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ABSTRACT

We consider the solution of a finite-state infinite horizon Markov Decision Process (MDP) in which both

the transition matrix and the cost function are misspecified, the latter in a parametric sense. We consider a

data-driven regime in which the learning problem is a stochastic convex optimization problem that resolves

misspecification. Via such a framework, we make the following contributions: (1) We first show that a

misspecified value iteration scheme converges almost surely to its true counterpart and the mean-squared

error after K iterations is O(1/K1/2−α) with 0 < α < 1/2; (2) An analogous asymptotic almost-sure

convergence statement is provided for misspecified policy iteration; and (3) Finally, we present a constant

steplength misspecified Q-learning scheme and show that a suitable error metric is O(1/K1/2−α) + O(
√

δ )
with 0 < α < 1/2 after K iterations where δ is a bound on the steplength.

1 INTRODUCTION

Markov decision processes (MDPs) are an important class of models for analyzing dynamic decision

making problems. First examined by Bellman (1957), such models have been used in a number of domains

including robotics, control-theory, economics, healthcare, and manufacturing . Specially, a Markov decision

process is a discrete time stochastic control process. At each time step, the process is in some state s, and

the decision maker may choose an action a that is available in state s. The process responds at the next time

step by moving to a new state s′, and giving the decision maker a corresponding reward Ra(s,s
′) or cost

Ca(s,s
′). The next state s′ depends on the current state s and the decision maker’s action a, but given s and

a, it is conditionally independent of all previous states and actions; in other words, the state transitions of

an MDP have the Markov property. In an MDP with a discrete state space, the state transition probabilities

from time t to t +1 are specified by an action Ut at time t, i.e., P(s′ | s,a), P(Xt+1 = s′ | Xt = s,Ut = a),
where at time t, Xt and Ut denotes the state of the process and the transition matrix, respectively.

Suppose A and S denote the set of actions and states. Suppose C(a,s;ψ∗) denotes the correctly

specified cost of taking action a at state s where γ ∈ [0,1) denotes the discount factor. The probability of the

system transitioning from state s′ to s′′ based on action a is specified by P
∗(s = s′′ | s = s′,a). Furthermore,

we define a policy map as π : S → A while the value function of a policy π is denoted by V π : S → R

and V π(s) denotes the expected discounted cost of policy π when starting at state s. The objective lies

in determining a policy π that minimizes the discounted expected sum over an infinite horizon, given by

∑
∞
k=0 γkC(sk,ak;ψ∗), where ak+1 = π(sk).

This paper considers the resolution of such problems in regimes where the transition matrix P
∗ and

the parametrization of the cost function ψ∗ are unavailable a priori. Estimation of transition matrices has

been studied extensively in the literature (Anderson and Goodman 1957, Ljung 1987, Han and Liu 2013)

while robust optimization approaches have also been employed (cf. (Nilim and El Ghaoui 2005, Delage and
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Mannor 2010)). A rather distinct approach in contending with the absence of information is embodied by

the Q-learning algorithm presented in (Watkins and Dayan 1992). This is a simulation-based technique for

computing estimates to the value function and has a similar structure to stochastic approximation algorithms

(Tsitsiklis and Sutton 1994). Simulation-based approaches have also been reviewed by Chang, Hu, Fu,

and Marcus (2013), particularly notable being the upper confidence bound (UCB) sampling algorithm

(cf. (Brafman and Tennenholtz 2003, Bartlett and Tewari 2009, Auer, Jaksch, and Ortner 2009)).

Given an MDP(P∗,ψ∗) where P
∗ and ψ∗ are unavailable, a standard approach is the following:

(1) Learn P
∗ and ψ∗; (2) Solve MDP(P∗,ψ∗).

This technique is afflicted by several challenges, a subset of which we describe next:

(i) Inability to accommodate streaming data: Increasingly, MDP-based models have to be constantly updated

with new, and possibly, streaming data. Yet the traditionally developed asymptotics and error analysis for

resolving MDPs cannot accommodate streaming data.

(ii) Lack of asymptotics: Step (1) often requires solving stochastic and/or large-scale learning problems whose

solutions are obtained in an asymptotic sense. Any practical implementation of this scheme necessitates

that Step (1) terminate finitely; however, premature termination of (1) leads to estimators afflicted by error

and may result in significant error in the computed value function. In effect, asymptotic convergence of

this scheme cannot be claimed.

(iii) Practical implementations: Step (1) may take a significant amount of real-time, particularly since it

requires solving stochastic optimization problems and during this period, no estimate of the optimal value

function is available. In effect, error bounds can only be prescribed after step (1) is complete.

A simultaneous scheme for learning and computation: We consider an avenue that has found recent

application for resolving misspecified optimization and variational problems in stochastic regimes (Jiang

and Shanbhag 2014, Jiang and Shanbhag 2013). This necessitates a simultaneous approach in which the

learning problems for P∗ and ψ∗ are resolved simultaneously with the original MDP. In effect, we consider

the estimators from the coupled dynamics and examine both the asymptotics and error bounds for a variety

of computational schemes. Our scheme relies on the prescription of learning problems.

(i) Learning of transition matrices: We consider the following learning problem for transition matrices

based on using observational data:

P
∗ ∈ argmin

P∈P

E[g(P;η)], (L P)

where P denotes the space of stochastic matrices, i.e. nonnegative matrices with row sums equal to unity.

(ii) Misspecification of cost functions: The cost functions are parameterized by a vector ψ∗, representing a

set of parameters idiosyncratic to the machine of interest. For instance, it may pertain to the efficiency of

the machine, the start-up/shut-down times, the skill of the workers in question etc. All of these parameters

may require learning, often via an online approach that incorporates the use of observations, possibly

corrupted by noise. Such a problem can be cast as a stochastic optimization problem, defined as follows:

ψ∗ ∈ argmin
ψ∈Ψ

E[R(ψ;ξ )], (RΨ)

where ξ a random variable and Ψ denotes the feasibility set for ψ . By using stochastic approximation, we

may generate sequences {Pk} and {ψk} such that Pk → P
∗ and ψk → ψ∗ as k → ∞ in an a.s. sense.

We provide an illustration of the approach by using the well-studied value iteration scheme as a

basis (Howard 1960). In its original form, value iteration maintains an estimate of the value function and

updates this belief based on solving a suitable problem. When the change in the value functions falls within

a suitably defined threshold in a norm-sense, the scheme terminates. We now provide a relatively quick

overview of this scheme (cf. (Powell 2007)). Let V denote the space of value functions and M : V → V
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be a mapping such that for each s ∈ S , M is defined as follows:

M v(s) = max
a∈A

{
C(s,a;ψ∗)+ γ ∑

s′∈S

P
∗(s′ | s,a)v(s′)

}
. (MDP(P∗,Ψ∗))

Given a v0, the value iteration scheme is defined as follows:

vk+1 := M vk, for k ≥ 0. (Value Iteration)

Since M is a contraction mapping on V if 0 ≤ γ < 1 (cf. Proposition 3.10.2 in Powell (2007)), convergence

of the scheme can be shown with in a reasonably straightforward fashion. However, one of the challenges

lies in the availability of C(s,a;ψ∗) and P
∗, motivating the development of a misspecified variant. We

assume the cost and matrix to be given by C(s,a; ψ̃) and P̃(s′|s,a). Then, we may define a misspecified

operator M̃k : V → V by utilizing estimates P̃k and ψ̃k:

M̃kv(s) = max
a∈A

{
C(s,a; ψ̃k)+ γ ∑

s′∈S

P̃k(s
′|s,a)v(s′)

}
. (1)

We now present our main research questions and provide an outline of this paper:

(i) Misspecified value iteration: In Section 2, we present a misspecified value iteration scheme for addressing

MDPs in which the cost function and transition matrices are misspecified. We examine the asymptotics

of the resulting scheme and providing a quantification of the degradation of the rate of convergence based

on the presence of learning.

(ii) Misspecified policy iteration: In Section 3, we consider an analogous set of questions in the regime

of policy iteration where we provide almost sure convergence statements.

(iii) Misspecified Q-learning: Finally, in Section 4, we consider Q-learning approaches for solving MDPs

with misspecified cost functions and present constant steplength error bounds for extensions that resolve

the misspecification while solving the original MDP.

2 MISSPECIFIED VALUE ITERATION

Value iteration (Bellman 1957) represents amongst the oldest of schemes for solving an MDP. We begin

by presenting a misspecified value iteration scheme for resolving MDP(P∗,ψ∗) and subsequently present

asymptotic convergence and error analysis.

We define P to be set of all transition matrices, vec(P) to be the vector drawn from the entries of P

for all P ∈ P , and vec(P), {vec(P),P ∈ P}. Estimating P
∗ often requires the resolution of a suitably

defined learning problem, given by a stochastic optimization problem (L P), where vec(P) is a closed and

convex set, η : Λ →R
p is a random variable defined on a probability space (Λ,Fη ,Pη), and g : P×Λ →R

is a real-valued function. We may specify our joint scheme for learning and computation as follows:
Algorithm I: Misspecified Value Iteration.

Let ṽ0 : S → R, vec(P̃0) ∈ vec(P), ψ̃0 ∈ Ψ, α0 > 0, β0 > 0 and k = 0.

Step 1: For all k ≥ 0,

ṽk+1 := M̃kṽk, (Computation)

vec(P̃k+1) := Πvec(P)

(
vec(P̃k)−αk(∇g(P̃k)+wk)

)
, (Learning−P)

ψ̃k+1:= ΠΨ (ψ̃k −βk(∇R(ψ̃k)+uk)) (Learning−ψ)

where wk , ∇g(P̃k;ηk)−∇g(P̃k), g(P) , E[g(P;η)], uk = ∇R(ψ̃k;ξk)−∇R(ψ̃k), R(ψ) , E[R(ψ;ξ )] , M̃kv(s) := maxa∈A (C(s,a; ψ̃k)+

γ ∑s′∈S P̃n(s
′|s,a)v(s′)), and αk and βk are chosen according to Proposition 1.

Step 2: If k > K, stop; else k := k+1 and go to Step 1.
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We begin by showing that the misspecified operator M̃k is a contraction mapping for any k. We

suppress the subscript k in this proof for purposes of clarity.

Lemma 1 (Contractive property of M̃ ) If 0 ≤ γ < 1, then M̃ is a contraction mapping on V .

Proof. Let u,v ∈ V and assume that M̃ v(s) ≥ M̃ u(s) without loss of generality for any state s. For

any state s, let ã∗s (v) be defined as follows:

ã∗s (v) = argmax
a∈A

{
C(s,a; ψ̃)+ γ ∑

s′∈S

P̃(s′|s,a)v(s′)
}
.

Then, we have the following sequence of inequalities:

0 ≤ M̃ v(s)−M̃ u(s) =C(s, ã∗s (v); ψ̃)+ γ ∑
s′∈S

P̃(s′|s, ã∗s (v))v(s′)−
(

C(s, ã∗s (u); ψ̃)+ γ ∑
s′∈S

P̃(s′|s, ã∗s (u))u(s′)
)

≤C(s, ã∗s (v); ψ̃)+ γ ∑
s′∈S

P̃(s′|s, ã∗s (v))v(s′)−
(

C(s, ã∗s (v); ψ̃)+ γ ∑
s′∈S

P̃(s′|s, ã∗s (v))u(s′)
)

︸ ︷︷ ︸
Term (a)

,

where the second inequality is a consequence of noting that for all s, we have the following:

M̃ u(s) = max
a∈A

{
C(s,a; ψ̃)+ γ ∑

s′∈S

P̃(s′|s,a)u(s′)
}

=

(
C(s, ã∗s (u); ψ̃)+ γ ∑

s′∈S

P̃(s′|s, ã∗s (u))u(s′)
)

≥
(

C(s, ã∗s (v); ψ̃)+ γ ∑
s′∈S

P̃(s′|s, ã∗s (v))u(s′)
)
.

It follows that Term (a) can be bounded as follows:

C(s, ã∗s (v); ψ̃)+ γ ∑
s′∈S

P̃(s′|s, ã∗s (v))v(s′)−
(

C(s, ã∗s (v); ψ̃)+ γ ∑
s′∈S

P̃(s′|s, ã∗s (v))u(s′)
)

= γ ∑
s′∈S

P̃(s′|s, ã∗s (v))
(
v(s′)−u(s′)

)
≤ γ ∑

s′∈S

P̃(s′|s, ã∗s (v))‖v−u‖∞ = γ‖v−u‖∞,

Consequently, ‖M̃ v−M̃ u‖∞ = sups∈S |M̃ v(s)−M̃ u(s)| ≤ γ‖v−u‖∞, implying that M̃ is contractive.

Our next proposition shows that when the estimated transition matrix is within some bound of its

true counterpart, under a suitable Lipschitzian requirement of C(s,a,ψ) in ψ , we obtain the following

relationship between the true operator and its misspecified counterpart. This lemma subsequently finds

application in the main convergence result.

Lemma 2 Suppose ∑s′∈S |P∗(s′|s,a)− P̃(s′|s,a)| ≤ δ for all s and a. Suppose C(s,a;ψ) is Lipschitz

continuous in ψ with constant LC uniformly in s and a. Then the following holds for all u,v ∈ V :

‖M v−M̃ u‖ ≤ LC‖ψ∗ − ψ̃‖+ γδ (‖v‖+‖u‖)+ γ‖v−u‖.
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Proof. Let u,v ∈ V and assume without loss of generality that M v(s)≥ M̃ u(s). For a state s, we may

define a∗s (v) and ã∗s (v) as follows:

a∗s (v) , argmax
a∈A

(C(s,a;ψ∗)+ γ ∑
s′∈S

P
∗(s′|s,a)v(s′)) and ã∗s (v) , argmax

a∈A

(C(s,a; ψ̃)+ γ ∑
s′∈S

P̃(s′|s,a)v(s′)).

Then, we have the following set of relations:

0 ≤ M v(s)−M̃ u(s) = M v(s)−M̃ v(s)+M̃ v(s)−M̃ u(s)

=C(s,a∗s (v);ψ∗)+ γ ∑
s′∈S

P
∗(s′|s,a∗s (v))v(s′)−

(
C(s, ã∗s (v); ψ̃)+ γ ∑

s′∈S

P̃(s′|s, ã∗s (v))v(s′)
)

+M̃ v(s)−M̃ u(s)

≤C(s,a∗s (v);ψ∗)+ γ ∑
s′∈S

P
∗(s′|s,a∗s (v))v(s′)−

(
C(s,a∗s (v); ψ̃)+ γ ∑

s′∈S

P̃(s′|s,a∗s (v))v(s′)
)

+M̃ v(s)−M̃ u(s),

where the second inequality follows from suboptimality of a∗s (v) with respect to a∗(v). It follows that

C(s,a∗s (v);ψ∗)+ γ ∑
s′∈S

P
∗(s′|s,a∗s (v))v(s′)−

(
C(s,a∗s (v); ψ̃)+ γ ∑

s′∈S

P̃(s′|s,a∗s (v))v(s′)
)

+M̃ v(s)−M̃ u(s)

≤ LC‖ψ∗ − ψ̃‖+ γ ∑
s′∈S

(
P
∗(s′|s,a∗s (v))− P̃(s′|s,a∗s (v))

)
v(s′)+M̃ v(s)−M̃ u(s)

≤ LC‖ψ∗ − ψ̃‖+ γ ∑
s′∈S

|P∗(s′|s,a∗s (v))− P̃(s′|s,a∗s (v))|‖v‖+M̃ v(s)−M̃ u(s)

≤ LC‖ψ∗ − ψ̃‖+ γδ‖v‖+M̃ v(s)−M̃ u(s)

≤ LC‖ψ∗ − ψ̃‖+ γδ‖v‖+ γ‖v−u‖
≤ LC‖ψ∗ − ψ̃‖+ γδ (‖v‖+‖u‖)+ γ‖v−u‖,

where the first inequality follows from the Lipschitz continuity of C(s,a;ψ) in ψ , the second inequality is

a consequence of the Cauchy-Schwartz inequality and the last inequality is a consequence of invoking the

contractive property of M̃ .

We are now ready to prove our main convergence statement.

Proposition 1 (Convergence of misspecified value iteration scheme) Suppose {ṽk}, {P̃k} and {ψ̃k} are

generated from Algorithm I. Suppose the learning function g(·) is strongly convex in vec(P), and the

learning function R(·) is strongly convex in Ψ. Suppose αk = θ1/k and βk = θ2/k with θ1 > 1/2(µg),
θ2 > 1/(2µR), 0 < α < 1/2, µg is the strong convexity constant of g and µR is the strong convexity constant

of R. Suppose C(s,a;ψ) is Lipschitz continuous in ψ with constant LC for all s and a. Then, there exists

a constant λ such that the following hold:

(i) ‖ṽk − v∗‖ → 0, P̃k → P
∗ and ψ̃k → ψ∗ a.s. as k → ∞.

(ii) For any k, we have that the following holds:

E

[
‖ṽk+1 − v∗‖

]
≤ γk

E[‖ṽ0 − v∗‖]+
k

∑
j=1

γ j−1λ√
k− j−1

‖v∗‖= O

(
1

k
1
2
−α

)
,
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Proof. (i) First, we have that the following holds almost surely:

‖ṽk+1 − v∗‖= ‖M̃kṽk −M v∗‖
= ‖M̃kvk −M̃kv∗+M̃kv∗ −M v∗‖ ≤ ‖M̃kṽk −M̃kv∗‖+‖M̃kv∗ −M v∗‖
≤ γ‖ṽk − v∗‖+LC‖ψ̃k −ψ∗‖+ γ‖vec(P̃k)−vec(P∗)‖‖v∗‖, (2)

where the last inequality follows from invoking Lemmas 1 and 2. Let ak = LC‖ψ̃k −ψ∗‖+ γ‖vec(P̃k)−
vec(P∗)‖‖v∗‖. Then, we have

‖ṽk+1 − v∗‖ ≤ γ‖ṽk − v∗‖+ak ≤ γ(γ‖ṽk−1 − v∗‖+ak−1)+ak

= γ2‖ṽk−1 − v∗‖+ γak−1 +ak ≤ ·· · ≤ γk+1‖ṽ0 − v∗‖+
k

∑
i=0

γ iak−i.

Since γk+1 → 0, it suffices to show that ∑
k
i=0 γ iak−i → 0 as k → ∞ in an a.s. sense. Since the learning

problems for ψ∗ and P
∗ are both strongly convex, we have that ak → 0 a.s. as k → ∞. Then, for almost all

ω ∈ Ω, given ε > 0, there exists N1(ω) such that ak ≤ ε for all k ≥ N1(ω). Also, for almost every ω ∈ Ω,

ak ≤ L(ω) for all k and some constant L(ω)> 0. Thus, for k ≥ N1(ω),

k

∑
i=0

γ iak−i = γna0 + . . .+ γk−N1(ω)aN1(ω) + γk−N1(ω)−1aN1(ω)+1 + . . .+ γ0ak

≤ (γk + . . .+ γk−N1(ω))L(ω)+
ε

1− γ
.

Since γk → 0, there exists N2(ω) such that γk ≤ ε
N1(ω)+1

, . . . ,γk−N1(ω) ≤ ε
N1(ω)+1

for all k ≥ N2(ω). So,

when k ≥ N(ω), max{N1(ω),N2(ω)}, we have that

k

∑
i=0

γ iak−i ≤ L(ω)ε +
ε

1− γ
=

(
L(ω)+

1

1− γ

)
ε.

Since L(ω) is finite in an a.s. sense and ε is arbitrarily chosen, proving that ∑
k
i=0 γ ian−i → 0 a.s.. We may

then conclude that ‖ṽk+1 − v∗‖ → 0 in an a.s. sense as k → ∞.

(ii) By taking expectations on both sides of (2), we have the following:

E[‖ṽk+1 − v∗‖]≤ γE[‖ṽk − v∗‖]+LCE[‖ψ̃k −ψ∗‖]+ γE[‖vec(P̃k)−vec(P∗)‖]‖v∗‖.
Recall that the learning problem for ψ∗ and P

∗ are both strongly convex. Then, we can use the standard

rate estimate (see (5.292) in Shapiro et al. (2009)) to get the following for suitably chosen λ1 and λ2:

E[‖ψ̃k −ψ∗‖]≤ λ1√
k

and E[‖vec(P̃k)−vec(P∗)‖]≤ λ2√
k
.

Consequently, we obtain the following:

E[‖ṽk+1 − v∗‖]≤ γE[‖ṽk − v∗‖]+ LCλ1 + γλ2√
k

‖v∗‖.

Let λ = LCλ1 + γλ2. Then, we have

E[‖ṽk+1 − v∗‖]≤ γE[‖ṽk − v∗‖]+ λ√
k
‖v∗‖ ≤ γ2

E[‖ṽk−1 − v∗‖]+ γλ√
k−1

‖v∗‖+ λ√
k
‖v∗‖

≤ γk
E[‖ṽ0 − v∗‖]+

k

∑
j=1

γ j−1λ√
k− j+1

‖v∗‖.
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If we fix K, then the second term in the above inequality becomes

k

∑
j=1

γ j−1λ√
k− j+1

‖v∗‖= λ‖v∗‖
k

∑
j=1

γ j−1

√
k− j+1

= λ‖v∗‖
(

K

∑
j=1

γ j−1

√
k− j+1

+
k

∑
j=K+1

γ j−1

√
k− j+1

)

≤ λ‖v∗‖
(

K√
k−K +1

+
k

∑
j=K+1

γ j−1

)
≤ λ‖v∗‖

(
K√

k−K +1
+

γK

1− γ

)
,

where the second inequality follows from noting that 1/
√

k− j+1 ≤ 1 for K +1 ≤ j ≤ k. If K is chosen

to be kα with 0 < α < 1/2, then we have

k

∑
j=1

γ j−1λ√
k− j+1

‖v∗‖ ≤ λ‖v∗‖
(

kα

√
k− kα +1

+
γkα

1− γ

)
= λ‖v∗‖

(
kα

√
k
√

1− k−(1−α) +1/k
+

γkα

1− γ

)

= λ‖v∗‖
(

1

k1/2−α
√

1− k−(1−α) +1/k
+

γkα

1− γ

)
≤ λ‖v∗‖

(
1

k1/2−α
+

γkα

1− γ

)
≤ O

(
1

k
1
2
−α

)
,

since the second term diminishes to zero at a faster rate than 1/(k1/2−α).

3 MISSPECIFIED POLICY ITERATION

In this section, we consider a policy iteration scheme for the resolution of misspecified MDPs. We initiate

our discussion with a formal statement of the misspecified policy iteration scheme and subsequently prove

its asymptotic convergence. If cπ(·) , C(·,π(·);ψ∗) and c̃πk(·) , C(·,πk(·); ψ̃k), then the operators M π

and M̃
πk

k may be defined as follows for policies π and πk, respectively:

M
πv , cπ + γ(P∗)πv and M̃

πk

k v , c̃πk + γP̃πk

k v,

Next, we define the misspecified policy iteration scheme.
Algorithm II: Misspecified policy iteration.

Let ṽ0 : S → R, vec(P̃0) ∈ vec(P), αk > 0, ψ̃0 ∈ Ψ, α0 > 0, β0 > 0 and k = 0.

Step 1: For all k ≥ 0,

ak+1(s) := argmax
a∈A

(C(s,a; ψ̃k)+ γP̃
πk+1

k ṽk+1), (Computation)

vec(P̃k+1) := Πvec(P)

(
vec(P̃k)−αk(∇g(P̃k)+wk)

)
, (Learning−P)

ψ̃k+1:= ΠΨ (ψ̃k −βk(∇R(ψ̃k)+uk)) (Learning−Ψ)

where wk , ∇g(P̃k;ηk)−∇g(P̃k) with g(P), E[g(P;η)], uk = ∇R(ψ̃k;ξk)−∇R(ψ̃k), R(ψ), E[R(ψ;ξ )] and (I − γP̃
πk
k )ṽk+1 = c̃πk .

Step 2: If k > K, stop; else k := k+1 and go to Step 1.

Analogous to Proposition 1 for the value iteration, we can get the following convergence statement

where ‖•‖ denotes the infinity norm for both matrices and vectors.

Proposition 2 (Convergence of misspecified policy iteration) Suppose {ṽn}, {P̃k} and {ψ̃k} are generated

by Algorithm II and the learning functions g(·) and R(·) are strongly convex. Finally, suppose C(s,a;ψ)
is Lipschitz continuous in ψ with constant LC for all s and a and ‖ṽk‖ is bounded for all k. Then

‖ṽk − v∗‖ → 0 a.s. as k → ∞.
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Proof. We proceed to show that ‖vk − ṽk‖ → 0 as k → ∞ whereby the result follows by recalling that

by the convergence of policy iteration, ‖vk − v∗‖ → 0 as k → ∞. From Algorithm II, we have

‖vk+1 − ṽk+1‖= ‖cπk + γ(P∗)πk vk+1 − (c̃πk + γP̃πk

k ṽk+1)‖
= ‖cπk − c̃πk + γ(P∗)πk(vk+1 − ṽk+1)+ γ((P∗)πk − P̃

πk

k )ṽk+1‖
≤ LCN‖ψ∗ − ψ̃k‖+ γ‖(P∗)πk‖‖vk+1 − ṽk+1‖+ γ‖(P∗)πk − P̃

πk

k ‖‖ṽk+1‖.

It follows that

‖vk+1 − ṽk+1‖ ≤ LCN‖ψ∗ − ψ̃k‖+ γ‖(P∗)πk − P̃
πk

k ‖‖ṽk+1‖
1− γ‖(P∗)πk‖ =

LCN‖ψ∗ − ψ̃k‖+ γ‖(P∗)πk − P̃
πk

k ‖‖ṽk+1‖
1− γ

.

Recall that the learning problem for ψ∗ and P
∗ are both strongly convex, implying that ψ̃k → ψ∗ and

vec(P̃k) → vec(P∗) a.s. as k → ∞. Thus, by the boundedness of ṽk and by invoking the property that

‖vk −v∗‖→ 0 as k → ∞, we have that ‖vk − ṽk‖→ 0 a.s. as k → ∞. Therefore, ‖ṽk −v∗‖→ 0 a.s. as k → ∞.

4 MISSPECIFIED Q-LEARNING

When transition matrices are unavailable, a commonly adopted approach is Q-learning (Watkins and Dayan

1992). We consider a misspecified variant of Q-learning that incorporates learning of the misspecified

cost and examines the resulting sequence of estimators. We begin by defining the Q-function as Q(s,a),
C(s,a;ψ∗)+ γ ∑s′∈S P

∗(s′|s,a)v(s′), which allows for restating as follows:

Q(s,a),C(s,a;ψ∗)+ γ ∑
s′∈S

P
∗(s′|s,a)max

b∈A
Q(s′,b). (3)

We define the operator T as

T [Q(s,a)],C(s,a;ψ∗)+ γ ∑
s′∈S

P
∗(s′|s,a)max

b∈A
Q(s′,b).

Then the Q-function is the fixed point of the operator T ; i.e. Q = T [Q]. Given the vector ψ̃k in the cost

at iteration n, we may define the misspecified operator T̃k at iteration n as

T̃kQ(s,a) , C(s,a; ψ̃k)+ γ ∑
s′∈S

P
∗(s′|s,a)max

b∈A
Q(s′,b).

As in previous sections, we may specify our misspecified Q-learning scheme as follows:
Algorithm III: Misspecified Q-learning.

Let Q̃0(s,a) ∈ R, ψ̃0 ∈ Ψ, β0 > 0 and k = 0.

Step 1: For all n ≥ 0,

Q̃k+1(s,a) := (1−δ )Q̃k(s,a)+δ

[
C(s,a; ψ̃k)+ γ max

b∈A
Q̃k(s

′,b)

]
, (Q−update)

ψ̃k+1 := ΠΨ (ψ̃k −βk(∇R(ψ̃k)+uk)) , (Learning-ψ)

where δ ∈ (0,1), s′ is the random next state reached when the current state is s and action is a, and uk = ∇R(ψ̃k;ξk)−∇R(ψ̃k) with

R(ψ), E[R(ψ;ξ )].
Step 2: If n > K, stop; else k := k+1 and go to Step 1.

Our convergence analysis begins with a reproduction of two classical results regarding the operator T̃ ,

which may be directly applied to the misspecified operator T̃k. First, T̃k is a contraction mapping.
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Proposition 3 (Contractive property of T̃k (Tsitsiklis and Sutton 1994)) If 0 ≤ γ < 1, then ‖T̃k[Q1]−
T̃k[Q2]‖∞ ≤ γ‖Q1 −Q2‖∞ for any two vectors Q1 and Q2.

Second, the estimated Q-function stays bounded.

Proposition 4 (Boundedness of Q function (Gosavi 2006)) There exists Q̂max such that ‖Q̂k‖∞ ≤ Q̂max

for any k.

We now provide an intermediate lemma that provides a constant steplength error bound on a suitably

defined metric D.

Lemma 3 For any state-action pair (s,a), suppose Dk(s,a) = Q̄(s,a)−zk and zk(s,a) be defined as follows:

zk+1(s,a) = (1−δ )zk(s,a)+δγwk(s,a), z0(s,a) = 0. (4)

Then for any k, we have that E[‖Dk‖∞]≤
(

O

(
1

k
1
2
−α

)
+ γ2

1−γ

√
δW 2

max

2−δ

)
, where 0 < α < 1/2.

Proof. We utilize an approach employed by Beck and Srikant (2012) and begin by defining the error

Q̄k(s,a) as Qk(s,a), Q̃k(s,a)−Q(s,a). Using (3) and (Q−update), the error can be written as

Qk+1(s,a) = (1−δ )Qk(s,a)+δ

[
C(s,a; ψ̃k)+ γ max

b∈A
Q̃k(s

′,b)−Q(s,a)

]

= (1−δ )Qk(s,a)+δ

[
C(s,a; ψ̃k)−C(s,a;ψ∗)+ γ max

b∈A
Q̃k(s

′,b)− γ ∑
s′∈S

P
∗(s′|s,a)max

b∈A
Q(s′,b)

]

= (1−δ )Qk(s,a)+δ (C(s,a; ψ̃k)−C(s,a;ψ∗))

+δγ ∑
s′∈S

P
∗(s′|s,a)

(
max
b∈A

Q̃k(s
′,b)−max

b∈A
Q(s′,b)

)
+δγwk(s,a)

= (1−δ )Qk(s,a)+δ (C(s,a; ψ̃k)−C(s,a;ψ∗))+δ (T Q̃k(s,a)−T Q(s,a))+δγwn(s,a),

where wk(s,a) = maxb∈A Q̃k(s
′,b)−∑s′∈S P

∗(s′|s,a)maxb∈A Q̃n(s
′,b). If zk is defined by (4) (as done by

Beck and Srikant (2012)), then the following holds for the second moment:

E[‖zk‖2]≤

√
γ2δW 2

max

2−δ
, (5)

where W 2
max = |S ×A |4Q̂2

max with |S | being the cardinality of the set of states and |A | being the cardinality

of the set of possible actions. By defining the sequence Dk , Qk − zk, we may bound it as follows:

Dk+1(s,a) = (1−δ )Dk(s,a)+δ (C(s,a; ψ̃k)−C(s,a;ψ∗))+δ (T Q̃k(s,a)−T Q(s,a))

=⇒ |Dk+1(s,a)| ≤ (1−δ )|Dk(s,a)|+δLC‖ψ̃k −ψ∗‖+δ‖T Q̃k(s,a)−T Q(s,a)‖∞

≤ (1−δ )|Dk(s,a)|+δLC‖ψ̃k −ψ∗‖+δγ‖Q̃k −Q‖∞ ≤ (1−δ )‖Dk‖∞ +δLC‖ψ̃k −ψ∗‖+δγ‖Qk‖∞,

where the first inequality follows from the Lipschitz continuity of the cost function and the second inequality

follows from Proposition 3. Therefore,

‖Dk+1‖∞ ≤ (1−δ )‖Dk‖∞ +δLC‖ψ̃k −ψ∗‖+δγ‖Qk‖∞

≤ (1−δ )‖Dk‖∞ +δLC‖ψ̃k −ψ∗‖+δγ(‖Dk‖∞ +‖zn‖∞)

= (1−δ (1− γ))‖Dk‖∞ +δLC‖ψ̃k −ψ∗‖+δγ‖zk‖∞.
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We may then derive a bound for Dk:

‖Dk‖∞ ≤ (1−δ (1− γ))‖Dk−1‖∞ +δLC‖ψ̃k−1 −ψ∗‖+δγ‖zk−1‖∞

≤ (1−δ (1− γ))2‖Dk−2‖∞ +(1−δ (1− γ))δLC‖ψ̃k−2 −ψ∗‖+δLC‖ψ̃k−1 −ψ∗‖
+(1−δ (1− γ))δγ‖zk−2‖∞ +δγ‖zk−1‖∞

≤ ...

≤ (1−δ (1− γ))k‖D0‖∞ +δLC

k−1

∑
l=0

(1−δ (1− γ))l‖ψ̃k−1−l −ψ∗‖+δγ
k−1

∑
l=0

(1−δ (1− γ))l‖zk−1−l‖∞.

Recall that the learning problem for ψ∗ is strongly convex implying that for some λ and for all k, we have

E[‖ψ̃k −ψ∗‖]≤ λ√
k
. Therefore, for 0 < α < 1/2

E[‖Dk‖∞]≤ (1−δ (1− γ))k‖Q0‖∞ +δLC

k−1

∑
l=0

(1−δ (1− γ))lλ√
k−1− l

+δγ
k−1

∑
l=0

(1−δ (1− γ))l‖zk−1−l‖∞

≤ (1−δ (1− γ))k‖Q0‖∞ +δLC

k−1

∑
l=0

(1−δ (1− γ))lλ√
k−1− l

+
δγ

δ (1− γ)

√
γ2δW 2

max

2−δ

= O

(
1

k
1
2
−α

)
+

γ2

1− γ

√
δW 2

max

2−δ
,

where the second inequality utilizes E[‖zk‖∞]≤ E[‖zk‖2] together with the bound (5) and the last equality

utilizes a proof technique similar to that adopted in Prop. 1.

Proposition 5 (Constant steplength error bound for misspecified Q-learning) Suppose {Q̃k}, and {ψ̃k}
are generated from Algorithm III. Suppose the learning function R(·) is strongly convex in Ψ and C(s,a;ψ)
is Lipschitz continuous in ψ with constant LC for all s and a. Then, the following holds for any k, δ < 1,

and 0 < α < 1/2:

E
[
‖Qk‖∞

]
≤ O

(
1

k
1
2
−α

)
+

γ

1− γ

√
δW 2

max

2−δ
.

Proof. The result follows directly from Lemma 3, expression (5), and δ < 1:

E
[
‖Qk‖∞

]
≤ O

(
1

k
1
2
−α

)
+

γ2

1− γ

√
δW 2

max

2−δ
+

√
γ2δW 2

max

2−δ
= O

(
1

k
1
2
−α

)
+O

(√
δ
)
.

5 FINAL COMMENTS AND CONCLUDING REMARKS

Motivated by the increasing role of streaming data and misspecification in decision-making problems, we

consider the resolution of MDPs in which transition matrices are unknown and the cost functions are

misspecified. We develop extensions to value iteration, policy iteration and Q-learning through which

both misspecification is resolved while solving the original MDP in an asymptotic sense. A precise

characterization of the impact of learning on the resulting error bounds is provided in the context of value

iteration and Q-learning.
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We conclude with a short commentary on the nature of the error bounds. First, we assume that the

learning problems are strongly convex since deriving overall rate statements requires bounds on the expected

error in parameter estimates. In fact, the knowledge of the convexity constant in the learning problem

is crucial in the development of bounds. It is worth emphasizing that if mere convexity assumptions are

imposed on the learning problems, the currently adopted avenue cannot be utilized since error bounds are

only available in a functional value sense. Furthermore, while averaging-based techniques may be utilized

to resolve merely convex learning problems, such approaches provide bounds on the averaged iterates in

a functional sense but not on the solution iterates; in the absence of bounds on the solution iterates, one

cannot derive rate statements. Second, in the context of Q-learning, we develop a misspecified variant of

the constant steplength scheme. Naturally, diminishing steplength versions can also be developed which

will be the subject of future work. Third, throughout the paper, we assume that the learning problems are

static and consequently, rather than regret-based bounds, we derive error bounds on the optimal functional

value or solution.
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