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ABSTRACT 

Order picking is one of the most labor- and time-consuming processes in supply chains. Improving the 
performance of order picking is thus a frequently researched topic. Due to high cost pressure for 
warehouse managers the space in storage areas has to be used efficiently. Hence narrow-aisle warehouses 
where order pickers cannot pass as well as several order pickers working in the same area are common. 
This leads to congestion which is in this context referred to as picker blocking. This paper employs an 
agent-based simulation approach to investigate the effects of picker blocking in manual order picking 
systems with different combinations of routing policies for three order pickers in a rectangular warehouse 
with narrow-aisles. Results indicate that the best combination in terms of throughput time for three order 
pickers in a rectangular warehouse with blocking considerations is Largest gap (picker 1), Largest gap 
(picker 2), and Combined policy (picker 3). 

1 INTRODUCTION 

Order picking is one of the most labor- and time-consuming processes in warehouses (Frazelle 2002; 
Tompkins et al. 2010). It is the process of retrieving items/products from their storage locations 
depending on customer orders (de Koster, Le-Duc, and Roodbergen 2007). Order picking systems differ 
if humans (manual systems) or machines (automatic systems) are employed. It is estimated that more than 
80 % of warehouses are operated manually (de Koster, Le-Duc, and Roodbergen 2007; Napolitano 2012). 
Picker-to-parts or parts-to-picker systems are frequently used in manual order picking systems. Most 
common are picker-to-parts systems where the products are placed in fixed storage locations and the 
order picker walks to single products according to the order list (de Koster 2004). 
 The order picking process has influence on customer satisfaction especially if the order picker 
collects wrong or broken products which are shipped to the customer (Gue, Meller, and Skufca 2006; 
Parikh and Meller 2008). Additionally order picking has an effect on the service level and performance of 
the supply chain (Chen et al. 2013). 
 In order to get efficient processes, order picking is comprehensively planned to find best 
arrangements of aisles and racks (layout design), guiding the picker through the warehouse on routes 
(routing policies), the assignment of products to storage locations (storage assignment rules), to combine 
several orders into batches (batching) or to divide the storage into different zones (zoning) (de Koster, Le-
Duc, and Roodbergen 2007).  
 Routing policies have a major influence on the efficiency of order picking processes in terms of travel 
time and are regarded as primary source of management because there are relatively easy to change 
(Hong 2014). They are also frequently employed to measure the efficiency of order picking systems (Pan 
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and Shih 2008). Routing policies help sorting items on the order list and guide the order picker through 
the storage area.  
 Furthermore, travelling is one of the most time-consuming processes in order picking operations. 
Travelling time has the major share of the order picking process and accounts for more than 55 % of order 
picking time (which consists of activities like traveling, searching, picking, setup, and others) (Tompkins 
et al. 2010).  
 Thus, a main objective for warehouse managers is to reduce travel time. Although there exists an 
optimal algorithm for routing order pickers in a rectangular one-block warehouse that minimizes travel 
time, most researchers have focused on heuristic routing method as these are used in practice. The reason 
is that heuristics are more intuitive and easier to understand (de Koster, Le-Duc, and Roodbergen 2007). 
The most frequently used heuristics in practice are (e.g. de Koster, Le-Duc, and Roodbergen 2007; 
Petersen and Schmenner 1999): 

• S-shape (S) (or traversal): The picker starts at the depot and enters the first aisle on the left side 
which contains at least one pick, traverses it completely and leaves the aisle on the other side as 
he entered it. This is repeatedly done with the following aisles until all items are picked. 
Afterwards the order picker returns to the depot. Finally, the way of the order picker has the 
shape of an “S”. • Return (R): Each aisle which contains at least one pick is entered. All aisles can be left on one 
side only. After picking all items the order picker returns and leaves the aisle on the same side 
where he has entered it. • Midpoint (M): The storage area is divided into two equal halves. Subsequently the order picker 
enters the aisles on the side where the depot is located and collects all picks in the first half. For 
retrieving picks in the back half the order picker traverses the aisle on the left or right side with 
picks completely (as the order picker does with the last aisle before he returns to the depot). All 
other aisles are left on side where the order picker enters it (see return policy). • Largest Gap (L): In contrast to the midpoint policy aisles are entered until the largest gap. This is 
the largest distance between two consecutive picks. The decision if the order picker returns after 
picking and leaves the aisles, where he has entered it, depends on the largest gap instead of using 
the middle as a reference point. Aisles can be traversed completely, entered on one side or entered 
on both sides. • Composite (Cs): Composite policy is a combination of return and S-shape policy. The aim is to 
minimize the distance between two picks in adjacent aisles. • Combined (Cb): This policy includes an algorithm similar to the composite policy with one 
difference. The shortest path is calculated for the whole block of aisles before the order picker 
starts travelling. Therefore the combined policy produces throughput times which are at least as 
good as the throughput times which are resulting from the composite policy (when only one order 
picker is considered at a time). 

 
 Recent studies highlight the importance of considering human factors (such as cognitive and motor 
skills or behavior of the workers) on the performance and quality of manual order picking processes 
(Grosse et al. 2015). Particularly if  several employees work in the same storage area, congestion and thus 
additional waiting time as well as additional travel times and travel distances have to be taken into 
account (e.g. Pan and Wu 2012; Pan, Shih, and Wu 2012). Congestion in this context is referred to as 
picker blocking (Parikh and Meller 2009).  
 Due to longer waiting times or additional idle times, picker blocking has a considerably negative 
effect on the efficiency of order picking processes and increases operational costs related to order picking 
time (Hong, Johnson, and Peters 2012b; Heath, Ciarallo, and Hill 2013). 
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As picker blocking represents a major challenge for warehouse managers that causes significant 
operational performance loss, it is an notably researched topic. Studies investigate the influence of picker 
blocking on travel time (Gue, Meller, and Skufca 2006), the effects of wide- or narrow-aisles with regard 
to picker blocking (Parikh and Meller 2009) or apply a simulation approach (e.g. Pan and Wu 2012; Pan, 
Shih, and Wu 2012). In addition, the impact of blocking for different routing policies are investigated 
(Furmans, Huber, and Wisser 2009). Although there exist several studies on picker blocking in the 
literature, there are still various research gaps that have been overlooked so far, especially with regard to 
the use of comprehensive simulation approaches. To the best of the authors’ knowledge, there is no study 
which investigates the impact of picker blocking on order picking time when assigning each order picker 
an individual routing policy. Thus, we formulate the research question studied in this paper as follows: 
 
 What are the effects of picker blocking in manual operated narrow-aisle warehouses with individual 
routing policies for every order picker? 
 
 The remainder of this paper is structured as follows: After identifying the research question, section 2 
encompasses an overview of the relevant literature in the field of picker blocking. Section 3 contains the 
description of the employed method and the suitability of simulation models for investigations in the field 
of order picking. Furthermore, the structure of the simulation model is explained. In section 4 the results 
of the simulation study are presented with regard to the research question. Section 5 comprehends the 
conclusion of the paper, discusses the results and gives implications for further research and practice. 

2 LITERATURE REVIEW 

An estimation by de Koster, Le-Duc, and Roodbergen (2007) states that most order picking systems in 
practice are low-level (order picker walks to storage shelves without truck or cranes), picker-to-parts 
order-picking systems employing humans (and with multiple picks per route). Hence, we focus on such 
order picking systems in our investigation as picker blocking is of major concern in these systems.  
 Picker blocking is a critical factor which impacts travel time (Mowrey and Parikh 2014). It occurs in 
two different ways (Hong, Johnson, and Peters 2013; Gue, Meller, and Skufca 2006; Mowrey and Parikh 
2014; Parikh and Meller 2009; 2010; Sainathuni et al. 2014). First, order pickers cannot pass each other 
due to narrow-aisles or no passing restrictions. This is referred to as in-the-aisle-blocking. The second one 
is referred to as pick-column blocking. It occurs when order pickers cannot reach the pick-column because 
other workers (order pickers or workers, who are in charge for replenishment) block it. 
 Furthermore, Furmans, Huber, and Wisser (2009) distinguish between level-one, level-two, and level-
two opposite blocking situations within a single aisle. The first one is comparable with in-the-aisle-
blocking or pick-column blocking. Level-two blocking occurs if three or more order pickers are blocked 
and if picker 2 blocks the pick-column of the next picker (picker 3). Level-two opposite blocking results 
from opposite walking directions. Latter situation requires priority rules to resolve blocking situations. 
 Extensive research was done in the field of manual order picking. Thus, we refer to the literature 
review of de Koster, Le-Duc, and Roodbergen (2007) and present an overview of literature that studies 
picker blocking in manual order picking systems. Ruben and Jacobs (1999) investigated influence of 
different storage assignment rules and construction of batches on order retrieval under consideration of 
blocking. Furthermore, Skufca (2005) focused on picker blocking with multiple order pickers, who are 
working on a closed circular path. The main result of Gue, Meller, and Skufca (2006) is that negative 
effects of blocking on travel times are reduced with increasing pick activity (if pick density is high and 
order pickers frequently stop for picking). Pan and Shih (2008) employed a throughput model to show 
that random storage assignment rule increases throughput because of a higher utilization of the storage 
area. Parikh and Meller (2008) developed a cost model and investigated picker blocking as one of four 
factors affecting the decision regarding batch or zone picking (other factors are: pick-rate, workload-
imbalance, and sorting). Furmans, Huber, and Wisser (2009) modelled the negative effects of picker 
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blocking in manual order picking systems with S-shape and return policies. Parikh and Meller (2009) 
showed the difference between narrow- and wide-aisles. They developed a model to investigate pick-
column blocking in wide-aisles with one pick at each pick column as well as with one or more picks at 
each pick column. Resulting that for the first case (one pick at each pick column) blocking has less 
negative effects in wide-aisles order picking systems than in narrow-aisles order picking systems and for 
the latter (one or more picks at each pick column) blocking has more negative effects in wide-aisle order 
picking systems. Hong, Johnson, and Peters (2010) also investigated narrow-aisle order picking systems 
and the effect of batch picking on order picking throughput under consideration of picker blocking. Parikh 
and Meller (2010a) investigated effects of blocking for non-deterministic (one or more picks at each pick 
column) pick times in a narrow-aisle order picking system. Findings suggest that picker blocking is 
higher compared to deterministic (one pick at each pick column) pick times and has more negative effects 
with increasing pick density. Parikh and Meller (2010b) included vertical as well as horizontal traveling 
in their study and gave recommendations for the height of a one-pallet-deep storage system based on an 
analytical model. Hong, Johnson, and Peters (2012a) created a batching model for large-scale order 
picking situations which reduced traveling time in their model. They discuss results that narrow-aisles 
lead to more picker blocking and shorter travel lengths. This does not guarantee a shorter retrieval time 
when picker blocking is considered. Hong, Johnson, and Peters (2012b) published another batching and 
sequencing procedure to get shorter total retrieval times (total of travel time, pick time, and blocking 
delays) in narrow-aisles order picking systems due to decreased picker blocking. Chen et al. (2013, 2014) 
developed a routing policy based on Ant Colony Optimization for an order picking system with multiple 
pickers. Hong, Johnson, and Peters (2013) used a Markov chain modeling framework for assessing picker 
blocking in a parallel-aisle order picking system and multiple picks at each pick column. Klodawski and 
Zak (2013) assessed the order picking efficiency depending on different order picking layouts. Hong 
(2014) created a blocking model and a closed-form expression for multiple workers in a no-passing order 
picking system with varied speed and pick stations. The author also used a circular-passage system and 
showed throughput loss caused by picker blocking. Hong, Johnson, and Peters (2014) presented the 
reduced retrieval time and improved picker utilization in an order picking system with bucket brigade 
policy. The study is based on an order batching model. Mowrey and Parikh (2014) introduced a mixed-
width aisle layout (combination of wide- and narrow-aisles) in their study and showed that random 
storage assignment rules and traversal policy are best suited for their proposed system configuration. 
Finally, Sainathuni et al. (2014) presented a warehouse-inventory-transportation problem for supply 
chains where picker blocking is incorporated. The main objective is to reduce or minimize distribution 
costs with coordinated decisions in warehousing, inventory, and transportation. 
 First simulation based approaches in order picking are presented in Pan and Wu (2012) who 
determined throughput time for different routing policies, storage assignment rules and different sizes of 
warehouses with eM-plant simulator in a picker-to-parts system. Furthermore, Pan, Shih, and Wu (2012) 
used eM-plant software to develop a routing heuristic for decreased picker blocking. The heuristic takes 
the travel distance and waiting time into consideration and outperforms existing storage assignment rules 
(like random storage assignment rule).  
 In addition, there are first works that employ the agent-based simulation (ABS) approach. 
Particularly, ABS seem to be well suited for investigations in the field of order picking due to the high 
number of factors which can influence the effects of picker blocking (Heath, Ciarallo, and Hill 2013). 
Hagspihl and Visagie (2014) created an ABS model in which they implemented uni-directional picking 
lines, varied the location of stock-keeping units (SKU), and developed a new heuristic for locating SKUs. 
Heath, Ciarallo, and Hill (2013) investigated the influence of picker blocking on costs and performance 
with regard to individual behavior of the order pickers (agents). 
 To the best of authors’ knowledge, no study could be found which investigates blocking with routing 
combinations for various agents within single simulation runs.  
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3 AGENT-BASED SIMULATION STUDY 

3.1 Methodology 

Due to the dynamic nature of picker blocking (Heath, Ciarallo, and Hill 2013) we created an agent-based 
simulation model (ABS) with the software AnyLogic 7.1.0. It is a relatively new approach which was 
infrequently applied for investigations in the field of picker blocking. Heath, Ciarallo, and Hill (2013) 
provided one of the first studies with ABS. They showed that it is an appropriate approach for including 
micro-level behavior (e.g. order pickers, who follow routing policies) and observe macro-level behavior 
(blocking/congestion). 
 AnyLogic is a commercial software tool which provides the opportunity to create ABS models 
(Borshchev 2013a). It offers predefined libraries, a graphical user interface and the possibility to include 
individual functions, which are based on JAVA (Borshchev and Filippov 2004; Macal and North 2010). 
Furthermore, individual behavior of single agents can be included with the help of state charts. They 
contain states as well as transitions and are comparable to flow charts. States can contain functions and 
transitions including conditions for passing to the next state. Additionally, agents can interact via 
messages (Borshchev 2013b). 
 ABS consist mainly of three parts (Borshchev and Filippov 2004; Macal and North 2010): a set of 
agents, their relationships (with interactions between agents), and their environment. In our model each 
agent represents an individual order picker with own rules or guidelines (e.g. routing policies) which 
allows us to include human behavior in the simulation model. With regard to our research question agents 
are able to block each other and though picker blocking can occur. These are the interactions or 
relationships between the single agents. The last part of ABS is the interaction with the environment. Here 
we implemented a rectangular warehouse layout with narrow-aisles (see Figure 1). Based on the layout 
each picker receives prescribed ways through the storage area (routing policies). Whenever blocking 
occurs the ABS can include individual behavior which could also increase the throughput time. Order 
pickers have to negotiate the priorities. This is done with the help of the next picking position. The order 
picker with the lowest distance to the next pick gets priority. 

3.2 Problem Description and Parameters 

 

Figure 1: The rectangular warehouse layout for the simulation model has 10 aisles (Grosse, Glock, and 
Ballester-Ripoll 2014). 

We assume a standard warehouse layout with 10 aisles (see Figure 1) which is common in practice and 
has frequently been studied in the literature (cf. Grosse, Glock, and Ballester-Ripoll 2014). Each aisle 
contains 100 products (50 at each side). An order list with 20 picks is assigned to every order picker 
(agent). The lists contain randomly created article numbers (n = 1000) and are constant for every 
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simulation run. For assigning products to storage locations we implemented a random storage assignment 
rule as it enables a good utilization of all aisles in the storage area (Pan and Shih 2008). Furthermore, full-
turnover or class-based storage assignment rules may increase blocking (Petersen and Schmenner 1999; 
Petersen and Aase 2004). The depot is located in the middle of the storage area (Roodbergen and Vis 
2006). After finishing one simulation run 60.000 products are picked. This is a reasonable amount of 
items handled per day (Hong, Johnson, and Peters 2012b). 
 Two times are determined by the simulation model for each order (the total of picking and walking 
time). The first one considers throughput time with effects of blocking while the second throughput time 
is determined by the simulation model without any picker blocking (i.e. if pickers could pass each other at 
any time) (Heath, Ciarallo, and Hill 2013).  
 The speed of an order picker is set constant (0.75 meter per second) as well as the time for picking at 
a pick-column (20 s) (Gue, Meller, and Skufca 2006; Pan, Shih, and Wu 2012).  
 To capture the effects of blocking in a typical order picking process we included characteristic 
behaviors of order pickers, which are autonomous agents (Heath, Ciarallo, and Hill 2013). The picking 
process starts and ends at the depot and aisles can be traversed in both directions. After picking the 
assigned order list each agent returns to the depot and receives the next order list (searching time is 
neglected). The next order picker starts after 18.5 s (when the predecessor arrives at the entrance of the 
first aisle). The number of order pickers in the warehouse and in one aisle is limited to three. This leads to 
several blocking considerations, especially when two or more order picker have to decide who has 
priority. Therefore, a priority rule is implemented. If one or more order pickers try to pass another worker 
the agent with the shortest distance to the next pick gets priority. All other agents either have to wait or 
have to go additional distances to let the order picker with the highest priority pass. Hence, in-the-aisle-
blocking as well as pick-column blocking occurs in the simulation model. Further, we assume that order 
pickers follow the guidelines (routing policies) even if this will  lead to picker blocking. 

 

Figure 2: Screenshot of the simulation model shows that three agents retrieve products in the warehouse 
at the same time (order pickers, colored). 
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3.3 Validation 

We validated the conceptual as well as the computer model mainly during a workshop with 33 experts in 
the field of logistics from several companies in Germany. We introduced our research project and 
explained the model in detail. Furthermore, several simulation runs and results were shown and discussed 
with all experts. The representatives of those companies came from different industries (automotive, 
chemical, logistics service provider, etc.) as well as from companies with different sizes (small, medium, 
and large). The high number of participants resulted from the high interest in the topic of picker blocking 
which obviously can be a pressing problem in practice. 
 Furthermore, the conceptual model is based on information taken from previously published studies 
as well as authors’ experience and consultations with several experts which were done prior to the study. 
 Additionally, we used the face validation and followed the order picking process via the graphical 
user interface. This is suitable for easy to follow heuristics like the S-shape policy. We also compared the 
output data with throughput times from different heuristics (e.g. composite vs. combined). Another 
possibility is to start simulation runs with extreme high values. We simulated up to 90 pickers to evaluate 
that the computer model is valid. 

4 RESULTS 

The objective of the study was to investigate the effects of routing combinations on throughput time. 
Therefore we made simulation runs with all possible configurations for three order picker and six routing 
policies (63 = 216 combinations). In our simulation model picker blocking can result in increased waiting 
or idle times as well as in additional travel distances. 
 Considering these effects of picker blocking, results show that the routing combination LLCb, i.e. 
Largest gap (Agent 1), Largest gap (Agent 2), and Combined (Agent 3) leads to best results for 1000 
randomly created orders with 20 picks per order. Figure 3 depicts the mean throughput time for LLCb in 
comparison with combinations when the same routing policy is assigned to all pickers. The order pickers 
need on average 800.946 s for fulfilling  an order with LLCb (standard deviation = 64.329 s; confidence 
interval = 2.302 s). All results are shown without picker blocking (gray color) as well as the additional 
time needed when blocking is considered (red color). If no blocking occurs, CbCbCb performs best in 
comparison to all other 215 combinations. Additionally, LLCb results in shortest mean throughput times 
when blocking is considered due to less waiting and idle times as well as less additional travel distances 
(note that all confidence intervals differ not more than 0.53 % from the mean with blocking and 0.33 % 
from the mean without blocking). 

 

Figure 3: Mean throughput times (s) show the difference between the combination with lowest mean 
throughput times in comparison to combinations with only one routing policy (gray: without blocking; 
red: additional time with blocking). 
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 Our results show that also other combinations of LLCb (LCbL, CbLL) lead to shorter mean 
throughput times in comparison to other routing combinations. The first one produces the second best 
mean throughput time while latter leads to the ninth best time (see Figure 4). Another important fact is 
that mainly sophisticated heuristics (combined, largest gap, etc.) result in shorter mean throughput times 
compared to S-shape or return. However, the first combination with the very common S-shape policy is 
ranked number 27 (LSL) but only with an increase of 2.11 % in mean throughput time (817.882 s) 
compared to the best combination. As Figure 4 depicts the mean throughput times for the best ten 
combinations are very close to each other. MCbCb, ranked number ten, has only a mean time which is 
1.26 % higher than LLCb. When comparing the best (LLCb) with the lowest mean throughput time 
(RRR) the simulation model determines a throughput time which is 31.83 % higher.  
SSS which is most common in practice (de Koster, Le-Duc, and Roodbergen 2007) results in a mean 
throughput time of 882.659 s (standard deviation = 95.603 s; confidence interval = 3.421 s). This is about 
10.2 % higher compared to LLCb. 
 Furthermore, combinations with return policy lead to lower mean throughput times than other 
combinations due to a high number of blockings during the order picking process. The longest mean 
throughput time results for RRR with 1055.87 s (standard deviation = 124.179 s; confidence interval = 
4.444 s). This could probably increase if other storage assignment rules with busy areas are used. 

 

Figure 4: Mean throughput time (s) for best performing combinations with picker blocking indicate no 
sharp increase for the first 11 combinations. 

 Figure 5 depicts the mean throughput times for the best performing combinations when blocking is 
neglected. They are divided into times without blocking (grey) and additional time needed when blocking 
is considered (red). Results indicate that planning for minimal travel distances falls too short if blocking is 
neglected. Our results imply that picker blocking should be considered in narrow-aisle warehouses to 
avoid managerial decision failures and unexpected outcomes. 
The shortest additional time caused by blocking results at LMR-combination with 40.21 s (without 
blocking = 799.676 s (standard deviation = 66.813 s; confidence interval = 2.391 s); with blocking = 
839.886 s (standard deviation = 73.305 s; confidence interval = 2.623 s)).  
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Figure 5: Mean throughput times (s) show the best performing combinations without considering picker 
blocking (gray) in comparison with additional time (s) caused by blocking (red). 

 Considering only one routing policy for all order pickers, the best combination (LLL) has position 48.  
It has a mean throughput time of 824.181 s (standard deviation = 68.484 s; confidence interval = 2.362 s). 
Furthermore, Figure 6 depicts the percentage increase of mean throughput times with blocking in 
comparison with the best performing combination (LLCb). While the increase in mean time is lower for 
the first combinations, the increase for combinations with higher mean throughput time is more dramatic. 

 

Figure 6: Depicts percentage increase of mean throughput times in comparison with the best performing 
combination (LLCb). 
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assign one routing policy to all order pickers. Furthermore, our results implied that considering picker 
blocking for planning order picking processes is an important issue. Particularly, routing policies, which 
result in shortest lead times if only one order picker works in the storage area, lead to lower mean 
throughput times if several workers pick in the same storage area and blocking is possible. 
 The simulation model determined lowest mean throughput times for combination LLCb (i.e. Largest 
gap (Agent 1), Largest gap (Agent 2), and Combined (Agent 3)) in comparison to all other routing 
combinations. Implementing the return policy in a manual order picking warehouse led to longest mean 
throughput times in our study due to an increased number of blockings. 
 This study has several limitations. We tried to implement only some aspects of typical human 
behavior in our agent based model which can be expanded in future studies. We further assumed that the 
order pickers deviate from the guidelines (e.g. routing policies) only in case of blocking. In practice, order 
pickers are sometimes interrupted and errors can result (Brynzér and Johansson 1995). Thus, during the 
order picking process several deviations can occur (e.g. broken, wrong, or missing products). Those were 
neglected in our study to focus on the effects of picker blocking. 
 This study gives various implications for further research. First, it could be an interesting field to add 
more pickers to the storage area or to increase the idle time when blocking occurs because the order 
pickers stop, e.g. for talking. However, this would enormously increase the possible combinations of 
routing policies at the same time and thus increase computation effort. Second, it could be an exciting 
topic to vary the starting time for each order picker after the first worker begins the tour. This could have 
an influence on blocking and would imply a need for managerial decisions on order release dates. In 
addition, account should be taken of acceleration and deceleration in a further study because both of them 
have an effect on throughput time in practice (Heath, Ciarallo, and Hill 2013). 
 With regard to managerial implications, our results showed that it could be beneficial to implement a 
routing combination for different order pickers. As one of the most common routing policies in practice is 
S-shape, our results indicated that warehouse managers should rather implement combinations of more 
sophisticated routing heuristics (such as Largest gap, Combined, etc.) instead of using heuristics like 
return policy which leads to a high number of blockings. Results further indicate that planning for 
minimal travel distances falls too short if blocking is neglected. 
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