followers of an advocate post either on or off the advocate’s topic, and

whether the post is in the form of a response. The user posting model reproduces the behavior of a user in

a particular topic community. The second, our RPBS model, aims to capture the importance and adoption

of a particular topic in a community. As we define emergence in Twitter as the adherence of groups of

users to the opinions of various topic advocates, our RPBS model shows promising results. Our future

work is two-fold. Firstly, we seek to enhance RPBS with dynamic interval sizing and ε values. This could,

for example, allow us to capture topic pervasiveness when a popular topic becomes dormant and then

becomes popular again. Moreover, this may allow us to deploy RPBS into a live Twitter stream. Secondly,

to improve our user model with sentiment analysis to determine whether a user agrees or disagrees with an

advocate’s post and to generate user posts that mimic both the user’s posting habits and the post content.
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