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ABSTRACT

This paper provides an efficient algorithm using Newton’s method under sample average approximation

(SAA) to solve the parametric optimization problem associated with the optimal importance sampling change

of measure in simulating Lévy processes. Numerical experiments on variance gamma (VG), geometric

Brownian motion (GBM), and normal inverse Gaussian (NIG) examples illustrate the computational

advantages of the SAA-Newton algorithm over stochastic approximation (SA) based algorithms.

1 INTRODUCTION

Lévy processes are widely used to model financial underlying in derivatives pricing problems. Commonly

used Lévy processes are the variance gamma (VG) process (Madan and Seneta 1990), the normal inverse

Gaussian (NIG) process (Barndorff-Nielsen 1995), the generalized hyperbolic process (Eberlein and Keller

1995), the CGMY process (Carr et al. 2002), and the Meixner process (Schoutens and Teugels 1998). More

complicated underlying models such as Lévy-driven stochastic volatility models have also been investigated

in Barndorff-Nielsen and Shephard (2001) and Carr et al. (2003). For application of Greek estimation, see

Fu (2007), Glasserman and Liu (2010).

In derivatives pricing, although analytical solutions are available for European-style options, most

financial derivatives problems are solved by numerical methods, such as numerical solutions for PDEs

(Cont and Voltchkova 2005), Fast-Fourier transition (FFT) (Carr and Madan 1999, Kwok et al. 2012), and

Monte Carlo simulation (Glasserman 2003, Ribeiro and Webber 2006, Carr and Madan 2008). Although

Monte Carlo simulation can solve high-dimensional problems, variance reduction techniques are often needed

to improve the computational efficiency; see Glasserman (2003) for a survey. For Lévy processes models,

variance reduction techniques used in derivatives pricing include importance sampling (Kawai 2008b),

control variates (Dingeç and Hörmann 2012), stratified sampling (Kawai 2010), and their combination

(Kawai 2008a).

In this paper, we focus on importance sampling. A commonly used approach is to formulate the

importance sampling problem as a parametric optimization problem, and use stochastic approximation

(SA) to solve this stochastic optimization problem. For more details, see Su and Fu (2002), Kushner and

Yin (2003), Lapeyre and Lelong (2011). Kawai (2007) and Kawai (2008b) extended the approach to Lévy

processes. SA is known to be sensitive to step sizes, which need to be chosen carefully. In this paper,
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sample average approximation (SAA) (Shapiro 2003, Shapiro et al. 2009, Kim et al. 2014) is used to solve

the resulting optimization problem. Jourdain and Lelong (2009) and Badouraly-Kassim et al. (2015) have

used Newton’s algorithm on SAA to find the optimal parameters in the Black-Scholes model and jump

diffusion models, respectively. In our work, we consider more general Lévy process models.

The rest of the paper is organized as follows. In Section 2, we briefly review Lévy processes and

the Monte Carlo method with importance sampling. Section 3 introduces the proposed SAA-Newton’s

method, and presents the resulting algorithms. Numerical examples are given in Section 4 for Asian options

driven by normal inverse Gaussian (NIG) processes and geometric Brownian motion (GBM), and default

probabilities of portfolios driven by variance gamma (VG) processes. Section 5 concludes.

2 LÉVY PROCESS MODELS AND MEASURE CHANGE

Lévy process models are commonly used to model the underlying assets. Let X = {Xt , t ≥ 0} be a d-

dimensional stochastic process defined on a probability space (Ω,F ,P), satisfying the following conditions:

(i) X0 = 0 a.s. (ii) X has independent and stationary increments. (iii) X is stochastically continuous, i.e.,

for all a > 0 and s ≥ 0, limt→sP(||Xt −Xs||> a) = 0, where || · || is the Euclidean norm. Then, X is a Lévy

process.

Let Λ denote the process parameters, e.g., Λ= (σ ,ν ,θ) for the VG process and Λ= (µ,σ) for Brownian

motion, which determine the corresponding processes. Let F(X) be the payoff of the financial derivative,

given by

F(X) = F(Xt ;0 ≤ t ≤ T ),

where T is the maturity. The goal is to calculate the discounted expectation of F(X).
To improve computing efficiency, variance reduction techniques are routinely used with Monte Carlo

simulation. In this paper, we focus on importance sampling, which attempts to give more weight to

“important” outcomes, thereby increasing sampling efficiency. In the Black-Scholes model, the drift is

changed (Glasserman et al. 1999, Su and Fu 2002). For Lévy processes, the Esscher measure change is

commonly used (Kawai 2008b).

Let ϕt(λ ) = logEP [exp(〈λ ,Xt〉)] denote the cumulant generating function of Xt , where λ ∈C ⊆ Rd and

C is a nonempty convex compact set. Given another probability measure Pλ that is absolutely continuous

w.r.t. P, the Radon-Nikodym derivative is given by

dPλ

dP

∣

∣

∣

∣

Ft

=
e〈λ ,Xt〉

EP

[

e〈λ ,Xt〉
] = e〈λ ,Xt〉−ϕt(λ ), (1)

where Ft is the natural filtration of {Xt , t ≥ 0}. Suppose that EPλ
[F(X)]< ∞, then applying the Esscher

measure change to EP [F(X)],

V := EP [F (X)] = EPλ

[

dP

dPλ

∣

∣

∣

∣

FT

F (X)

]

= EPλ





(

dPλ

dP

∣
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FT

)−1

F (X)



= EPλ

[

e−〈λ ,XT 〉+ϕT (λ )F (X)
]

.

The variance of F(X) under Pλ is given by

Var(F(X),λ ) := EPλ





(

dP

dPλ

∣

∣

∣

∣

FT

)2

F(X)2



−V 2 = EP

[

e−〈λ ,XT 〉+ϕT (λ )F(X)2
]

−V 2. (2)

We call λ ∗ that minimizes the variance Var(F(X),λ ), the optimal parameter, i.e.,

λ ∗ ∈ argmin
λ∈C

Var(F(X),λ ) . (3)
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Then we will provide an efficient algorithm to find λ ∗. Note that solving problem (3) is equivalent to

finding the parameters λ ∗ minimizing the second moment, i.e., finding

λ ∗ ∈ argmin
λ∈C

EP

[

e−〈λ ,XT 〉+ϕT (λ )F(X)2
]

. (4)

3 THE SAA-NEWTON ALGORITHM AND IMPORTANCE SAMPLING

Under the SAA framework the optimization problem (4) is changed to a deterministic optimization problem.

Denote

f (λ ) := EP [g(X ,λ )] ,

where

g(X ,λ ) := e−〈λ ,XT 〉+ϕT (λ )F(X)2.

We generate independent and identically distributed (i.i.d.) paths of X denoted by X1,X2, . . . ,Xn, and

let

fn(λ ) =
1

n

n

∑
i=1

g(Xi,λ ).

Then, we formulate a deterministic optimization problem

min
λ∈C

fn(λ ), (5)

which can be solved by an iterative deterministic algorithm such as Newton’s method. We call this

approach the SAA-Newton algorithm. Generally, Newton’s method is not globally convergent and may

become computationally impractical in high dimensions due to the calculation of the Hessian matrix.

However, in our setting, the SAA problem is convex (Jiang and Fu 2015), the problem dimension is low,

and there is a natural starting point (parameter value 0), so Newton’s method works well. For more details

on the convergence properties of the algorithm, see Jiang and Fu (2015).

For the SAA-Newton algorithm, ∇ fn(λ ) and Hess [ fn(λ )] can be obtained by

∇ fn(λ ) =
1

n

n

∑
j=1

[(

∇ϕT (λ )−X
j

T

)

e−〈λ ,X
j

T〉+ϕT (λ )F
(

X j
)2
]

,

Hess [ fn(λ )] =
1

n

n

∑
j=1

[

(

Hess [ϕT (λ )]

+
(

∇ϕT (λ )−X
j

T

)(

∇ϕT (λ )−X
j

T

)′
)

e−〈λ ,X
j

t 〉+ϕT (λ )F
(

X j
)2

]

,

which are used to find the optimal parameter in the Esscher measure change in Algorithm 1.

Similarly as in Jiang and Fu (2015), after obtaining the estimated λ ∗
n , we can using the measure change

equation to find the new process parameters set Λ∗. Algorithm 2 carries out importance sampling using

the Esscher measure change.

4 NUMERICAL EXAMPLES

In this section, we provide numerical examples: pricing Asian call options driven by NIG process and

GBM, and calculating the default probabilities of a portfolio of European call options driven by VG process.

4.1 Asian options

In this subsection, we compare the Newton-SAA algorithm with the SA approaches in Kawai (2008b) and

Su and Fu (2002) in finding the optimal parameter of the Esscher measure change, and also estimate the

resulting variance reduction in option pricing.
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Algorithm 1 SAA-Newton algorithm for finding the optimal parameter

Input: number of samples n in SAA; maturity T ; Lévy processes parameter Λ under the original probability

measure; termination tolerance of Newton’s method ρ .

Initialization: initial point λ0; k = 0.

1: generate and store Lévy process paths {X1
t ,0 ≤ t ≤ T},{X2

t ,0 ≤ t ≤ T}, . . .{Xn
t ,0 ≤ t ≤ T} under the

original probability measure;

2: compute payoffs {F(Xi), i = 1,2, . . . ,n};

3: repeat

4: compute ∇ fn(λk) and Hess[ fn(λk)];
5: solve Hess[ f (λk)]∆λk =−∇ f (λk);
6: set λk+1 = λk +∆λk;

7: set k = k+1;

8: until (‖λk+1 −λk‖ ≤ ρ)

Output: estimated optimal parameter λ ∗
n = λk+1.

Algorithm 2 Importance sampling by Esscher measure change

Input: number of simulation samples N in pricing; maturity T ; Lévy processes parameter Λ under the

new probability measure with the optimal parameter λ ∗
n .

1: generate and store Lévy process paths
{

X1
t ,0 ≤ t ≤ T

}

,
{

X2
t ,0 ≤ t ≤ T

}

, . . . ,
{

XN
t ,0 ≤ t ≤ T

}

under

the new probability measure;

2: compute
{

V i = F
(

Xi
)

e−〈λ ∗
n ,X

i
T〉+ϕT (λ

∗
n ), i = 1,2, . . . ,N

}

.

Output: estimated payoff V̂ = 1/N ∑N
i=1V i.

4.1.1 NIG process

Consider an Asian call option whose underlying asset St is driven by a NIG process, i.e.,

St = S0eat+Xt ,0 ≤ t ≤ T,

where S0 is the initial price of the asset, T is the maturity, and a is a constant. If M is the number of

observation points, and the averaging begins at 0, the payoff is given by

F(X) =

(

1

M

M

∑
i=1

Sti −K

)+

=

(

1

M

M

∑
i=1

S0eati+Xti −K

)+

,

where 0 < t1 < t2 < .. . < tM = T and {Xti , i = 1,2, . . .} is a discrete NIG process. For more details, see

Barndorff-Nielsen (1995), and Schoutens (2003).

The characteristic function for the NIG process is given by

ΦXNIG
t

(u) = exp

(

−δ t

(

√

α2 − (β + iu)2 −
√

α2 −β 2

))

,

where t = 1 is the characteristic function of a NIG random variable. The process parameters under the

original probability measure are (α,β ,δ ). According to Jiang and Fu (2015), the process parameters under

the new probability measure are (α,β +λ ∗,δ ), where λ ∗ is the optimal parameter.

We simulate the path of Xt using the independent increments and infinite divisibility of NIG random

variables. Specifically, we generate an M-dimensional (d is replaced by M in the following) NIG random

vector X ′ = (X ′
1,X

′
2, . . . ,X

′
M), where X ′

i is a NIG random variable with parameter δ ′ = δ/M, and let
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Xti = ∑i
j=1 X ′

j. The payoff is then given by

F(X ′) =

(

1

M

M

∑
i=1

S0eati+∑i
j=1 X ′

j −K

)+

. (6)

Our objective is to find the optimal parameter λ ∗ = (λ ∗
1 ,λ

∗
2 , . . . ,λ

∗
M), where λ ∗

i is the optimal parameter

of X ′
i in the measure change.

Based on Algorithms 1 and 2, computational results are presented. We consider process parameter

values Λ = (α,β ,δ ) = (2,0.2,0.8) as in Lemaire and Pages (2009). For the other parameters, let a = 0,

interest rate r = 0.02, initial price S0 = 100, strike price K = 100, the number of observation points M = 5,

maturity T = 1, and the initial value in Newton’s method λ0 = [0...0]1×M. First, we compare SA with

the SAA-Newton algorithm. In SA, the step size is ε/m. In Fig.1, the left and right panels show the

convergences of the norms of the gradient against the number of iterations for different step sizes ε in

SA and different sample sizes n in SAA, respectively. Fig.1 illustrates SA’s well-known sensitivity to the

choice of step size. On the other hand, for SAA larger sample size leads to better convergence rate, making

it more straightforward for practitioners to apply. Although the SAA-Newton converges using far fewer

iterations than SA, each iteration requires far more computation, so Table 1 compares total run time. The

results indicate that the run time of the SAA-Newton algorithm is considerably less than SA for the same

level of accuracy.

200 400 600 800 1000 1200 1400 1600 1800 2000
Iteration steps

 

ε=20
ε=100
ε=500
ε=1000

0 5 10 15 20
Iteration steps

 

n=100
n=1000
n=10000

Figure 1: Norm of gradients for SA (left panel) and SAA-Newton (right panel)

Table 1: Run time and norm of gradient for SA and SAA-Newton

SAA-Newton SA

n run time norm of gradient N run time norm of gradient

250 0.054 0.0022 5000 0.27 0.016

500 0.11 0.0012 10000 0.54 0.0042

1000 0.21 0.00097 20000 1.1 0.0014

2500 0.52 0.00062 50000 2.7 0.0010

5000 1.0 0.00051 100000 5.4 0.00081

10000 2.1 0.00039 200000 10.8 0.00079

25000 5.2 0.00035 500000 27.0 0.00052

Next, we consider the importance sampling performance for the following cases: strike price K =
20,100,200 and δ = 0.4,0.8. Figs. 2, 3, and 4 display the results in the form of box plots based on 100
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Figure 2: Convergence of prices for K = 20; δ = 0.4 (left panel) and δ = 0.8 (right panel)
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Figure 3: Convergence of prices for K = 100; δ = 0.4 (left panel) and δ = 0.8 (right panel)

macro-replications. The results indicate that the optimal importance sampling reduces variance significantly,

and Table 2 displays the variance reduction ratios defined as the variance of classical MC divided by the

variance of MC with importance sampling. The results indicate significantly greater variance reduction for

both out-of-the-money and in-the-money options than at-the-money options.

Table 2: Variance reduction ratios

α = 2,β = 0.2,δ = 0.8 α = 2,β = 0.2,δ = 0.4
N K = 20 K = 100 K = 200 K = 20 K = 100 K = 200

500 60.9 14.1 68.2 52.8 11.9 72.5
1000 73.9 14.3 79.3 91.1 11.5 70.8
5000 57.7 14.3 64.8 67.5 14.1 70.1

10000 83.7 17.8 65.4 143.1 13.9 73.8
50000 78.1 14.2 55.2 56.2 14.3 101.2

100000 72.3 18.7 52.6 88.5 18.7 89.9

4.1.2 Geometric Brownian motion

Different from the SA approach in Kawai (2008b), Su and Fu (2002) proposed an SA approach based on

estimated gradients via IPA. Consider an Asian call option whose underlying assets are driven by GBM,

i.e.,

St = S0e(r−
1
2

σ2)t+σWt ,
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Figure 4: Convergence of prices for K = 200; δ = 0.4 (left panel) and δ = 0.8 (right panel)

where r is the interest rate, σ is volatility, S0 is the initial price of the asset, and {Wt} is standard Brownian

motion under the original measure. Su and Fu (2002) change the drift in Brownian motion, which is a

special case of the Esscher measure change. They assume a new Brownian motion

W̃t =Wt −λ t,

with the Radon-Nikodym derivative given by

dPλ

dP
= eλWT−

1
2

λ 2T .

Note that, unlike the last example, we do not change the process parameter (the drift in Brownian motion)

at each observation point, i.e., we use the same λ , which is a scalar, to obtain the new process parameter,

at each observation point.

We consider the same setting in Su and Fu (2002): S0 = 50, K = 50, σ 2 = 0.2, r = 0.05, T = 1, number

of observation points M = 255, which is daily average and the averaging begins at 0. Let ñ denote the

number of replications per iteration in SA. Fig.5 plots SAA-Newton and SA for ñ = n = 50 and 500.
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Figure 5: Norm of gradients; ñ = n = 50 (left panel) and ñ = n = 500 (right panel)

The results again indicate that SAA-Newton converges faster than SA. Table 3 shows the run times

for SAA-Newton with iteration steps N = 15 and SA with sample size ñ = 50 per iteration. Although

SAA-Newton requires more computation per iteration than SA, due to inverting a Hessian matrix, the

overall run time of SAA-Newton is still less than SA for the same level of accuracy. Next, we consider

the importance sampling performance. Similarly as in Su and Fu (2002), consider partial average Asian

option pricing with the averaging beginning 60 days before the option maturity date. Let r = 0.05, σ = 0.2,

S0 = 100, n = 50,500, and K = 100,120, with other parameter values remaining the same. Fig. 6 displays
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Table 3: Run time, estimate drift and norm of gradient for SAA-Newton and SA

SAA-Newton SA

n run time estimate drift ‖∇ f‖ N run time estimate drift ‖∇ f‖

50 0.08 0.488 11.5 10 0.04 0.417 16.2
500 0.13 0.494 2.8 100 0.48 0.475 4.0
5000 0.61 0.493 1.2 1000 4.58 0.489 1.2

50000 5.81 0.492 0.65 10000 45.5 0.492 0.82

500000 79.8 0.492 0.71 100000 458.4 0.493 0.742

the results in the form of box plots based on 100 macro-replications. The box plots depict the median,

quartiles, and whiskers without the extreme points.
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Figure 6: Convergence of prices for K = 100; n = 50 (left panel) and n = 500 (right panel)

4.1.3 Comparison of two schemes for importance sampling

For the NIG example, we changed the process parameter at every observation point, so the importance

sampling parameter is a vector, denoted here by IS-M. For the GBM example, we kept the drift the same,

i.e., the optimal parameter is a scalar, denoted by IS-1.

We compare the variance reduction of these two schemes on Asian options driven by GBM, using

SAA-Newton to find the optimal parameter. Let S0 = 100, K = 120, T = 1, M = 10 averaged over entire

period, iteration steps m = 20, with N = 10000 for the pricing. Changing n w.r.t. three different values

of (r,σ), Table 4 is obtained. CMC stands for classical Monte Carlo, and VR-1 and VR-M stand for the

variance reduction ratio for IS-1 and IS-M, respectively. IS-M has larger variance reduction ratios than the

IS-1, but requires much longer run time than IS-1, which in this example outweighs the variance reduction.

Also note that when n = 1000, the estimated optimal parameter for IS-1 is quite close to the true optimal

parameter, so no further variance reduction is gained by increasing n. However, for IS-M, n = 1000 is

not enough to solve the high-dimensional problem, so higher n is required to better estimate the optimal

parameter value.

4.2 Default probability of portfolio

In this subsection, we estimate the default probability of a simple portfolio L containing M European call

options whose underlying assets are driven by VG processes, i.e.,

Si
t = Si

0eait+Xi
t ,0 ≤ t ≤ T, i = 1,2, . . . ,M, (7)
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Table 4: Comparison of IS-1 and IS-M

CMC IS-1 IS-M

prices n run time prices VR-1 run time prices VR-M

r = 0.15

σ = 0.1
0.162

1000 0.01 0.165 9.6 0.18 0.160 16.0
10000 0.06 0.159 10.5 1.79 0.161 35.3

r = 0.05

σ = 0.2
0.712

1000 0.01 0.700 7.8 0.18 0.706 14.3
10000 0.06 0.690 7.9 1.80 0.707 25.0

r = 0.05

σ = 0.4
4.372

1000 0.01 4.313 5.6 0.18 4.362 12.4
10000 0.06 4.353 5.8 1.82 4.368 16.7

where {Xi
t } is a VG process and {S1

0,S
2
0, . . . ,S

M
0 } are the initial prices of the M underlying assets, and all

the assets have the same maturity T , and {ai, i = 1,2, . . . ,M} are constants. The portfolio is given by

L =
M

∑
i=1

Vi,

with

Vi = e−rT
E[(Si

T −Ki)
+] = e−rT

E[(S0eai+Xi
T −Ki)

+],

where Ki is strike price of the ith option. The process parameters of XT in the original probability are

(σ ,ν ,θ), according to Jiang and Fu (2015), the new process parameters for the Esscher measure change

are
(

σ/
√

1−λθν −1/2σ2νλ 2,ν ,(θ +λσ 2)/(1−λθν −1/2σ 2νλ 2)

)

.

Suppose we are interested in the probability that the portfolio is below some level Lb, i.e.,

Pr{L ≤ Lb}= E[1L≤Lb
].

We know if Lb is small, this is the probability of a rare event. Let the process parameter (σ ,ν ,θ)= (0.1,0.3,0),
the number of options M = 5, ai = 0, i = 1,2, . . . ,M, S0 = [80 90 100 110 120] and the corresponding

strike prices K = [70 80 90 100 110]. We consider sample sizes n = 500,5000,50000 and default levels

Lb = 10,20. Fig.7 displays the convergence of the norm of the gradient via SAA-Newton. Similar to the

previous examples, higher n leads to smaller norms of gradients.
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Figure 7: Norm of gradient; Lb = 10 (left panel) and Lb = 20 (right panel)

Next, we consider the importance sampling performance. Let n = 5000, and Lb = 10,20, respectively,

with other parameter values remaining unchanged. Fig. 8 displays the results in the form of box plots based

3821



Jiang, Fu, and Xu

on 100 macro-replications. The cross marks in the box plots are the mean of the estimated probabilities

of the 100 macro-replications. For Lb = 10, default is a rare event, and classical Monte Carlo returns

an estimate of zero for small sample sizes (N = 100,200), whereas once importance sampling is applied,

reasonable estimates can be obtained even for small N.
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Figure 8: Convergence of probabilities; Lb = 10 (left panel) and Lb = 20 (right panel)

Tables 5 and 6 show the variance reduction, where Pc and PIS denote the estimated probability using

the classical Monte Carlo and the optimal importance sampling, respectively, with the 90% confidence

half widths shown in parentheses. Clearly importance sampling works better for estimating rare event

probabilities (Lb = 10), especially for small sample size.

Table 5: Estimated probabilities (half widths) and variance reduction ratios for Lb = 10

N Pc PIS VR

100 0.1600% (0.0667%) 0.1008% (0.0082%) 356.7
500 0.0860% (0.0219%) 0.0971% (0.0037%) 48.1

1000 0.0960% (0.0163%) 0.0977% (0.0026%) 42.5
5000 0.0980% (0.0074%) 0.0990% (0.0012%) 39.5
10000 0.0986% (0.0052%) 0.0990% (0.0008%) 39.5
50000 0.0975% (0.0023%) 0.0988% (0.0004%) 39.4
100000 0.0998% (0.0017%) 0.0987% (0.0003%) 40.2

Table 6: Estimated probabilities (half widths) and variance reduction ratios for Lb = 20

N Pc PIS VR

100 1.040% (0.1692%) 1.051% (0.0489%) 16.6
500 1.028% (0.0753%) 1.050% (0.0217%) 12.7
1000 0.972% (0.0518%) 1.068% (0.0155%) 11.5
5000 1.064% (0.0242%) 1.050% (0.0069%) 12.5
10000 1.038% (0.0169%) 1.045% (0.0048%) 12.2
50000 1.051% (0.0076%) 1.047% (0.0022%) 12.3
100000 1.045% (0.0054%) 1.046% (0.0015%) 12.3
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5 CONCLUSION

In this paper, we first formulate the importance sampling problem as a parametric stochastic optimization

problem, and then propose a new method, the SAA-Newton algorithm, to find the optimal importance

sampling parameters based on the Esscher measure change for Lévy processes. Numerical experiments

study the effectiveness of the method, and indicate that the Newton-SAA algorithm can find optimal

parameters faster than SA-based algorithms.
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Monte Carlo Methods and Applications 12:171–186.

Kawai, R. 2008a. “Adaptive Monte Carlo variance reduction for Lévy processes with two time-scale
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