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ABSTRACT

In this paper, we introduce a metropolitan trafiecnulation with microscopic vehicle agents with
approximated behavior near intersections. Waukite a metropolitan traffic flow for Tokyo and
surrounding four prefectures with fine-grainedficademand obtained from Tokyo Person Trip survey.
Though this simulator has an ability to manage sigaoatrol, it is difficult to obtain the real signal data

of the city. Without signal data, the behaviorvehicles in a city becomes too smooth because they do
not stop at intersections. This causes differencesiffictizolume distribution. In this paper, we introduce

a virtual vehicle that appears virtually in the front of the lead vehicle on each road to achieve natural
deceleration with a car following speed model. We evaltle aggregated effect of the virtual vehicle by
comparing simulated traffic volume and trip length witll traffic data including road traffic census and
person trip survey data.

1 INTRODUCTION

Today, more than half of the world populatiomel in urban areas and the level of urbanization is
predicted to rise to 66% in 2050 (United Nations 2016ne of the key issues of local governments is
heavy traffic congestion from both viewpoints efvironment and economics. By utilizing the
information technologies which support city plannevs, consider it is possible to decrease the CO2
emissions and time loss caused by traffic jams. Theoaghoperations and social experiments in a city
require an immense amount of efforts and costsnputational simulations can perform enormous
number of trial using various scenarito support decision-makings oty planners with significantly
lower costs. The comprehensive simulations céimage both optimal cases and worst cases in the same
way that Monte Carlo simulations by fimaal institutes support traders’ decision.

There are various types of traffic simulations. Some of macro or mesoscopic traffic simulators
consider the particle model or queuing dynamicseltular models (Helbing 2001, Yoshii and Kuwahara
1995). On the other hand, some of microscopic sitatdaeproduce the motion of vehicles in detail and
visualize them with 3D movies often applieddansmall area for better design of airport facilities or
parking lots (Gomes, May, and Horowitz 2004). The agent-based modeling is used to consider individual
drivers’ behavior model with heterogeneous prfees (Yoshimura 2006; Kato et al. 2008). Along with
the rapid growth of computer hardware and progréng environment, it becomes possible to evaluate
detailed behavior models with huge number of agents such as traffic flows in a metropolitan area (Mizuta,
Yamagata, and Seya 2012).

In this paper, we introduce a metropolitan traffimulation and an approximated vehicle behavior
near intersections with an agent-based traffic Etran. We utilize a large-scale agent-based simulation
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environment to support the decision-making of pignners via what-if simulations. Though many traffic
simulators have an ability to control the traffic witignals, it is often difficult to obtain the real signal

data (e.g. cycle time and offset for each traffic signal) from the associated department due to the
government's vertical administrative structure. But without the signal control, the behavior of vehicles in
a city becomes too smooth because they do notdsertheir speed at intersections and the route
selection of vehicles is also affected due to difiereongestion status. Hence, we introduce a virtual
vehicle (ghost car) that appears virtually in the frointhe lead vehicle on each road to achieve natural
deceleration with Gipps' car following model (Gipps 1981). This procedure can provide not only an
approximate behavior at intersections, but also a lplesseceleration behavior in wider situation such as
parking, pit stop, and critical events.

Various types of the car following model including Gipps’' model are developed and used in traffic
simulations. Panway and Dia (2005) evaluated sewveafflc simulators with different car following
models and reported the good replication of #e data by AIMSUN which implemented Gipps based
model. As another approach, Chong, Abbas, andif&e(2011) compared a general form of the car
following model with an agent-based model usingeactive-structure artificial neural network (ANN)
that can learn a realistic behavior after trials. There are also literatures of agent-based simulation that also
investigate the driver's behavior near intetgets. Cunto and Saccomanrn20Q7) consider the crash
potential at intersections with different types oftrol method of speed and signals. Pulter, Schepperle,
and Bohm (2011) optimize the traffic flow to redufuel consumptions and emissions. These literatures
aim at replicating the precise microscopic behawih car following models and also use the traffic
control for an improved traffic from the viewpoint sdifety and energy efficiency. On the other hand, we
introduce the approximated behavior near intersed¢tioreproduce the inefficient traffic flow and the
city-wide traffic pattern in a whole.

Though we consider large-scale traffic flow in atropolitan area, we can also observe an individual
microscopic traffic behavior by utilizing a distrited agent-based simulation environment. We will show
simulated traffic flows both in a simple road netwéuk verification of the microscopic vehicle behavior
and a metropolitan area for the actual usage.

The rest of the paper is organized as follows:dnti®n 2 we briefly introduce our agent-based traffic
simulator used in the experiments. Section 3 dassrproposed procedure of vehicle behavior near
intersections. Section 4 summarizes the simple laiion results and the microscopic behavior of each
vehicle. Then Section 5 shows the comparison vatl data in a metropolitan area. Finally, Section 6
concludes with future works.

2 AGENT-BASED CITY TRAFFIC SSIMULATOR

The agent-based simulation is a powerful toaltiderstand the complicated dynamic system such as
a whole city including many human beings. Howewgrent-based simulation systems in the early stage
tended to examine complex systems with rather dlemmumber of agents. Since autonomous agents are
intuitively implemented using objects and multi-threaithe Java programming language has been widely
utilized as an easy-to-use environment even for researchers not in the department of Computer Science
(e.g., Economics or Social Science). Until recentlgséhsystems can treat only hundreds or thousands of
agents mainly because of the limitation of eanggramming model of Java threads and memory, which
is a trade-off with the intuitive design.

The X10 programming language has a Java-like syntax with PGAS-based distributed computing
environments and Suzumura et al. (2012) develape X10-based large-scale distributed agent-based
simulation environment. On this environment, @eveloped a traffic simulator with more realistic
drivers’ behavior models by analyzing the reallqw car data that are obtained from GPS equipped on
taxies in Tokyo (Osogami et &012; Osogami et al. 2013). The Agent-based traffic simulator considers
each microscopic vehicle as agemhich travels through a given roatwork with Crosspoints (node)
and Roads (links). Each agent is assigned an odgiestination, and a departure time as a trip according
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to a origin-destination (OD) table obtained from popalaand traffic census survey data. The simulator
creates the agent at the origin at the departare.tThe agent chooses a route from the origin to the
destination, according to a model of the route chodrel travels along that route. In this simulator,
heterogeneous agents (drivers) select a route tWétln probabilistic preference distribution estimated
from probe car data and change their car speedaardbased on the car following model (Gipps 1981)

and Integrated Lane-Changing Model (Toledo, Ben-Akiva, and Koutsopoulos 2003) that represent the
dynamic interaction with surrounding cars. At ledane step (typically, 1 sec), the microscopic car
behavior in roads are controlled by connected Quuiggts each of which is assigned an individual thread
from a thread pool to effectively simulate the fine-grained car movement in and across roads even in a
distributed HPC environment.

The simulator tracks the location of each agemd records information of vehicles (position and
speed), roads (average speed, number of vehicle®,e@ssions on the road) and trips (travel time and
total CO2 emissions of each vehicle) into log filsch are used for analysis and visualization.

The route choice model of this simulator determittes route of an ageritom his origin to his
destination, taking into account three quantities: traiveé¢, travel distance, and the number of turns.
Specifically, the route that minimizes the weightdn of the three quantities is selected, where the
weight depends on individual agents. This weigletdulor an agent is denoted as the agent’s personality
and can be estimated from the probe car data.

Once the personality of an agent is determined,sidgks algorithm can be used to find the route,
from his origin to his destination, that minimizése linear combination of the three cost using his
personality as the weight. To take into accountrthmber of turns, Dijkstta algorithm is run on a
network whose vertexes represent a segment osraad whose edges represent a connection from a
segment of roads, which we refer to as the firatlreegment, to a neighboring segment of roads, which
we refer to as the second road-segment. The edgjetleen represents the convex combination of the
travel time along the second road-segment, theeltrdigtance along the second road-segment, and the
indicator (zero or one) of whether there is a tiwom the first road-segment to the second. The travel
time used for the route selection is updated every 10 simulated minutes according to the simulated travel
time to avoid congested roads.
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Figure 1: Inputs and output of the traffic simulator.

3  SIMULATION PROCESS OF VEHICLE BEHAVIOR NEAR INTERSECTIONS

In this section, we describe the process to simulsevehicle behavior near intersections. We denote
intersections as Crosspoint objects which are conndotdtbad objects in our definition of the road
network.

During the simulation execution, each vehicle caleslahe speed at the next timestep using the Gipps’
car following model (Gipps 1981) as described beldwthe simulator, this calculation is performed by
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each Crosspoint in parallel if enough threads are assigned to CPU cores from the thread pool in each
computation node.

The Crosspoint has a list of incoming roads and the road has a list of vehicles running on it. The
calculation of speed changes are performed seqligriiaeach vehicle on eaatvad using the relative
position and speeds of the front vehicle and the currditlee If the gap length to the front car is long
enough, the current vehicle will accelerate to the desired speed (typically determined to the limit speed of
the road). If the front vehicle isaber than the current vehicle and the gap length is not sufficient, then
the current vehicle will decelerate tioe speed which keeps safety margin to stop before the crash even
when the front vehicle decelerate suddenly. For thevekicle in a list, the gap length and the speed of
the front vehicle are set to the maximum vadtighe system (for example, Float. MAX_VALUE).

Now, we describe the proposed geas for the vehicle near the irgection. To control the speed of
the lead vehicle on the road, we introduce the vinredicle information (ghost car) in the front of this
vehicle in the top of the vehicle list.

This ghost car appears when the lead vehicle haredritge zone near the end of the road with given
gap and speed (see Figure 2). To restrict this behamlgron the main road, we can apply this procedure
only when the vehicle is located in trunk or primary roads.

‘ Loop Road r in Crosspoint ‘

‘ Loop Vehicle vinr ‘

If (road is trunk or primary)
and
(position of vO is in zone)

|
| Ghost

1
|Gap
! Leadi

1
| I I I ‘ set Front speed of ghost car

Zone

‘ set Front gap of ghost car

‘ multiply coefficient of road angle

‘ ‘ calculate next speed of vO

Figure 2: Information and parameters of the virtughicle and the procedure of speed calculations.

If this gap and speed are large, the ghost car gives only a little effect to the lead vehicle. If these
values are small, then the lead taforced to decrease its speed dapiln addition, the length of the
zone changes the duration of the effect. By calibgatese parameters, we can obtain the desired traffic
situation.

In addition, we consider the road angte between the target road next to the Crosspoint by
modifying the speed of ghost car ¥sghost *= (1 + cos())/2. The speed of the ghost car does not
change when the vehicle goes straight ahead.tiButspeed decreases greatly as the vehicle turns
drastically.

Such a variation of parameters for the virtual glghimay sound too arbitrary, but the effective range
of parameters where the ghost car affects the lead vehicle substantially and not block the entire traffic is
restricted. If the gap is too long (50m or 100m) @& $peed of the ghost carriear the limit speed (60
Km/h), the lead vehicle need not to decrease its spietbe. gap is too small (e.g. 1m) or the speed is too
slow, following vehicle cannot drive on the road. We choose sensible range of parameters, the variation
of the correlation coefficients of road traffic volume in a whole is small. For experiments of the city
traffic in Tokyo, we perform experiments using tietual speed at 5m/s and 1m/s with almost same
results. In this meaning, this approximation has a certain robustness.
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4 SIMPLE SIMULATION SETTINGSFOR CONFIRMATION OF THE BEHAVIOR
MODEL

In this section, we show the simple simulation redft€hanging parameters of the ghost car to confirm
the microscopic behavior.

As a simple example, we use a simple road network (Figure 3). The circles are Crosspoints and lines
are Roads. The limit speed is 60 Km/h and each road has one lane. Our evaluation scenario included four
vehicles, which start from Crosspoint 1 every 10 seconds toward Crosspoint 5.

40m

400 m 400 m

400 m

Figure 3: Simple road network definition with 5 Crosspoints and 4 Roads.

Positions measured by the distance along a road fhenorigin and speeds of the four concrete
vehicles with IDs (0, 1, 2, 3) at each timestepsirewn in Figure 4. Though our simulator outputs both
the position and speed as log data, the right hand plot can be obtained as the derivative of the left hand
plot. The gap length and zone length of the ghost car are set to 10m and 100m, respectively. The speed of
the ghost car is 1 m/s for straight roads. We can sg¢e/éhicles decrease theireggl to a very low value
suddenly and stay near the speed of the ghost cartjllekit the road. In adlibn, the distances between
these vehicles become shorter near inttimex as observed at a real congested road.
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Figure 4: Vehicle Positions and Speeds at each timestep with virtual vehicle.
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For a comparison, we also perform a simulation which does not use the ghost car but set a cap speed
in a zone near intersections. The zone length aapl speed are set to 50m and 5m/s, respectively.
Positions and speeds of four vehicle are shown in Figure 5. We can see uniform deceleration near

intersections and smooth movikgeping stable gap lengths.
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Figure 5: Vehicle Positions and Speeds at each timestep with zone cap.

5

EVALUATIONIN TOKYO METROPOLITAN TRAFFIC

To evaluate our traffic simulation in a real large citye utilized fine grained hourly OD data given with
small-level zones (which divide Tokyo into 4hreas for example) obtained from Tokyo Person Trip
Survey data in 2008 and Traffic road census d@at2010. The simulation area includes Tokyo and
surrounding four prefectures. For comparison with observed data, we use census points only in Tokyo.
However, we perform the simulation including surrdiing prefectures, because there is significant traffic
demand to/from these areas passing roads in Tokyo as in Table 1.

Table 1: Traffic demand between Tokyo and surroungimedectures and number of small-level zones in

each prefecture.

Prefecture Traffic demandNumber of
to/from Tokyo small zones
Tokyo 3,848,290 417
Kanagawa 469,924 507
Saitama 452,830 317
Chiba 224,573 311
South Ibaraki 20,597 103

Traffic road census is given as traffic volumeddfhours from 7:00 to 19:00. We execute the traffic
simulation for 13 hours from 6:00 to 19:00 to reduae éffect of initial rise and aggregate the 12 hours
traffic volumes for each road from the simulation log data.
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The road network for the simulation of Tokyo tnogolitan is extracted from OpenStreetMap in the
area shown in Figure 6. In this area, we h29&,335 nodes (Crosspoints) and 2,465,767 links (Roads).

Figure 6: Simulation area for Tokyo metropolitan. Range of latitude is 38027N to 36.1445N and
longitude from 139.0018E to 140.8887E.

The Person trip (PT) OD matrix is given betweerabrones that are defined with a list of addresses.
To obtain trips between Crosspoints, we utilized 2,105,428 GIS reference points dataset with the address
and location (longitude and latitudig) 2008. By matching address, we can associate a zone code with
each GIS point. Then, we find the nearest GIS ratergoint for each Crosspoint and assign the zone
code of the GIS reference point to Crosspoints. Finally, we can define trips by choosing random
Crosspoints from the origin and destination zoregseatedly with a number of traffic demand for each
hour. Figure 7 shows examples of selected triperdngitween small zones. These GIS reference point
dataset, Person Trip survey data and Traffic roadusedata (General Traffic Volume Survey 2012) are
provided by Ministry of Land, Information, Transport and Tourism (MLIT) of Japan. The map image in
Figure 6 and the colored streets in Figure 7 antk&ased upon OpenStreetMap data (©OpenStreetMap
contributors) and licensed under CC-BY-SA 2l@i://creativecommons.org/licenses/by-sa/2.0/) or
ODbL (http://opendatacommons.org/licenses/gdbl/
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Google s

Figure 7: Examples of route (blue lines) between ramglselected Crosspoints in small zones (pins with
zone label).

By performing a simulation for 13 hours, we obtain log data of roads and trips. The road log data
contains the number of vehicles and average speed on each road for each hour and the trip log data
contains trip duration for each trip. Figure 8 sh@msexample of visualization for the traffic volume by
means of a heat map.

7 AN G,
Figure 8: Simulation Visualization Example (Heat map of road traffic volume represented with KML and
Google Earth).
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To evaluate the simulation results with the observed traffic volumes, we use scatter plots (Figure 9)
and correlation coefficients of the simulated logarithmic traffic volumes on 50 census roads with 12 hours
census data. Since the distribution of traffic volureeays exponentially, we alate the log value of
traffic volumes. As the first result, we obtainedbw correlation coefficient 0.5979 without the virtual
vehicle method introduced in previous sections.

10 Log Traffic Volume Validation
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Figure 9: Comparison of logarithmic traffic volume at census points.

The number of vehicles (agents) on the whole atré¢lae simulation time step 3600 (after one hour) is
58,254. At each second, about 90 vehicles depam freir origin. We can estimate that the average
vehicle remains on the road network for 10 minutess dhration is shorter than the average trip length
which is around 20 minutes obtained from the surveég.dehis can be considered as one reason that the
simulated traffic volumes tend to smaller than the observed traffic volume. Though environment (rain or
road condition) or traffic regulationsan change the trip length, one rofiin reason for this short trip
length of the simulation is caused by the too smooth traffic flow without decreasing speed at intersections
or stopping by red signals. Hence, we introduce Mirtahicle model into the simulation. The parameters
of the virtual vehicle we used here are gap lergl0, zone length = 100, and virtual speed = 1.

We performed 13 hours of simulation again andchgared the 12 hour traffic volume of selected
roads (census points) between simulation resultiscdoserved data. The correlation coefficients using
both traffic volume and logarithmic traffic volume and scatter plots with logarithmic values are shown in
Table 2 and Figure 10. We can see correlation increasasityy the virtual vehicle behavior model up to
0.7028 for logarithmic values. We also compare the result with another apptimxi method using zone
cap which restrict speed limit in predefined zone (50m for example) near intersections to a small value (5
m/s for example). Though zone cap method increase the trip length, the cormelaffaients decreases.

Table 2: Correlation Coefficientsitlt and without virtual vehicle.

Correlation Baseline (Without With Virtual | With Zone Cap
Coefficient approx. method) | Vehicle

Traffic volume 0.5206 0.6760 0.5084
Logarithmic traffic 0.5979 0.7028 0.5155
volume
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Log Traffic Volume Validation
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Figure 10: Comparison of logarithmic traffic volume at census points (with virtual vehicle).

In addition, we evaluate simple statistics of trip length distribution for simulation results and Person
Trip survey data though the trip length data froormgle-based PT survey may have errors. Indeed, the
change of trip length caused by the virtual vehicle is small. The summary statistics for three simulations
and PT survey data is shown in Table 3. In theedment with virtual vehicle, leading vehicles only
decreases its speed but does not stop at intersefuiogighnificant seconds as with red signals. The trip
length only becomes 1.2 times longer and not 3 tiloeger as survey data. This means the total number
of vehicle at a moment or aggregated traffic volume for 12 hours at a census point is not become
sufficiently large enough to compete with the readesliation data. But the absolute value itself is not
important for the traffic pattern in a city that relsthe correlation coefficient because normalization does
not change the coefficient. However, the road caigesear the intersection is changed by the virtual
car and this may cause the substantial change on the traffic flow pattern via the route selection which uses
a shortest travel time and link cost that isngiesd by non-uniform congestion caused by the ghost car.

Table 3: Summary statistics of trip length of PT survey and three simulations.

Trip length (sec)

Person Trip Survg

by Without Virtual ¢

With Virtual Car

With Zone Cap

average 2006 609 733 933
median 1386 344 378 516
75 percentile 2400 710 834 1140

6 CONCLUDING REMARKS

In this paper, we proposed a procedure to decelemgdticles near intersections as observed in the real
traffic situation. Though this setting lacks signahtols, we reproduced the non-uniform congestion or
traffic jam caused by the slow speed approachingsettions and traffic volume pattern that has a higher
correlation coefficient with the observed traffic data in a whole.

Without the control by signals, simulated vehifllew tends to become too fast and smooth. By
utilizing proposed vehicle behavior, we can adjustithiic flow with a few parameters though this is an
approximation methodology.
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We observed that both the macroscopic simulation and microscopic vehicle behavior (speed and
congestion) are easily changed by small number cdnpeters used for the ghost car (virtual vehicle
information in the front of a road). We also anatkd the traffic flow in the Tokyo metropolitan area
compared with the traffic road census data anuhd that the introduction of the virtual vehicle can
improve the correlation coefficients. Though the changeeandistribution of the trip length is small, we
consider status of whole traffic flow in metropatitaapproaches to the real traffic flow with this
approximated vehicle behavior.

Our method using the virtual vehicle causes an instantaneous brakeage that is psychologically similar
response near intersections or dangerous areasaases shrinkage of inter-vehicular distances. This
brings approximated jam due to retention neaergections that are not observed with the uniform
deceleration by other methods, and then generate gibbage in the distribution pattern of road travel
costs in the whole city. We can consider tmasulting changes of the route selection cause the
improvement of the correlation coefficients that indésahe global similarly of the traffic volume pattern.

Currently, it is difficult to obtain the full data ofgsial locations and their cycles. But in some cases,
we can estimate the partial data of signal if @ obtain car navigation data or monitoring camera
images. To obtain a more realistic traffic flowitlw such a partial information together with our
approximation and further analytical method remainduture works. In addition, this procedure can be
used for other critical events such as traffic accidenwisasters. In such a case, the importance of the
real time simulation increases to evaluate plarthk@fvacuation management as what-if analysis.
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