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ABSTRACT

Stochastic kriging (SK) has been recognized as a useful and effective technique for approximating the

response surface of a simulation model. In this paper, we analyze the performance of SK metamodels in

a fully sequential setting when design points are selected one at a time. We consider both cases when

the trend term in the model is either known or estimated and show that the prediction performance of the

corresponding optimal SK predictor is monotonically improving as the number of design points increases.

Numerical examples are also provided to illustrate our findings.

1 INTRODUCTION

Complex systems arising in engineering design and manufacturing have necessitated the need to use

simulation models to evaluate their performance. When the cost of simulation is high and the number of

design alternatives to be simulated is large, it is often desirable to use metamodels (surrogate models) to

represent simulation input-output relations. A variety of metamodeling techniques have been developed,

ranging from simple polynomial regressions to sophisticated models based on neural networks and radial-

basis function approximations; see, e.g., Barton (2009), Barton and Meckesheimer (2006), Jin et al. (2002),

Wang and Shan (2006) and references therein for a review. Well-built metamodels are easier to handle and

computationally less demanding than simulation models and can be used to provide good approximations

to the underlying simulation response surfaces.

Kriging, originally proposed in geostatistics, is an interpolation-based metamodeling technique that

aims to provide a global approximation to the response surface of an unknown (deterministic) function. It

models the response surface as a Gaussian process governed by a predefined spatial covariance model and

predicts the response values at new locations from observations collected at sampled design points. Ever

since its introduction, kriging has been the subject of extensive research and widely used in the design

and analysis of deterministic computer experiments (Kleijnen 2008, Kleijnen 2009, Sacks et al. 1989,

Santner et al. 2003, Wang and Shan 2006). Recently, an extension of kriging to stochastic simulations

has been proposed in Ankenman, Nelson, and Staum (2010). The idea is to augment the original kriging

model to include an additional noise term to represent the uncertainty inherent in evaluating the output

of a stochastic simulation model. This leads to a general approach called stochastic kriging (SK) that is

capable of capturing both the extrinsic and intrinsic uncertainty in approximating the response surfaces of

stochastic simulation models.

Obtaining an accurate kriging or SK predictor requires careful selection of design points. A simple

but widely accepted method in practice is to generate design points all at once according to a predefined

space-filling criterion. When computational resource is limited, it has been argued in e.g., Jin, Chen, and

Sudjianto (2002) and Sacks et al. (1989), that selecting design points one at a time in a sequential manner

has the benefit of allowing the metamodel to be updated sequentially as data accumulate, so that new design
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points can be adaptively determined based on the locations of existing design points and the available

information contained in the updated metamodel. A number of sequential strategies have been tested and

compared with space-filling designs and showed great promise in deterministic simulations (Sacks et al.

1989, Jin et al. 2002). However, it is not clear whether these strategies can be modified and carried over

to the SK framework because response values in stochastic simulations are corrupted by sampling noise.

Although sequential experimental design strategies have been proposed for SK models (e.g., Chen and

Zhou 2014), a key question from a theoretical standpoint is whether the added information implied by a

new design point, which might be misleading due to statistical variance, will actually result in an increase

in the prediction performance of an SK predictor.

Motivated by the above question, in this paper we examine the performance of SK metamodels in a

fully sequential setting when design points are selected one at a time. Our main result is to show that when

all model parameters are fixed (either known or estimated), the prediction performance of SK predictors, as

measured by MSE (or equivalently IMSE), is monotonically non-increasing as the number of design points

increases. This leads to the interesting finding that the prediction performance of SK models can always be

improved by including additional design points, regardless of how these points and simulation replications

are allocated. We consider both cases when the trend term in the model is known or estimated and provide

explicit formulas showing the reduction in MSE when a new design point is added to the model. The

results indicate that the degree of reduction in MSE depends on a number of factors, including the assumed

correlation model, the MSE of the old predictor (based on old design points) and the intrinsic variance

at the new design point. This suggests that proper selection of design points in SK is also important and

may have a significant impact on prediction performance. Note that since SK reduces to kriging when the

extra intrinsic noise term vanishes, the same monotonicity property should hold for deterministic kriging

models as well and may have direct applications in theoretically justifying the validity of existing sequential

strategies based on optimizing MSE or IMSE.

The rest of this paper is structured as follows. Section 2 introduces the notations used in this paper and

outlines the basic mathematical framework of SK. In Section 3, we establish the monotonic performance

of SK predictors. We illustrate our finding through several numerical examples in Section 4 and conclude

the paper in Section 5.

2 STOCHASTIC KRIGING

Consider the problem of describing the response surface of an unknown function f (x), x ∈ X , where x

is a vector of design variables and X is a compact full-dimensional subset of R
d . At each point x, we

assume that the true function value f (x) cannot be evaluated exactly but can be estimated in a path-wise

manner through stochastic simulation.

Given a set of design points {x1, . . . ,xk}, after we replicate ni simulations at each point xi, i= 1, . . . ,k, the

performance measures at these k design points can be estimated by the vector ȳ = (ȳ(x1), ȳ(x2), . . . , ȳ(xk))
⊺,

where ȳ(xi) =
1
ni

∑
ni

j=1 y j(xi) and y j(xi) is the simulation output at xi obtained on the jth replication run.

In stochastic kriging, y j(xi) is assumed to take the following form:

y j(xi) = f(xi)
⊺β +M(xi)+ ε j(xi)

= Y (xi)+ ε j(xi), (1)

where f(xi)⊆R
p is a vector of user specified basis functions, β ⊆R

p is an unknown parameter vector that

needs to be estimated, and M is a realization of a zero mean second-order stationary random field. Thus,

the response Y (xi) is modeled using a trend term f(xi)
⊺β representing the mean response value and a noise

term M(xi) quantifying our uncertainty about the unknown true response at xi. The last term ε j(xi) in

Equation (1), often called the intrinsic noise, is primarily used in stochastic kriging to model the simulation

noise in the jth replication run at xi. Throughout the paper, we assume that the noise ε j(xi) at a design

point xi is independent and identically distributed (i.i.d.) across replications.
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The goal of stochastic kriging is to construct a metamodel that predicts the response Y (x0) at any

x0 ∈ X . Let ΣM be a k× k covariance matrix across all design points x1, . . . ,xk with its (i, j)th element

given by Cov[M(xi),M(x j)]. Let ΣM(x0, ·) = (Cov[M(x0),M(x1)], . . . ,Cov[M(x0),M(xk)])
⊺ represent the

spatial covariances between (an un-sampled point) x0 and all design points. Let Σε be the k×k covariance

matrix associated with the intrinsic simulation noise with (i, j)th element Cov[ε̄(xi), ε̄(x j)], where ε̄(xi) =
1
ni

∑
ni

j=1 ε j(xi) for all i = 1, . . . ,k. We also let F = (f(x1), . . . , f(xk))
⊺ be the k× p matrix of user defined

basis functions.

Under the above notation, it has been shown in Ankenman, Nelson, and Staum (2010) that when

β ,ΣM(x0, ·) and ΣM are known, the MSE-optimal predictor is of the form

ŷ(x0) = f(x0)
⊺β +ΣM(x0, ·)

⊺(ΣM +Σε)
−1(ȳ−Fβ ) (2)

and the corresponding optimal MSE is given by

MSE(ŷ(x0)) = ΣM(x0,x0)−ΣM(x0, ·)
⊺(ΣM +Σε)

−1ΣM(x0, ·). (3)

On the other hand, when ΣM(x0, ·) and ΣM are known, but β is estimated via the generalized least squares

estimator, the MSE-optimal predictor becomes (see, e.g., Chen, Wang, and Yang (2013))

ŷ(x0) = f(x0)
⊺β̂ +ΣM(x0, ·)

⊺(ΣM +Σε)
−1(ȳ−Fβ̂ ) (4)

where

β̂ = (F⊺(ΣM +Σε)
−1F)−1F⊺(ΣM +Σε)

−1ȳ, (5)

and the optimal MSE is

MSE(ŷ(x0)) = ΣM(x0,x0)−ΣM(x0, ·)
⊺(ΣM +Σε)

−1ΣM(x0, ·)+η⊺
(

F⊺(ΣM +Σε)
−1F

)−1
η , (6)

where η = f(x0)−F⊺(ΣM +Σε)
−1ΣM(x0, ·).

3 MONOTONIC PERFORMANCE OF STOCHASTIC KRIGING PREDICTORS

In this section, we analyze the performance of SK metamodels under the setting where design points are

selected one at a time, e.g., via a sequential sampling strategy. We show that under the SK framework,

and when either the parameter vector β is known or estimated, the MSE of the corresponding predictor is

monotonically non-increasing as the number of design points increases. The following condition, due to

(Ankenman, Nelson, and Staum 2010), is assumed throughout our analysis:

Assumption 1: The random field M is a zero mean second-order stationary Gaussian random field, and

the intrinsic simulation noises ε1(xi),ε2(xi), . . . are i.i.d. N(0,V (xi)), independent of ε j(xh) for all j and

h 6= i, and independent of M.

The condition on the random field M implies that the covariance between M(xi) and M(x j) can be expressed

in the form Cov[M(xi),M(x j)] = τ2RM(d(xi,x j);θ), where τ2 > 0 is the bounded variance of M(x) at

all x, and RM is the correlation function that depends on the distance d(xi,x j) between xi and x j and an

unknown parameter vector θ that needs to be estimated. The independence of the simulation noise across

all design points excludes the use of common random numbers; it implies that the covariance matrix Σε is

a positive semi-definite diagonal matrix. We assume that the correlation function RM(d,θ) is continuous

in its first argument d and satisfies RM(0,θ) = 1 and limd→∞ RM(d,θ) = 0. In addition, we also assume

that the variance function V (x) is uniformly bounded for all x ∈ X .

Unless otherwise specified, we use the subscript k to signify the quantities obtained based on a given

set of k design points {x1, . . . ,xk}. Similarly, if a new design point xk+1 is added to an SK model, we will

use the subscript k+1 to denote any quantity that applies to the set {x1, . . . ,xk,xk+1}.

To show the monotonicity of SK predictors, we need the following intermediate result.
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Lemma 1 If Assumption 1 holds, then the matrix (ΣMk
+Σεk

)−1 is positive definite for all k.

Proof. Since ΣMk
is the covariance matrix of the unknown responses Y (x1), . . . ,Y (xk), Assumption 1

implies that it is positive definite. On the other hand, the covariance matrix Σεk
associated with the intrinsic

noise is positive semi-definite. Thus, ΣMk
+Σεk

is positive definite. This shows that (ΣMk
+Σεk

)−1 is also

positive definite.

Let x0 be a prediction point, ŷk(x0) be the SK predictor constructed using Equation (2) based on a set

of k design points {x1,x2, . . . ,xk}, and ŷk+1(x0) be the resulting predictor when a new design point xk+1 is

included in the set. The following result shows that the MSE of ŷk+1(x0) cannot be greater than the MSE

of ŷk(x0).

Theorem 1 Suppose that xk+1 /∈ {x1, . . . ,xk}. For any prediction point x0 ∈ X , let MSE(ŷk(x0)) and

MSE(ŷk+1(x0)) denote the MSEs of the predictors ŷk(x0) and ŷk+1(x0) constructed using Equation (2). If

Assumption 1 holds, then MSE(ŷk(x0))≥ MSE(ŷk+1(x0)).

Proof. We shall prove the result when the optimal MSE is given by (3). In particular, the MSE of

ŷk can be written as MSE(ŷk(x0)) = τ2 −ΣMk
(x0, ·)

⊺(ΣMk
+Σεk

)−1ΣMk
(x0, ·). After a new design point

xk+1 is included in the model, the covariance vector between the prediction point x0 and all k + 1

design points can be expressed in terms of ΣMk
(x0, ·) as ΣMk+1

(x0, ·) = (ΣMk
(x0, ·)

⊺,ΣM(x0,xk+1))
⊺, where

ΣM(x0,xk+1) = Cov(Y (x0),Y (xk+1)). Similarly, it is not difficult to verify that the sum of the covariance

matrices ΣMk+1
+Σεk+1

can be written in the form ΣMk+1
+Σεk+1

=

(

ΣMk
+Σεk

Σk×1

Σ
⊺
k×1 τ2 +Σε(xk+1,xk+1)

)

, where

Σk×1 is a k×1 matrix with its ith element given by ΣM(xi,xk+1) and Σε(xk+1,xk+1) = Cov[ε̄(xk+1), ε̄(xk+1)].
By Lemma 1, ΣMk+1

+Σεk+1
is positive definite and thus invertible. Its inverse, denoted by A, can be calculated

using the block matrix inversion formula as follows:

A =

(

(ΣMk
+Σεk

)−1 +(ΣMk
+Σεk

)−1Σk×1ΦΣ
⊺
k×1(ΣMk

+Σεk
)−1 −(ΣMk

+Σεk
)−1Σk×1Φ

−ΦΣ
⊺
k×1(ΣMk

+Σεk
)−1 Φ

)

,

where

Φ =
(

τ2 −Σ
⊺
k×1(ΣMk

+Σεk
)−1Σk×1 +Σε(xk+1,xk+1)

)−1

=
(

MSE(ŷk(xk+1))+Σε(xk+1,xk+1)
)−1

.

Thus, it follows that

MSE(ŷk+1(x0)) = τ2 −ΣMk+1
(x0, ·)

⊺(ΣMk+1
+Σεk+1

)−1ΣMk+1
(x0, ·)

= τ2 − (ΣMk
(x0, ·)

⊺,ΣM(x0,xk+1))

(

ΣMk
+Σεk

Σk×1

Σ
⊺
k×1 τ2 +Σε(xk+1,xk+1)

)−1(
ΣMk

(x0, ·)
ΣM(x0,xk+1)

)

= τ2 − (ΣMk
(x0, ·)

⊺,ΣM(x0,xk+1))A

(

ΣMk
(x0, ·)

ΣM(x0,xk+1)

)

= τ2 −
[

ΣMk
(x0, ·)

⊺(ΣMk
+Σεk

)−1ΣMk
(x0, ·)

+ΣMk
(x0, ·)

⊺(ΣMk
+Σεk

)−1Σk×1ΦΣ
⊺
k×1(ΣMk

+Σεk
)−1ΣMk

(x0, ·)

−ΣM(x0,xk+1)ΦΣ
⊺
k×1(ΣMk

+Σεk
)−1ΣMk

(x0, ·)

−ΣMk
(x0, ·)

⊺(ΣMk
+Σεk

)−1Σk×1ΦΣM(x0,xk+1)+ΣM(x0,xk+1)ΦΣM(x0,xk+1)
]
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= τ2 −ΣMk
(x0, ·)

⊺(ΣMk
+Σεk

)−1ΣMk
(x0, ·)−

(

ΣMk
(x0, ·)

⊺(ΣMk
+Σεk

)−1Σk×1

−ΣM(x0,xk+1)
⊺
)

Φ

(

Σ
⊺
k×1(ΣMk

+Σεk
)−1ΣMk

(x0, ·)−ΣM(x0,xk+1)
)

= MSE(ŷk(x0))−φ(x0)
2Φ,

where we have defined φ(x0) = Σ
⊺
k×1(ΣMk

+Σεk
)−1ΣMk

(x0, ·)−ΣM(x0,xk+1). Finally, since φ(x0)
2 ≥ 0 and

Φ is a positive scalar, we have MSE(ŷk(x0))≥ MSE(ŷk+1(x0)).

The next result shows that the conclusion of Theorem 1 still holds true when the predictors are

constructed using Equation (4).

Theorem 2 Suppose that xk+1 /∈ {x1, . . . ,xk}. For any prediction point x0 ∈ X , let MSE(ŷk(x0)) and

MSE(ŷk+1(x0)) denote the MSEs of the predictors ŷk(x0) and ŷk+1(x0) constructed using Equation (4). If

Assumption 1 holds and Fk has full column rank, then MSE(ŷk(x0))≥ MSE(ŷk+1(x0)).

Proof. We use the same shorthand notation A,Φ, and φ(x0) as in the proof of Theorem 1. When ŷk+1(x0)
is constructed using (4), its associated MSE becomes

MSE(ŷk+1(x0)) = τ2 −ΣMk+1
(x0, ·)

⊺(ΣMk+1
+Σεk+1

)−1ΣMk+1
(x0, ·)

+ηk+1(x0)
⊺(F⊺

k+1(ΣMk+1
+Σεk+1

)−1Fk+1)
−1ηk+1(x0), (7)

where ηk+1(x0) = f(x0)−F
⊺
k+1(ΣMk+1

+Σεk+1
)−1ΣMk+1

(x0, ·). From the proof of Theorem 1, it is easy to

see that ΣMk+1
(x0, ·)

⊺(ΣMk+1
+Σεk+1

)−1ΣMk+1
(x0, ·) = ΣMk

(x0, ·)
⊺(ΣMk

+Σεk
)−1ΣMk

(x0, ·)+ φ(x0)
2Φ. Thus,

the right-hand-side of (7) can be written in terms of MSE(ŷk(x0)) as

MSE(ŷk+1(x0)) = MSE(ŷk(x0))−φ(x0)
2Φ−ηk(x0)

⊺(F⊺
k (ΣMk

+Σεk
)−1Fk)

−1ηk(x0)

+ηk+1(x0)
⊺(F⊺

k+1(ΣMk+1
+Σεk+1

)−1Fk+1)
−1ηk+1(x0). (8)

Regarding the last term in (8), we have

F
⊺
k+1(ΣMk+1

+Σεk+1
)−1Fk+1

= (F⊺
k , f(xk+1))A

(

Fk

f(xk+1)
⊺

)

= F
⊺
k (ΣMk

+Σεk
)−1Fk +

(

F
⊺
k (ΣMk

+Σεk
)−1Σk×1 − f(xk+1)

)

Φ
(

Σ
⊺
k×1(ΣMk

+Σεk
)−1Fk − f(xk+1)

⊺
)

= F
⊺
k (ΣMk

+Σεk
)−1Fk +ψ⊺Φψ, (9)

where ψ = Σ
⊺
k×1(ΣMk

+Σεk
)−1Fk − f(xk+1)

⊺. On the other hand,

ηk+1(x0) = f(x0)−F
⊺
k+1(ΣMk+1

+Σεk+1
)−1ΣMk+1

(x0, ·)

= f(x0)− (F⊺
k , f(xk+1))A

(

ΣMk
(x0, ·)

ΣM(x0,xk+1)

)

= f(x0)−F
⊺
k (ΣMk

+Σεk
)−1ΣMk

(x0, ·)

−
(

F
⊺
k (ΣMk

+Σεk
)−1Σk×1 − f(xk+1)

)

Φ
(

Σ
⊺
k×1(ΣMk

+Σεk
)−1ΣMk

(x0, ·)−ΣM(x0,xk+1)
)

= ηk(x0)−ψ⊺Φφ(x0) (10)

Substituting (9) and (10) into (8), we obtain

MSE(ŷk+1(x0)) = MSE(ŷk(x0))−φ(x0)
2Φ−ηk(x0)

⊺(F⊺
k (ΣMk

+Σεk
)−1Fk)

−1ηk(x0)

+(ηk(x0)−ψ⊺Φφ(x0))
⊺(F⊺

k (ΣMk
+Σεk

)−1Fk +ψ⊺Φψ)−1(ηk(x0)−ψ⊺Φφ(x0)). (11)
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Next, define W = F
⊺
k (ΣMk

+Σεk
)−1Fk. Since Fk is assumed to have full column rank and (ΣMk

+Σεk
)−1 is

positive definite, it follows that W is also positive definite and its inverse W−1 exists. Therefore, by the

Sherman-Morrison-Woodbury formula, we have

(F⊺
k (ΣMk

+Σεk
)−1Fk +ψ⊺Φψ)−1 = (W +ψ⊺Φψ)−1 =W−1 −

W−1ψ⊺ψW−1

Φ−1 +ψWψ⊺
. (12)

Finally, substituting (12) into (11), we get

MSE(ŷk+1(x0)) = MSE(ŷk(x0))−φ(x0)
2Φ−ηk(x0)

⊺W−1ηk(x0)

+(ηk(x0)−ψ⊺Φφ(x0))
⊺
(

W−1 −
W−1ψ⊺ψW−1

Φ−1 +ψW−1ψ⊺

)

(ηk(x0)−ψ⊺Φφ(x0))

= MSE(ŷk(x0))−φ(x0)
2Φ−ηk(x0)

⊺ W−1ψ⊺ψW−1

Φ−1 +ψW−1ψ⊺
ηk(x0)−ηk(x0)

⊺W−1ψ⊺Φφ(x0)

+ηk(x0)
⊺ W−1ψ⊺ψW−1

Φ−1 +ψW−1ψ⊺
ψ⊺Φφ(x0)−φ(x0)ΦψW−1ηk(x0)+φ(x0)Φψ

W−1ψ⊺ψW−1

Φ−1 +ψW−1ψ⊺
ηk(x0)

+φ(x0)ΦψW−1ψ⊺Φφ(x0)−φ(x0)Φψ
W−1ψ⊺ψW−1

Φ−1 +ψW−1ψ⊺
ψ⊺Φφ(x0)

= MSE(ŷk(x0))−φ(x0)
2Φ−

(ηk(x0)
⊺W−1ψ⊺)2

Φ−1 +ψW−1ψ⊺
−

2φ(x0)(ηk(x0)
⊺W−1ψ⊺)

Φ−1 +ψW−1ψ⊺
+

φ(x0)
2ΦψW−1ψ⊺

Φ−1 +ψW−1ψ⊺

= MSE(ŷk(x0))−
(φ(x0)+ηk(x0)

⊺W−1ψ⊺)2

Φ−1 +ψW−1ψ⊺

≤ MSE(ŷk(x0)).

This completes the proof of the Theorem 2.

4 NUMERICAL EXAMPLES

In this section, we perform some computational experiments to illustrate the monotonic performance of

SK predictors. We consider two sets of examples: an M/M/1 queue and two deterministic functions with

added noises. In all experiments, we construct SK models using a constant trend term (estimated via (5))

and the Gaussian correlation function RM(d(xi,x j),θ) = exp(−θ(xi−x j)
2). To quantify the overall quality

of an SK predictor over the entire decision domain, we use the IMSE as a measure of performance:

IMSE(k),
∫

x∈X

MSE(ŷk(x))dx. (13)

To test our theoretical results, we consider the following simple sequential version of a space-filling scheme

based on quasi-Monte Carlo sampling:

Step 0: Specify the total number of design points N, a set of initial space-filling design points {x1, . . . ,xk}
over X (k < N), and the number of simulation replications n0 at each design point.

Step 1: Collect output performance measures at each xi. Fit an initial SK model as discussed in Ankenman,

Nelson, and Staum (2010) and fix the parameters of the model.

Step 2: Choose a new design point xk+1 based on quasi-Monte Carlo sampling. Perform n0 independent

simulation runs at xk+1 and collect output performance measures. Compute the IMSE of the SK predictor

with k+1 design points.

Step 3: If the current number of design points exceeds N, then terminate; otherwise set k = k+1 and go

to step 2.
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In all testing examples, we set N = 15, the number of initial points to 5, and the number of simulation

replications n0 = 30. For each example, we repeat the above procedure 30 times and then plot the mean

IMSE versus the number of added design points.

4.1 An M/M/1 queue

This example is taken from Ankenman, Nelson, and Staum (2010). Consider an M/M/1 queue with service

rate 1 and arrival rate x ∈ (0,1). Let f (x) be the long run expected number of customers in system. The

goal is to approximate the response surface f (x) over the domain [0.05,0.95] using an SK model with an

increasing number of design points and observe how its IMSE changes. For a given arrival rate x, the

response value f (x) can be estimated via the time-average f̄ (x) = 1
t

∫ t
0 Ns(x)ds by performing a single (but

very long) simulation run (t = 1000 time units), where Ns is the number of observed customers in system

at time s. The variance of the estimator can be approximated by Var[ f̄ (x)]≈ 2x(1+x)
t(1−x)4 when t is large (e.g.,

Ankenman, Nelson, and Staum (2010)).

Figure 1: M/M/1 queue example

Figure 1 shows the mean IMSE (averaged over 30 independent runs) in log scale as a function of

the number of added design points. The figure clearly indicates the monotonicity of the IMSE of the SK

model, which conforms well with our theoretical result. Notice that these results are based on space-filling

designs, so the prediction performance of the model can still be further improved via a refined selection

of design points, e.g., via optimizing MSE or IMSE.

4.2 Deterministic examples with added noise

We consider the following benchmark functions (Qu and Fu 2014, Santner et al. 2003):

(1) y(x) = Y (x)+ ε(x), x ∈ [−3,0], where Y (x) = exp(−1.4x)cos( 7πx
2
)+50 and ε(x)∼ N (0,V (x)).

(2) y(x)=Y (x)+ε(x), x=(x1,x2)
⊺ ∈ [−1,1]× [−1,1], whereY (x)= 4x2

1−2.1x4
1+

x6
1

3
+x1x2−4x2

2+4x4
2

and ε(x)∼ N (0,V (x)).

In both examples, we consider two types of variance functions: (i) V (x) = 1, and (ii) V (x) = x⊺x+1.
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(a) (b)

Figure 2: Deterministic examples with added noise

In each of the respective test cases, Figure 2 shows that the mean IMSE curve is monotonically

decreasing as the number of new design points increases. It is interesting to see from Figure 2 (a) that on

test function (1), the two IMSE curves, which are calculated based on different types of noises, are almost

identical, whereas on test function (2) (Figure 2(b)) the two mean IMSE curves have roughly the same

shape but the curve obtained from type II noise consistently dominates that obtained from type I noise.

This suggests that when design points are fixed, the intrinsic variance may have a significant impact on

the prediction performance of SK models.

5 CONCLUSION

In this paper, we have investigated the performance of SK metamodels in a fully sequential setting. Our

main result is the theoretical finding that the MSE of an SK predictor is monotonically non-increasing in

the number of design points. We have illustrated the monotonic performance of SK models through several

examples. This result not only has utility in analyzing the performance of existing sequential strategies in

constructing deterministic kriging models, but also has potential in developing new sequential sampling

procedures under the SK framework.
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