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ABSTRACT

Motivated by our recent extension of the Two–Stage Sequential Algorithm (eTSSO), we propose an

adaptation of the framework in Pasupathy et al. (2015) for the study of convergence of kriging–based

procedures. Specifically, we extend the proof scheme in Pasupathy et al. (2015) to the class of kriging–based

simulation–optimization algorithms. In particular, the asymptotic convergence and the convergence rate

of eTSSO are investigated by interpreting the kriging–based search as a stochastic recursion. We show

the parallelism between the two paradigms and exploit the deterministic counterpart of eTSSO, the more

famous Efficient Global Optimization (EGO) procedure, in order to derive eTSSO structural properties.

This work represents a first step towards a general proof framework for the asymptotic convergence and

convergence rate analysis of meta–model based simulation–optimization.

1 INTRODUCTION

In the last decade, simulation has been adopted as a means to iteratively evaluate the performance of the

solutions generated by search algorithms (Fu et al. 2008). In the literature, this coupling is referred to

as simulation–optimization. This approach has been proven particularly effective when complex functions

are of concern, and the search algorithm has to rely upon the performance estimation produced by the

simulation (typically treated as a black box oracle) at selected points (candidate solutions) since a closed

form of the function is not available (Fu et al. 2008).

In this work, we specifically refer to the family of simulation–optimization problems trying to find

the point x∗ satisfying x∗ ∈ arg minx∈X f (x), where X represents the design space (i.e., the feasible region

of the problem), and f (x) is the function whose measurements (with or without noise) can be obtained

only through simulation. More specifically, the scope of this manuscript is the one of meta–model based

simulation–optimization and, in particular, we will focus on kriging–based simulation–optimization.

The basic idea behind this family of algorithms is to exploit the information coming from the simulation

by iteratively improving the estimate of a model of the response surface to optimize. Since this response

surface is constructed upon a simulation model, it is referred to as meta–model. These procedures typically

use the meta–model to compute an indicator (e.g., the Expected Improvement, Knowledge Gradient) which

guides the search, iteratively suggesting the next point(s) to sample with the objective to identify the global

optimum.

The Efficient Global Optimization Algorithm (EGO) represents one of the most famous of this family of

procedures when the function f (x) is deterministic. It uses the Expected Improvement, to choose the next

point(s) and a ordinary kriging model to fit the response. Stochastic Kriging Optimization (SKO) extends

EGO to the stochastic case by adapting both the meta–model form as well as the criterion to guide the

search.
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Despite the important interest that kriging has raised both in the simulation and optimization community,

the analysis of the convergence properties of kriging based algorithms represents an active field of research.

Results on the asymptotic behavior of the EGO algorithm are provided in Locatelli (1997), and, more

recently, Bull (2011) provided the analysis of the convergence rates of meta–model based search in a more

general framework including the EGO.

The authors have previously worked in the stochastic settings by proposing the Two Stage Sequential

Search Optimization algorithm (TSSO) (Quan et al. 2013) and, lately, they have been further improving

the approach resulting in the extended–TSSO (eTSSO) (Pedrielli et al. 2015). This paper provides a

theoretical understanding of the eTSSO algorithm, by taking a different perspective on kriging–based

simulation–optimization. Specifically, we look at eTSSO as a stochastic recursion algorithm having EGO

as deterministic counterpart. In particular, the parallelism between kriging–based search and stochastic

recursion as well as the relationship between eTSSO and EGO are investigated to adapt the framework in

Pasupathy et al. (2015) for the convergence analysis of kriging–based optimization algorithms.

The remainder of the paper is structured as follows: section 2 gives the main notation and terminology

to support the preliminaries provided in section 3 where both the deterministic as well as the stochastic

kriging–based approaches are presented. Section 4 presents the proposed adaptation of the framework in

Pasupathy et al. (2015) to the case of stochastic–kriging based simulation–optimization. Section 5 offers

some numerical evidence of the asymptotic convergence and convergence rate of the studied stochastic

algorithm, while section 6 concludes the paper.

2 NOTATION AND TERMINOLOGY

In this section, we present some of the main definitions that will be used throughout the work.

We will refer to x as a vector of real numbers in a generic d–dimensional space X⊆ℜd . ei is defined in

ℜd and it denotes a unit vector whose i–th component is 1 and any other component is 0.

For a sequence of random variables, we say {Xn}
wp1−−→ x to mean that the stochastic sequence {Xn} converges

to x with probability 1.

For a sequence of real numbers {an}, we say that an = o(1) if limn→∞an = 0, and an = O(1) if ∃c ∈ (0,∞)
with |an|< c for large enough n. Finally, we say that an = Θ(1) if 0 < liminfan ≤ limsupan < ∞.

We also adopt the following definitions to characterize the convergence behaviour of the analysed algorithms.

Definition 1 (Linear convergence)
{

xθ
k

}

exhibits a linear(ℓ) convergence to x∗ if limsupk→∞
||xk+1−x∗||
||xk−x∗|| =

ℓ ∈ (0,1)

The following definition characterizes the control of the sample size sequence we created for the

stochastic algorithm eTSSO.

Definition 2 (Geometric growth of a sequence) A sequence {mk} exhibits geometric growth if mk+1 =
c ·mk, k = 1,2, . . . for some c ∈ (1,∞).

3 PRELIMINARIES

We consider a single objective minimization problem defined over a compact set X. The deterministic d–

dimensional objective function f : x∈X⊂ℜd→ f (x)∈ℜ is here observed running simulation experiment(s)

at point x. Our goal is to find a global minimum of f : X→ℜ, where X⊆ℜd solving:

P : min f (x)

s.to x ∈ X

In order to find a solution to P, we use a search procedure based on a meta–model of the response, whose

parameters are updated, as the search progresses, based on the simulation results. The model guides the

search predicting the function values at points where no simulation has been conducted yet.
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3.1 Deterministic Problem

We start with the case in which the simulation response is obtained without noise, i.e., in the case of

deterministic optimization. In particular, suppose we wish to minimize an unknown function f , choosing

design points xk and the estimated minima x∗k . We will refer to π as the statistical model estimating the

behavior of the unknown function f . This model can be interpreted as our belief about the unknown

function (Bull 2011). In this paper, we refer to the Efficient Global Optimization (EGO) algorithm, which,

iteratively maximizing the expected improvement, generates a sequence of random design points {xk} and

estimated best solutions
{

x∗k
}

taking value over the compact space X. At iteration k, the filtration Fk,

defined as the sigma algebra σ (xi, f (xi) : i≤ k), represents the set of available information. According to

the EGO, given Fk, we will choose as estimated best solutions at iteration k, x∗k , the point, among those

already sampled in the set S ⊆ X, having the best function value up to that iteration. The next point to

sample is selected in order to maximize the following Expected Improvement function (Jones et al. 1998):

EIπk
(x,Fk) := Eπ

[

f (x∗k)− f̂ (x) |Fk

]

(1)

where, as already stated, x∗k represents the sampled point with the minimum associated function value f
(

x∗k
)

up to iteration k, and f̂ (x) is the predicted function value at the non sampled point x. Typically, the function

f is modeled as a stationary Gaussian process and we consider the values f (x) of the non–sampled points

x to be jointly Gaussian with mean and covariance parametrized through a constant τ and a d–dimensional

vector θ , namely:

Eπ [ f (x)] = µ, Covπ [ f (x) , f (y)] = τ2Kθ (x− y) (2)

Having chosen a certain statistical model for f , each point x ∈ X \ S is associated with the following

predictor:

f (x) |( f (xi)i≤k)∼N
(

f̂ (x;θ) ,s2
k (x;θ)

)

where:

µ̂k (θ) :=
1TV−1f

1TV−11
(3)

f̂k (x,θ) := µ̂k (θ)+ vTV−1 (f− µ̂k1) (4)

and

s2
k (x,θ) := τ2

(

1− vTV−1v+

(

1−1TV−1v
)2

1TV−11

)

(5)

where, 1 is a vector having all elements equal to 1, V = (Kθ (xi− x j))
k
i=1 is the spatial variance–covariance

matrix and v = (Kθ (xk+1− xi))
k
i=1 represents the correlation vector. Following Yin et al. (2011), we use a

Gaussian kernel in equation (2), :

Kθ (xi− x j) :=
d

∏
l=1

exp
(

−θl

(

xil− x jl

)2
)

(6)

Under assumptions 1–4 page 2883 in Bull (2011), which are satisfied in the present context, the author

proves convergence rates for EGO. In particular, the author uses the Reproducing Kernel Hilbert Space

H (X) of functions over the space X constructed from the kernel K and establishes the convergence rates

of the loss function Lk (EIπk
,Hθ (X) ,R) := sup|| f ||Hθ (X)≤REπ

[

f
(

x∗k
)

−min f̂
]

over the ball of radius R, BR,

in H (X) after k steps as (Theorem 2, page 2887, (Bull 2011)):

Lk (EIπk
,Hθ (X) ,R) := sup

|| f ||Hθ (X)≤R

Eπ

[

f (x∗k)− f̂ (x) |Fk

]

= O
(

k−1/d
)

. (7)
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Under this result, considering the definitions in section 2, EGO exhibits linear convergence rates. In

particular the rate is lim
k→∞

||xk+1−x∗||
||xk−x∗|| = O

(

(

1− 1
k

)1/d
)

.

3.2 Stochastic Problem

In the stochastic context, a simulation is only able to return a point estimate of f (xi) for each replication run

at the point xi ∈X⊆ℜd and not its true value as in the deterministic case presented in section 3.1. In this

setting, the authors refer to their recently proposed eTSSO (Pedrielli et al. 2015), a two–stage algorithm

which uses the first stage to select a new point and subsequently assesses the number of replications required

to re–evaluate the model parameters. The Modified Nugget Effect Kriging (MNEK) model (Yin et al.

2011) is used to estimate the function values at the non–sampled locations x ∈ X /∈ S. Subsequently, the

point xk is added to the set S if it maximizes the modified expected improvement function EIπ̃k
(xi,Fk), the

stochastic version of (1).

Again, we assume that f (xi) are realizations of a random process and a statistical model π̃k represents the

stochastic counterpart of π in section 3.1, namely:

f (x) = Z (x)+ξ (x) , x ∈ X (8)

where Z describes the mean and ξ describes the random noise process. As in the deterministic case, we

further model Z (x) as a Gaussian process with covariance function τ2V , where τ2 is the process variance

and V the matrix of process correlation; formally, Z (x) is a GP
(

µ (x) ,τ2V
)

.

As already mentioned in section 3.1, a commonly adopted correlation function V = (Kθ (xi− x j))
k
i=1

is the d–

dimensional separable version of the power exponential family of functional forms which is characterized by

smooth response (equation (6)). The noise ξ (x) is assumed to be distributed with zero mean and covariance

function σ 2
ξ Vξ , where Vξ denotes the matrix of sampling correlations. Error variances are generally not

constant and they may depend on x (i.e., the heteroscedastic case is considered). With independent sampling

(i.e., no CRN), Vξ is diagonal, and equation (8) reduces to the independent sampling noise model (Yin

et al. 2011). The general form of equation (8) is similar to the form proposed in Ankenman et al. (2010).

As shown in Yin et al. (2011), the predictor for (8) at the point x, given k points have been already

sampled, is:

f̂ (Wk,x,θ) =
k

∑
i=1






vT
(

Vξ +V
)−1

ei +1T
(

Vξ +V
)−1

[

1−1T
(

Vξ +V
)−1

v
]T

1T
(

Vξ +V
)−1

1
ei






f̄i (9)

where, Wk represents the total number of simulation replications performed up to iteration k. f̄ is the

k–dimensional vector of the averaged function values at the already sampled points. v is the correlation

vector, specifically, v(Wk,x,θ)
T =

(

e
−θ ·d2

x,x1 · · ·e−θ ·d2
x,xk

)

, where, dx,xi
represents the euclidean distance

between point x at which the prediction is performed and the already sampled locations xi, i = 1, . . . ,k.

The vector ei has size k (being k the number of sampled points) and its elements are all equal to 0 except

the i–th element which is equal to 1. The optimal MSE results (Yin et al. 2011):

s2
k (Wk,x,θ) := c0 + τ2






1−



v+1

(

1−1TV
′−1v

)

1TV
′−11





T

V
′−1v+

(

1−1TV
′−1v

)

1TV
′−11






(10)

where V
′
= V +Vξ , and c0 is the nugget effect value which usually can be estimated from the sample

variance as ĉ0 = σ̂2/Wi,k, where Wi,k represents the number of simulation replications allocated to point
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Algorithm 1: eTSSO Algorithm

1 Initialization: Choose T , rmin, S : |S|= N0, mi0 = rmin and W0 = N0 ·m0;

2 for i = 1 . . . ,N0 do

3 Run mi0 replications and return f̄0 (xi) , σ̂
2
ξ ,0 (xi);

4 end

5 Fit the MNEK model to the set of sample means and apply cross–validation to verify it.

6 Update T = T −W0, k = 1.

7 while Wk−1 ≤ T do

8 Select xk ∈ argmaxx∈X/∈S EIπ̃k
(x), S← S∪ xk;

9 Run rmin simulations to obtain
(

f̄k (xk) , σ̂
2
ξ ,k (xk)

)

;

10 Use OCBA to determine σ̂ 2
ξ ,k and update the budget mk according to (12);

11 Wk =Wk−1 +mk;

12 if (mk− rmin)> 0 then

13 Apply equations (13)–(14) to allocate mik to the sampled points i ∈ S;

14 Run the simulation experiments according to the budget;

15 Fit the kriging model according to the updated information;

16 k = k+1;

17 end

18 end

i up to iteration k. We will use mk =Wk−Wk−1 and mik =Wik−Wi,k−1, i ∈ S, to refer to the number of

simulation replications allocated at iteration k and the number of simulation replications allocated to point

i at iteration k, respectively. In the rest of the paper, we will avoid the notation (Wk, ·, ·) when it is clear

we refer to the stochastic model and s2
k will be referred to as extrinsic variance.

Algorithm 1 summarizes the steps of the eTSSO procedure. In its first stage, eTSSO, computes the

function EIπ̃k
(xi,Fk) over the set of non–sampled points X\S (Pedrielli et al. 2015):

xk ∈ arg max
x∈X /∈S

EIπ̃k
(xi,Fk) := Eπ̃k

[

max
{

f̄ (x∗k)− f̂ (x) ,0
}]

(11)

here, f̄
(

x∗k
)

represents the response at the sampled points with the lowest average function value f̄ up to

iteration k, and f̂ (x) is a random variable with the mean given by kriging mean function and the variance

given by the spatial prediction uncertainty s2
k (x,θ). The point xk is sampled with rmin replications (with

rmin being an input parameter), and added to the set of already sampled points S.

At the second stage, eTSSO uses the Optimal Computing Budget Allocation (OCBA) technique (Chen

et al. 2000) to assign the available simulation replications. Specifically, the sequence of simulation

replications at each iteration is dynamically updated according to the following stochastic rule:

mk = ⌊mk−1

(

1+
σ̂2

ξ ,k

σ̂2
ξ ,k

+ s2
k(xk)

)

⌋ (12)

where, σ̂2
ξ ,k refers to the estimated variance of the sampled point receiving more budget according to

OCBA, whereas s2
k(xk), formulated in (10), refers the location maximizing the function EIπ̃k

(xi,Fk). The

total budget used up to iteration k is Wk =
k

∑
k=0

mk. The budget at the first iteration is set to the minimum

number of replications to sample a new point, i.e., m0 = rmin. Since N0 points are chosen for the initial

MNEK model fit, W0 = N0 ·m0 and the remaining budget is T ← T −W0. At the generic k–th iteration the
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budget mk is allocated to the points in S using OCBA. In particular, equation (13) determines the relative

allocation between non–best designs and equation (14) is used to derive the relative allocation between the

best design and non best designs. If we refer to mik as the budget allocated to point i at iteration k, we

have (Chen et al. 2000):

mik/m jk =

(

σ̂ξ ,k (xi)/δb,i

σ̂ξ ,k (x j)/δb, j

)2

, (13)

mbk = σ̂ξ ,k (xb)

√

√

√

√ ∑
x∈S:x 6=xb

m2
ik

σ̂2
ξ ,k

(xi)
, (14)

At iteration k, xb is the design point with the lowest sample mean, mbk is the related number of replications

and σ̂ξ ,k (xb) is the related sample standard deviation; mik is the number of replications performed at location

i and σ̂ξ ,k (xi) is the estimated standard deviation at that point. δb,i is the difference between sample mean

at point i and the lowest sample mean.

4 MAIN RESULTS

We can interpret the EGO in Jones et al. (1998) adopting the perspective of stochastic recursion algorithms.

In particular, at the k–th iteration, manipulating the definition in (1), we have:

xk+1 = x∗k +dist

(

x∗k ,arg max
x∈X\S

EIπk
(x)

)

(15)

where the function dist (·, ·) is the vector of the distances between the components of x∗k and the candidate

point xk+1.

According to algorithm 1, we can interpret eTSSO as the stochastic counterpart of (15) and formulate

the related iteration as:

Xk+1 = X∗k +dist

(

X∗k ,arg max
x∈X\S

EIπ̃k
(x)

)

(16)

where, π̃k refers to the model in (8) which replaces π in (2).

The main difference between (15) and the typical recursion in a deterministic search algorithm, resides

in the filtration Fk. According to the traditional update:

xk+1 = xk +h(xk) (17)

whereas, in (15), the entire sequence of the visited points is considered at each step k = 1, . . .:

xk+1 = g
(

{xi}k
i=1

)

+h
(

{xi}k
i=1

)

(18)

here, g
(

{xi}k
i=1

)

:= x∗k ∈ argminx∈S f (x) and h
(

{xi}k
i=1

)

:= dist
(

x∗k ,argmaxx∈X\S EIπk

)

.

In eTSSO, we estimate the components in the iteration (18) as it follows:

Xk+1 = G
(

Wk,{Xi}k
i=1

)

+H
(

Wk,{Xi}k
i=1

)

(19)

where, G
(

Wk,{Xi}k
i=1

)

:= X∗k ∈ argminx∈S f̄ (x), whereas H
(

Wk,{Xi}k
i=1

)

:=

:= dist
(

X∗k ,argmaxx∈X\S EIπ̃k

)

. Wk represents the total simulation budget used up to iteration k.

In the following, we will exploit the proof framework proposed in Pasupathy et al. (2015) for stochastic

recursion, in order to study the eTSSO algorithm having the EGO as Deterministic Analogue (Jones et al.

1998). The following assumptions are required in the scope of showing our results.
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Assumption 1 X is a compact space.

Assumption 2 Each dimension in the space is defined between [0,1].

Assumption 2 simply requires normalization of the function domain X.

Assumption 3 The initial sample size is such to produce an initial fit of the MNEK model satisfying

cross-validation criteria.

Assumption 4 The Gaussian correlation function is adopted to model the spatial variance covariance matrix

V .

Assumption 4 is a sufficient condition for the existence of the derivative processes and it ensures that

the various variance–covariance matrices are positive definite, i.e., non singular. These will be used in

Lemma 1, which characterizes the expected improvement function in (1).

Assumption 5 The parameters τ and θ of the MNEK model are assumed known.

Assumption 6 The number of replications mk assigned at each iteration satisfies mk ≥mk−1, ∀k = 1,2, . . .
and mk → ∞ as k → ∞. Moreover, for any ε > 0 there exists a δε ∈ (0,1) and a k̄ε > 0 such that

ψ2kL (mk−1,ε)≤ (δε)
k , ∀k ≥ k̄ε , where L (·, ·) is strictly decreasing in mk−1 and non–increasing in ε .

Assumption 7 The true function f to be optimized over the compact space X has a unique minimum x∗.

The following lemma characterizes the function h(x) in the EGO iterates.

Lemma 1 There exists κ ∈ℜ such that, for any (x,y) ∈ X, ||h(x)−h(y)|| ≤ κ||x− y||.

Proof. To guarantee the result, we have to prove that, given two sequences {xi}k
i=1 and {x̃i}k

i=1 corre-

sponding to the filtration Fk and F̃k, respectively, which are close in terms of euclidean distance between the

related points, the resulting processes h(x) | f (xi)i≤k and h(x) | f (x̃i)i≤k are also close. From the definition in

equation (15), these sequences are generated according to the expected improvement. As a result, requiring

close sequences corresponds to guaranteeing the function EIπk
is Lipschitz continuous.

We can formulate the expected improvement as (Locatelli 1997):

EIπk
(xi;Fk) = sk(xi,θ)φ

(

f
(

x∗k
)

− µ̂k (θ)

sk(xi,θ)

)

− ( f (x∗k)− µ̂k (θ))

(

1−Φ

(

f
(

x∗k
)

− µ̂k (θ)

sk(xi,θ)

))

, (20)

where φ and Φ represent the pdf and cdf of the normal distribution, respectively. Such a function is

Lipschitz continuous in case µ̂k (θ) and sk(xi,θ) have the form of equations (3) and (5), respectively.

To show Lipschitz continuity we have to guarantee that
dEIπk

(xi;Fk)

dx
< ∞, ∀x ∈ X. Since we consider

Gaussian processes, the components φ

(

f(x∗k)−µ̂k(θ)

sk(xi,θ)

)

and Φ

(

f(x∗k)k
−µ̂k(θ)

sk(xi,θ)

)

are the pdf and cdf of a

normal distribution with finite mean and variance 0 < µ̂k (θ) ,s
2
k(xi,θ) < ∞, and finite derivative. More

attention needs to be paid to the derivatives of µ̂k (θ) and sk(xi,θ). We rewrite in explicit form equation

(5):

sk(xi,θ) = τ



1−





k

∑
h=1

k

∑
g=1

e
−

d

∑
j=1

θ j(xi j−xh j)
2

e
−

d

∑
j=1

θ j(xg j−xh j)
2

r−1
hg









1/2

(21)

It is apparent that under assumption 4, equation (21) is infinitely differentiable with respect to xi. The

finiteness of the derivative, however, depends on the values of r−1
hg , ∀(h,g) representing the terms of

the matrix V (h–th row, g–th column). Hence, the derivative will exist finite as long as the matrix V is

non–singular, i.e., if assumption 4 holds. The same can be proven for the mean component. We then

conclude function EIπk
(xi;Fk) is Lipschitz continuous.
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Lemma 2 The EGO algorithm which uses the Gaussian correlation form satisfies limk→∞ xk = x∗. Moreover,

the convergence is uniform in {xi}N0

i=1, i.e., it is independent from the specific initial set of points chosen

to generate the first model estimate.

Proof. From (21), we observe it is possible to bound the term sk(xi,θ) from above as follows:

sk(xi,θ) = τ

(

1−
(

k

∑
h=1

k

∑
g=1

e
−

d

∑
l=1

θ j(xil−xhl)
2

e
−

d

∑
l=1

θ j(xgl−xhl)
2

r−1
hg

))1/2

≤ τ (22)

From Lemma 1, we have EIπk
(xi;Fk) is Lipschitz continuous. Hence, EIπk

(xi;Fk) is finite over the design

space and, given two points, |EIπk
(xi;Fk)−EIπk

(x j;Fk) | is finite as well. We can then consider the

following:

EIπk
(xi;Fk)≤ sk(xi,θ)φ

(

f
(

x∗k
)

− µ̂k (θ)

sk(xi,θ)

)

≤ sk(xi,θ)/
√

2π ≤ τ/
√

2π, (23)

where the last two inequalities are derived from the normality property and equation (22), respectively.

According to (22) and (23), we can use the results in Locatelli (1997). Indeed, we note that in (22),

the variance in the new point xi is a weighted sum of the estimates at the already sampled points, and

weights are a function of the euclidean distance between the candidate point and the sampled points. This

is consistent with the form recognized in Locatelli (1997), which we extended to the d–dimensional case

due to assumptions 2–6 and by replacing linear with euclidean distances. As a result of (23) and Lemma

1, we can apply Lemma 1 in Locatelli (1997) (page 60) using the Lipschitz constant c = τ , leading to the

following result ((Locatelli 1997), page 61):

lim
k→∞

max
i, j∈S
||xi,x j||= 0. (24)

Hence, the set of points at which the function is observed if the algorithm is never stopped, is dense in X,

proving convergence of the algorithm.

Concerning the uniform convergence result, there exists a number of initial points N0 such that the

convergence is guaranteed independently from the specific initial set (Bull 2011), and, under Assumption

3, we satisfy this condition.

Now, we are ready to characterize the behaviour of eTSSO as the stochastic counterpart of EGO.

Lemma 3 As the number of iterations k→ ∞, under assumptions 6–7, the MNEK model π̃k approaches

its deterministic counterpart π .

Proof. If assumption 6 holds, let us consider L = Tr
(

σ2
ξ Vξ

)

, where Tr(·) is the trace of a matrix, and

let δε = 1/τ2. The function Tr
(

σ2
ξ Vξ

)

satisfies the properties required to L : being an error function, it

is strictly decreasing in Wk. The assumption is stating that there exist a finite number of iterations such

that L ≤
(

δε/ψ2
)k

. This means that at each iteration, the algorithm produces estimates of L which are

decreasing with δε/ψ2. To show this holds, let us rewrite the covariance matrix:

V
′
=V +Vξ =













1 e(−θ ·d2
12) · · · e(−θ ·d2

1k)

e(−θ ·d2
21) 1 · · · e(−θ ·d2

2k)

...
...

...
...

e(−θ ·d2
k1) · · · · · · 1













+











σ2
ξ (x1)

W1,kτ2 0 · · · 0

...
...

...
...

0 · · · · · · σ2
ξ (xk)

Wk,kτ2











(25)
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Here, di j represents the euclidean distance between two points (i, j), Wi,k represents the number of replications

performed at location i up to iteration k according to the eTSSO budget allocation scheme. Having assumed

knowledge on the kriging variance (assumption 5), the diagonal elements of the matrix Vξ are bounded by

decreasing values of δε/ψ2, where δε =
1

(

maxx j∈SWj,k

) and ψ2 = τ2 (S refers to the set of sampled points).

Apparently, δε ∈ (0,1); moreover,
((

maxx j∈SWj,k

)

τ2
)−1→ 0 as k→∞, since maxx j∈SWj,k→∞ ∀k. Hence,

Vξ
wp1−−→ 0.

Lemma 4 As the number of iterations k→ ∞, f̂ (x|Fk)∼ N
(

µ|Fk
(x) ,σ 2

|Fk
(x)
)

.

Proof. As the number of iterations k→∞ we can apply Lemma 3 and the result in (Stein 1999) (Appendix

A). f̂ (x|Fk) has normal distribution with mean and variance:

f̂ (Wk,x,θ)
k→∞−−−→

(

vTV−1ei +1TV−1

[

1−1TV−1v
]T

1TV−11
ei

)

f̄ (x) (26)

s2
k (Wk,x,θ)

k→∞−−−→ τ2



1−
[

v+1

(

1−1TV−1v
)

1TV−11

]T

V−1v+

(

1−1TV−1v
)

1TV−11



 (27)

corresponding to the deterministic predictor and variance in (Yin et al. 2011) equivalent to (3)–(5).

At this point, we want to characterize the stochastic iteration in (16). In order to do so, we study

G(·, ·) as well as H (·, ·). If we consider G(·, ·), at each iteration, the best point is the one having the best

sampled mean and not the best true value, which cannot be evaluated, and the following property holds.

Property 1 (Convergence of G
(

Wk,X
∗
k

)

) For any δ > 0, and with k→∞, supx∈XPr
{(

G(Wk,X
∗
k )−g(x∗k)

)

> δ
}

= O
(

Wk

(

X∗k
)−1/2

)

.

Proof. Here, Wk

(

X∗k
)

is the total budget allocated to point X∗k . Due to the geometric growth of the

replication in equation (12) Wk→ ∞ when k→ ∞. Due to Lemma 3, we simply exploit the Law of Large

numbers to argue that the sample average will converge to the true function value provided that the sampling

effort goes to infinity. In fact, we know that x∗ will be sampled infinitely often due to the fact that OCBA

rule is used to allocate the budget to each point to sample at each iteration. Due to the results in (Chen

et al. 2000), we know that the best point will be sampled infinitely often (Theorem 1, page 258). As a

result, Property 1 holds.

The next results focus on H(Wk,x) in order to characterize the eTSSO efficiency and consistency.

Theorem 1 Let k→ ∞ (i) As Wk→ ∞, the estimator H (Wk,x) satisfies, for any ∆ > 0, that

supx∈XPr{||H (Wk,x)−h(x) ||> ∆} = O
(

W−2α
k

)

. (ii) If the sample sizes {Wi,k} satisfy Wi,k → ∞, then

||H (Wk,x)−h(x) || wp1−−→ 0.

Proof. Result (i) is a direct consequence of Lemma 3 and Lemma 4 when α = 1
2
. The sequence {Wi,k}

satisfies Wi,k→∞ due to equation (12), and we can now simply recall the results in Lemma 2 to prove part

(ii).

At this point, we can exploit the results in Pasupathy et al. (2015) to study the efficiency of Algorithm

1 in section 3.2. Before presenting the main result, we note the following.

Property 2 (Characterization of H (Wk,x)) Let k→ ∞, then the estimator H (Wk,x) satisfies

supx∈XE(H (Wk,x)−h(x)) = Θ

(

(

τ2 ·min(Wi,k)
)−1
)

.

3842



Pedrielli and Ng

Proof. As already stated, Wk→ ∞ when k→ ∞. Under assumption 6 and the result in Lemma 1 EIπ̃k

is lower semi–continuous. Lemma 1 guarantees the function is finite over the space X. We can use the

results in Attouch (1984) to say that EIπ̃k
epi–converges to EIπ when Wk → ∞. Concerning the optimal

location, Theorem 1, page 258 in (Chen et al. 2000) guarantees infinite budget will be allocated to the best

point. Then, given epi–convergence, we can simply apply Theorem 3.4 in Robinson (1996), to say that

the sequence EIπ̃k
→ EIπk

and the sequence of selected points Xk ∈ argmaxEIπ̃k
→ xk. This convergence

is determined by the model and the variance covariance matrix in equation (25). Hence, as a consequence

of Lemma 3 and Theorem 1, the property holds.

Theorem 2 (Convergence rate of Algorithm 1) Let us define ck := 1+
σ̂2

ξ ,k

σ̂2
ξ ,k

+s2
k(xk)

and ℓ=
(

1− 1
k

)1/d
. Given

that EGO exhibits linear convergence, for any ε > 0 satisfying ℓ+ε < 1 and as k→∞, the following holds

for Ek = ||Xk− x∗||:

ifck ∈
(

1, ℓ−2
)

, Ek = O(W
−1/2

k ) (28)

ifck ≥ ℓ−2, Ek = O

(

(

c
−1/2

k (ℓ+ ε)−1
)−k

W
−1/2

k

)

(29)

Proof. According to Bull (2011) the error decay rate of EGO, under assumptions 1–4 page 2883, is

ℓ =
(

1− 1
k

)1/d
. According to theorem 1, we have that supx∈XPr{||H (Wk,x)−h(x) ||> ∆} = O

(

W−2α
k

)

with α = 1/2. From (12), we observe that the coefficient ck for the geometric increase of the budget at

each algorithm iteration satisfies ck ≤ 2, also ck
k=∞−−→ 1. Since the budget increase is stochastic, we need to

consider both the case ck ∈
(

1, ℓ−2
)

and ck ≥ ℓ−2 in (Pasupathy et al. 2015) and, considering the definitions

of ℓ and ck, we use Theorem 6.5 page 17 in Pasupathy et al. (2015) to prove the result.

It has to be noted that, in assumption 5, we stated that the parameters θ and τ2 of the MNEK model are

known in advance. However, convergence is affected by the quality of the estimators (Kleijnen et al. 2012).

If MLEs are adopted, in deterministic settings, Bull (2011) proves convergence is guaranteed assuming to

be able to produce a bounded estimate of θ̂ . Intuitively, when the bias is consistent, the optimal location

should still be identified.

5 EMPIRICAL RESULTS

We empirically observed the convergence of eTSSO in the location and the function estimation, by evaluating

the number of iterations to let the euclidean distances |x−x∗| and |y−y∗| converge to 0, respectively (where

x∗ is the reachable optimum in a finite grid (Kleijnen et al. 2012)). This analysis provides empirical

evidence of eTSSO convergence even when the model parameters are sequentially estimated. We present

a 1–d, a 2–d tetra–modal, and the 3–d Hartmann function. For the 1–d case, we used the function:

f (x) = (2x+9.96)cos(13x−0.26)+ξ (x) .

We applied a normal random noise having variance σ2
ξ = δ · (x1), with δ = {0.1,1.0,10.0}.

We noticed that the convergence rate is affected by the noise level. In particular, in the case δ = 0.1,

the location is identified after 168 simulation replications (corresponding to 6 iterations of the eTSSO

algorithm), 7733 (corresponding to 13 iterations) in the case δ = 1.0 and 32094 (corresponding to 15

iterations) for the case δ = 10.0. It is also noteworthy how good performances are already reached for

much lower budgets: in the low noise case, an error of 0.001 in the location is reached after 80 simulation

replications (i.e., two algorithm iterations), for δ = 1.0, 136 replications are required (i.e., four iterations)

and in the case of δ = 10.0, 1094 replications were required, corresponding to 10 iterations.

For the 2–d case, we considered the following tetra–modal:

f (x1,x2) =−5(1− (2x1−1)2)(1− (2x2−1)2)(4+2x1−1)
(

0.05(2x1−1)2−0.05(2x2−1)2
)2

+ξ (x) .
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Table 1: Parameters Ai j and Pi j of the Hartmann–3 function

Ai j Pi j

3 10 30 0.3689 0.117 0.2673

0.1 10 35 0.4699 0.4387 0.747

3 10 30 0.1091 0.8732 0.5547

0.1 10 35 0.03815 0.5743 0.8828

Table 2: Theoretical versus Empirical convergence rates.

Average Empirical Convergence Rate Average Theoretical Convergence Rate

δ = 0.1 δ = 1.0 δ = 10.0 δ = 0.1 δ = 1.0 δ = 10.0

1–d 0.891667 0.95378788 0.9619742 0.265934 0.120082 0.1253412

Tetra–Modal 0.842135 0.97017507 0.96720977 0.313284 0.269857 0.2251032

Hartmann–3 0.587 0.46614123 1.28771458 0.235702 0.229416 0.22369009

Both dimensions of the test function, x1 and x2, are scaled to [0,1]. The global minimum is located at

[0.85,0.5] and has the value −7.098. We applied to the function a normal random noise with variance

σ2
ξ = δ · (|x1|+ |x2|) and we tried three noise scenarios, namely δ = {0.1,1.0,10.0}.

In this case, the convergence is reached after 272 simulation replications (7 algorithm iterations) in the

case δ = 0.1, 1071 (17 iterations) replications are required for the case δ = 1.0, while 115852 replications

are required when δ = 10.0 corresponding to 44 iterations of eTSSO. As in the previous case, however,

reasonable result with an error in the order 10e(−3) are obtained already with a number of replications

equal to 220 (i.e., two iterations), 352 (i.e., six iterations) and 5955 (i.e., 13 iterations) for the three noise

levels δ = {0.1,1.0,10.0}, respectively. For the 3–d case, we adopt the following Hartmann–3 function:

f (x1,x2,x3) =−
4

∑
i=1

αiexp

[

−
3

∑
j=1

Ai j (x j−Pi j)
2

]

+ξ (x) .

Here, 0 ≤ xi ≤ 1 for i = 1,2,3; parameters α = (1.0,1.2,3.0,3.2), and Ai j and Pi j given in Table 1.

The function has a global minimum at x∗ = [0.114614,0.555649,0.852547] with f (x∗) = −3.86278; the

function has three additional local minima. We applied to the function a normal random noise with variance

σ2
ξ = δ · (|x1|+ |x2|+ |x3|) and we tried the following set of values for δ , {0.1,1.0,10.0}.

A similar behavior with respect to the previous cases was observed. Nevertheless, the increased dimension

leads to a slower convergence rate in the optimum location. Specifically, in this case, the convergence of

|x−x∗| was reached only with budget 250000 (corresponding to 16 iterations). This has to be brought back

also to the noise of the Hartmann–3 which is larger than in the previous cases. Table 2 shows the average

convergence rate derived from the iterations of the algorithm where, as theoretical counterpart, we use

W
−1/2

k . We considered k = 1, . . . ,K∗, being K∗ the iteration at which the algorithm reaches convergence.

6 CONCLUSIONS

eTSSO is a kriging–based algorithm recently proposed by the authors extending the TSSO. Its efficiency

builds upon a stochastic dynamic sampling rule which geometrically increases the budget to assign to each

algorithm iteration. Inspired by the proof framework in Pasupathy et al. (2015), we propose to apply it

to characterize consistency and efficiency of the eTSSO iterates. To do this, we exploit the properties of

the EGO algorithm and interpret eTSSO as its stochastic counterpart. This paper is a first step towards a

general approach for the performance analysis of meta–model based simulation–optimization algorithms.

According to the main theorem 2, eTSSO is efficient only in case the coefficient for the geometric increase

of the budget satisfies ck ∈
(

1, ℓ−2
)

. The stochastic nature of the budget allocation does not guarantee
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this. Nevertheless, ck ∈
(

1, ℓ−2
)

, and this makes the eTSSO allocation closer to the efficient case and the

empirical results sustain this argument. Further research will generalize the study to meta–model based

stochastic algorithms and consider sequential parameters estimation.
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