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ABSTRACT 

In this paper, we introduce a metropolitan traffic simulation with microscopic vehicle agents with 
approximated behavior near intersections. We simulate a metropolitan traffic flow for Tokyo and 
surrounding four prefectures with fine-grained traffic demand obtained from Tokyo Person Trip survey. 
Though this simulator has an ability to manage signal control, it is difficult to obtain the real signal data 
of the city. Without signal data, the behavior of vehicles in a city becomes too smooth because they do 
not stop at intersections. This causes differences in traffic volume distribution. In this paper, we introduce 
a virtual vehicle that appears virtually in the front of the lead vehicle on each road to achieve natural 
deceleration with a car following speed model. We evaluate the aggregated effect of the virtual vehicle by 
comparing simulated traffic volume and trip length with real traffic data including road traffic census and 
person trip survey data. 

1 INTRODUCTION 

Today, more than half of the world population lives in urban areas and the level of urbanization is 
predicted to rise to 66% in 2050 (United Nations 2015).  One of the key issues of local governments is 
heavy traffic congestion from both viewpoints of environment and economics. By utilizing the 
information technologies which support city planners, we consider it is possible to decrease the CO2 
emissions and time loss caused by traffic jams. Though real operations and social experiments in a city 
require an immense amount of efforts and costs, computational simulations can perform enormous 
number of trial using various scenarios to support decision-makings of city planners with significantly 
lower costs. The comprehensive simulations can estimate both optimal cases and worst cases in the same 
way that Monte Carlo simulations by financial institutes support traders’ decision. 

 There are various types of traffic simulations.  Some of macro or mesoscopic traffic simulators 
consider the particle model or queuing dynamics in cellular models (Helbing 2001, Yoshii and Kuwahara 
1995). On the other hand, some of microscopic simulators reproduce the motion of vehicles in detail and 
visualize them with 3D movies often applied in a small area for better design of airport facilities or 
parking lots (Gomes, May, and Horowitz 2004).  The agent-based modeling is used to consider individual 
drivers’ behavior model with heterogeneous preferences (Yoshimura 2006; Kato et al. 2008). Along with 
the rapid growth of computer hardware and programming environment, it becomes possible to evaluate 
detailed behavior models with huge number of agents such as traffic flows in a metropolitan area (Mizuta, 
Yamagata, and Seya 2012). 

In this paper, we introduce a metropolitan traffic simulation and an approximated vehicle behavior 
near intersections with an agent-based traffic simulation. We utilize a large-scale agent-based simulation 
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environment to support the decision-making of city planners via what-if simulations. Though many traffic 
simulators have an ability to control the traffic with signals, it is often difficult to obtain the real signal 
data (e.g. cycle time and offset for each traffic signal) from the associated department due to the 
government's vertical administrative structure. But without the signal control, the behavior of vehicles in 
a city becomes too smooth because they do not decrease their speed at intersections and the route 
selection of vehicles is also affected due to different congestion status. Hence, we introduce a virtual 
vehicle (ghost car) that appears virtually in the front of the lead vehicle on each road to achieve natural 
deceleration with Gipps’ car following model (Gipps 1981). This procedure can provide not only an 
approximate behavior at intersections, but also a possible deceleration behavior in wider situation such as 
parking, pit stop, and critical events.  

Various types of the car following model including Gipps’ model are developed and used in traffic 
simulations. Panway and Dia (2005) evaluated several traffic simulators with different car following 
models and reported the good replication of the real data by AIMSUN which implemented Gipps based 
model. As another approach, Chong, Abbas, and Medina (2011) compared a general form of the car 
following model with an agent-based model using a reactive-structure artificial neural network (ANN) 
that can learn a realistic behavior after trials. There are also literatures of agent-based simulation that also 
investigate the driver’s behavior near intersections. Cunto and Saccomanno (2007) consider the crash 
potential at intersections with different types of control method of speed and signals. Pulter, Schepperle, 
and Böhm (2011) optimize the traffic flow to reduce fuel consumptions and emissions. These literatures 
aim at replicating the precise microscopic behavior with car following models and also use the traffic 
control for an improved traffic from the viewpoint of safety and energy efficiency. On the other hand, we 
introduce the approximated behavior near intersection to reproduce the inefficient traffic flow and the 
city-wide traffic pattern in a whole. 

Though we consider large-scale traffic flow in a metropolitan area, we can also observe an individual 
microscopic traffic behavior by utilizing a distributed agent-based simulation environment. We will show 
simulated traffic flows both in a simple road network for verification of the microscopic vehicle behavior 
and a metropolitan area for the actual usage. 

The rest of the paper is organized as follows: in Section 2 we briefly introduce our agent-based traffic 
simulator used in the experiments. Section 3 describes proposed procedure of vehicle behavior near 
intersections.  Section 4 summarizes the simple simulation results and the microscopic behavior of each 
vehicle. Then Section 5 shows the comparison with real data in a metropolitan area. Finally, Section 6 
concludes with future works. 

2 AGENT-BASED CITY TRAFFIC SIMULATOR 

The agent-based simulation is a powerful tool to understand the complicated dynamic system such as 
a whole city including many human beings. However, agent-based simulation systems in the early stage 
tended to examine complex systems with rather a smaller number of agents. Since autonomous agents are 
intuitively implemented using objects and multi-threads, the Java programming language has been widely 
utilized as an easy-to-use environment even for researchers not in the department of Computer Science 
(e.g., Economics or Social Science). Until recently, these systems can treat only hundreds or thousands of 
agents mainly because of the limitation of early programming model of Java threads and memory, which 
is a trade-off with the intuitive design.  

The X10 programming language has a Java-like syntax with PGAS-based distributed computing 
environments and Suzumura et al. (2012) developed an X10-based large-scale distributed agent-based 
simulation environment. On this environment, we developed a traffic simulator with more realistic 
drivers’ behavior models by analyzing the real probe car data that are obtained from GPS equipped on 
taxies in Tokyo  (Osogami et al. 2012; Osogami et al. 2013). The Agent-based traffic simulator considers 
each microscopic vehicle as agent, which travels through a given road network with Crosspoints (node) 
and Roads (links). Each agent is assigned an origin, a destination, and a departure time as a trip according 
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to a origin-destination (OD) table obtained from population and traffic census survey data. The simulator 
creates the agent at the origin at the departure time. The agent chooses a route from the origin to the 
destination, according to a model of the route choice, and travels along that route. In this simulator, 
heterogeneous agents (drivers) select a route with their probabilistic preference distribution estimated 
from probe car data and change their car speed and lane based on the car following model (Gipps 1981) 
and Integrated Lane-Changing Model (Toledo, Ben-Akiva, and Koutsopoulos 2003) that represent the 
dynamic interaction with surrounding cars. At each time step (typically, 1 sec), the microscopic car 
behavior in roads are controlled by connected Crosspoints each of which is assigned an individual thread 
from a thread pool to effectively simulate the fine-grained car movement in and across roads even in a 
distributed HPC environment. 

The simulator tracks the location of each agent and records information of vehicles (position and 
speed), roads (average speed, number of vehicles, CO2 emissions on the road) and trips (travel time and 
total CO2 emissions of each vehicle) into log files which are used for analysis and visualization.  

The route choice model of this simulator determines the route of an agent from his origin to his 
destination, taking into account three quantities: travel time, travel distance, and the number of turns. 
Specifically, the route that minimizes the weighted sum of the three quantities is selected, where the 
weight depends on individual agents. This weight used for an agent is denoted as the agent’s personality 
and can be estimated from the probe car  data.  

Once the personality of an agent is determined, Dijkstra’s algorithm can be used to find the route, 
from his origin to his destination, that minimizes the linear combination of the three cost using his 
personality as the weight. To take into account the number of turns, Dijkstra’s algorithm is run on a 
network whose vertexes represent a segment of roads and whose edges represent a connection from a 
segment of roads, which we refer to as the first road-segment, to a neighboring segment of roads, which 
we refer to as the second road-segment. The edge cost then represents the convex combination of the 
travel time along the second road-segment, the travel distance along the second road-segment, and the 
indicator (zero or one) of whether there is a turn from the first road-segment to the second. The travel 
time used for the route selection is updated every 10 simulated minutes according to the simulated travel 
time to avoid congested roads. 
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Figure 1: Inputs and output of the traffic simulator. 

3 SIMULATION PROCESS OF VEHICLE BEHAVIOR NEAR INTERSECTIONS 

In this section, we describe the process to simulate the vehicle behavior near intersections. We denote 
intersections as Crosspoint objects which are connected to Road objects in our definition of the road 
network. 
During the simulation execution, each vehicle calculates the speed at the next timestep using the Gipps’ 
car following model (Gipps 1981) as described below.  In the simulator, this calculation is performed by 
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each Crosspoint in parallel if enough threads are assigned to CPU cores from the thread pool in each 
computation node. 

The Crosspoint has a list of incoming roads and the road has a list of vehicles running on it. The 
calculation of speed changes are performed sequentially for each vehicle on each road using the relative 
position and speeds of the front vehicle and the current vehicle. If the gap length to the front car is long 
enough, the current vehicle will accelerate to the desired speed (typically determined to the limit speed of 
the road). If the front vehicle is slower than the current vehicle and the gap length is not sufficient, then 
the current vehicle will decelerate to the speed which keeps safety margin to stop before the crash even 
when the front vehicle decelerate suddenly. For the first vehicle in a list, the gap length and the speed of 
the front vehicle are set to the maximum value of the system (for example, Float.MAX_VALUE). 

Now, we describe the proposed process for the vehicle near the intersection. To control the speed of 
the lead vehicle on the road, we introduce the virtual vehicle information (ghost car) in the front of this 
vehicle in the top of the vehicle list. 

This ghost car appears when the lead vehicle has entered the zone near the end of the road with given 
gap and speed (see Figure 2). To restrict this behavior only on the main road, we can apply this procedure 
only when the vehicle is located in trunk or primary roads. 

Gap

Zone

Lead

Ghost

ș

                         

Loop Road r in Crosspoint

Loop Vehicle v in r

If (road is trunk or primary)
and

(position of v0 is in zone)

set Front gap of ghost car

set Front speed of ghost car

multiply coefficient  of road angle

calculate next speed of v0

 

Figure 2: Information and parameters of the virtual vehicle and the procedure of speed calculations. 

 
If this gap and speed are large, the ghost car gives only a little effect to the lead vehicle. If these 

values are small, then the lead car is forced to decrease its speed rapidly. In addition, the length of the 
zone changes the duration of the effect. By calibrating these parameters, we can obtain the desired traffic 
situation.  

In addition, we consider the road angle ȟ between the target road next to the Crosspoint by 
modifying the speed of ghost car as V_ghost *= (1 + cos(ȟ))/2. The speed of the ghost car does not 
change when the vehicle goes straight ahead. But the speed decreases greatly as the vehicle turns 
drastically. 

Such a variation of parameters for the virtual vehicle may sound too arbitrary, but the effective range 
of parameters where the ghost car affects the lead vehicle substantially and not block the entire traffic is 
restricted. If the gap is too long (50m or 100m) or the speed of the ghost car is near the limit speed (60 
Km/h), the lead vehicle need not to decrease its speed. If the gap is too small (e.g. 1m) or the speed is too 
slow, following vehicle cannot drive on the road. We choose sensible range of parameters, the variation 
of the correlation coefficients of road traffic volume in a whole is small. For experiments of the city 
traffic in Tokyo, we perform experiments using the virtual speed at 5m/s and 1m/s with almost same 
results. In this meaning, this approximation has a certain robustness. 
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4 SIMPLE SIMULATION SETTINGS FOR CONFIRMATION OF THE BEHAVIOR 
MODEL 

In this section, we show the simple simulation results by changing parameters of the ghost car to confirm 
the microscopic behavior. 

As a simple example, we use a simple road network (Figure 3). The circles are Crosspoints and lines 
are Roads. The limit speed is 60 Km/h and each road has one lane. Our evaluation scenario included four 
vehicles, which start from Crosspoint 1 every 10 seconds toward Crosspoint 5. 

 

Figure 3: Simple road network definition with 5 Crosspoints and 4 Roads. 

 
Positions measured by the distance along a road from the origin and speeds of the four concrete 

vehicles with IDs (0, 1, 2, 3) at each timestep are shown in Figure 4. Though our simulator outputs both 
the position and speed as log data, the right hand plot can be obtained as the derivative of the left hand 
plot. The gap length and zone length of the ghost car are set to 10m and 100m, respectively. The speed of 
the ghost car is 1 m/s for straight roads. We can see that vehicles decrease their speed to a very low value 
suddenly and stay near the speed of the ghost car till they exit the road. In addition, the distances between 
these vehicles become shorter near intersections as observed at a real congested road. 

Figure 4: Vehicle Positions and Speeds at each timestep with virtual vehicle. 
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For a comparison, we also perform a simulation which does not use the ghost car but set a cap speed 
in a zone near intersections. The zone length and cap speed are set to 50m and 5m/s, respectively. 
Positions and speeds of four vehicle are shown in Figure 5. We can see uniform deceleration near 
intersections and smooth moving keeping stable gap lengths. 

 

Figure 5: Vehicle Positions and Speeds at each timestep with zone cap. 

5 EVALUATION IN TOKYO METROPOLITAN TRAFFIC 

To evaluate our traffic simulation in a real large city, we utilized fine grained hourly OD data given with 
small-level zones (which divide Tokyo into 417 areas for example) obtained from Tokyo Person Trip 
Survey data in 2008 and Traffic road census data in 2010. The simulation area includes Tokyo and 
surrounding four prefectures. For comparison with observed data, we use census points only in Tokyo. 
However, we perform the simulation including surrounding prefectures, because there is significant traffic 
demand to/from these areas passing roads in Tokyo as in Table 1. 
 

Table 1: Traffic demand between Tokyo and surrounding prefectures and number of small-level zones in 
each prefecture. 

Prefecture Traffic demand 
to/from Tokyo 

Number of 
small zones 

Tokyo 3,848,290 417 
Kanagawa 469,924 507 
Saitama 452,830 317 
Chiba 224,573 311 
South Ibaraki 20,597 103 

 
Traffic road census is given as traffic volumes of 12 hours from 7:00 to 19:00. We execute the traffic 

simulation for 13 hours from 6:00 to 19:00 to reduce the effect of initial rise and aggregate the 12 hours 
traffic volumes for each road from the simulation log data. 
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The road network for the simulation of Tokyo metropolitan is extracted from OpenStreetMap in the 
area shown in Figure 6. In this area, we have 891,335 nodes (Crosspoints) and 2,465,767 links (Roads). 

Figure 6: Simulation area for Tokyo metropolitan. Range of latitude is from 34.8927N to 36.1445N and 
longitude from 139.0018E to 140.8887E. 

The Person trip (PT) OD matrix is given between small zones that are defined with a list of addresses. 
To obtain trips between Crosspoints, we utilized 2,105,428 GIS reference points dataset with the address 
and location (longitude and latitude) in 2008. By matching address, we can associate a zone code with 
each GIS point. Then, we find the nearest GIS reference point for each Crosspoint and assign the zone 
code of the GIS reference point to Crosspoints. Finally, we can define trips by choosing random 
Crosspoints from the origin and destination zones repeatedly with a number of traffic demand for each 
hour. Figure 7 shows examples of selected trip route between small zones. These GIS reference point 
dataset, Person Trip survey data and Traffic road census data (General Traffic Volume Survey 2012) are 
provided by Ministry of Land, Information, Transport and Tourism (MLIT) of Japan. The map image in 
Figure 6 and the colored streets in Figure 7 and 8 are based upon OpenStreetMap data (©OpenStreetMap 
contributors) and licensed under CC-BY-SA 2.0 (http://creativecommons.org/licenses/by-sa/2.0/) or 
ODbL (http://opendatacommons.org/licenses/odbl/). 
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Figure 7: Examples of route (blue lines) between randomly selected Crosspoints in small zones (pins with 
zone label). 

By performing a simulation for 13 hours, we obtain log data of roads and trips. The road log data 
contains the number of vehicles and average speed on each road for each hour and the trip log data 
contains trip duration for each trip. Figure 8 shows an example of visualization for the traffic volume by 
means of a heat map. 

 

Figure 8: Simulation Visualization Example (Heat map of road traffic volume represented with KML and 
Google Earth). 
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To evaluate the simulation results with the observed traffic volumes, we use scatter plots (Figure 9) 
and correlation coefficients of the simulated logarithmic traffic volumes on 50 census roads with 12 hours 
census data. Since the distribution of traffic volume decays exponentially, we evaluate the log value of 
traffic volumes. As the first result, we obtained a low correlation coefficient 0.5979 without the virtual 
vehicle method introduced in previous sections.  

Figure 9: Comparison of logarithmic traffic volume at census points. 

The number of vehicles (agents) on the whole area at the simulation time step 3600 (after one hour) is 
58,254. At each second, about 90 vehicles depart from their origin. We can estimate that the average 
vehicle remains on the road network for 10 minutes. This duration is shorter than the average trip length 
which is around 20 minutes obtained from the survey data. This can be considered as one reason that the 
simulated traffic volumes tend to smaller than the observed traffic volume. Though environment (rain or 
road condition) or traffic regulations can change the trip length, one of main reason for this short trip 
length of the simulation is caused by the too smooth traffic flow without decreasing speed at intersections 
or stopping by red signals. Hence, we introduce virtual vehicle model into the simulation. The parameters 
of the virtual vehicle we used here are gap length = 10, zone length = 100, and virtual speed = 1. 

We performed 13 hours of simulation again and compared the 12 hour traffic volume of selected 
roads (census points) between simulation results and observed data. The correlation coefficients using 
both traffic volume and logarithmic traffic volume and scatter plots with logarithmic values are shown in 
Table 2 and Figure 10. We can see correlation increases by using the virtual vehicle behavior model up to 
0.7028 for logarithmic values. We also compare the result with another approximation method using zone 
cap which restrict speed limit in predefined zone (50m for example) near intersections to a small value (5 
m/s for example). Though zone cap method increase the trip length, the correlation coefficients decreases. 

Table 2: Correlation Coefficients with and without virtual vehicle. 

Correlation 
Coefficient 

Baseline (Without 
approx. method) 

With Virtual 
Vehicle 

With Zone Cap 

Traffic volume 0.5206 0.6760 0.5084 
Logarithmic traffic 
volume 

0.5979 0.7028 0.5155 
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Figure 10: Comparison of logarithmic traffic volume at census points (with virtual vehicle). 

In addition, we evaluate simple statistics of trip length distribution for simulation results and Person 
Trip survey data though the trip length data from sample-based PT survey may have errors. Indeed, the 
change of trip length caused by the virtual vehicle is small. The summary statistics for three simulations 
and PT survey data is shown in Table 3. In the experiment with virtual vehicle, leading vehicles only 
decreases its speed but does not stop at intersections for significant seconds as with red signals. The trip 
length only becomes 1.2 times longer and not 3 times longer as survey data. This means the total number 
of vehicle at a moment or aggregated traffic volume for 12 hours at a census point is not become 
sufficiently large enough to compete with the real observation data. But the absolute value itself is not 
important for the traffic pattern in a city that relates the correlation coefficient because normalization does 
not change the coefficient. However, the road congestion near the intersection is changed by the virtual 
car and this may cause the substantial change on the traffic flow pattern via the route selection which uses 
a shortest travel time and link cost that is changed by non-uniform congestion caused by the ghost car. 

Table 3: Summary statistics of trip length of PT survey and three simulations. 

Trip length (sec) Person Trip Survey Without Virtual Car With Virtual Car With Zone Cap 
average 2006 609 733 933 
median 1386 344 378 516 
75 percentile 2400 710 834 1140 

 

6 CONCLUDING REMARKS 

In this paper, we proposed a procedure to decelerate vehicles near intersections as observed in the real 
traffic situation. Though this setting lacks signal controls, we reproduced the non-uniform congestion or 
traffic jam caused by the slow speed approaching intersections and traffic volume pattern that has a higher 
correlation coefficient with the observed traffic data in a whole. 

Without the control by signals, simulated vehicle flow tends to become too fast and smooth. By 
utilizing proposed vehicle behavior, we can adjust the traffic flow with a few parameters though this is an 
approximation methodology. 
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We observed that both the macroscopic simulation and microscopic vehicle behavior (speed and 
congestion) are easily changed by small number of parameters used for the ghost car (virtual vehicle 
information in the front of a road). We also evaluated the traffic flow in the Tokyo metropolitan area 
compared with the traffic road census data and found that the introduction of the virtual vehicle can 
improve the correlation coefficients. Though the change in the distribution of the trip length is small, we 
consider status of whole traffic flow in metropolitan approaches to the real traffic flow with this 
approximated vehicle behavior. 

Our method using the virtual vehicle causes an instantaneous brakeage that is psychologically similar 
response near intersections or dangerous areas and causes shrinkage of inter-vehicular distances. This 
brings approximated jam due to retention near intersections that are not observed with the uniform 
deceleration by other methods, and then generate global change in the distribution pattern of road travel 
costs in the whole city. We can consider that resulting changes of the route selection cause the 
improvement of the correlation coefficients that indicates the global similarly of the traffic volume pattern. 

Currently, it is difficult to obtain the full data of signal locations and their cycles. But in some cases, 
we can estimate the partial data of signal if we can obtain car navigation data or monitoring camera 
images. To obtain a more realistic traffic flow with such a partial information together with our 
approximation and further analytical method remains for future works. In addition, this procedure can be 
used for other critical events such as traffic accidents or disasters. In such a case, the importance of the 
real time simulation increases to evaluate plans of the evacuation management as what-if analysis. 
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