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ABSTRACT

Sequential stochastic optimization has been used in many contexts, from simulation, to e-commerce, to

clinical trials. Much of this analysis assumes that observations are made soon after a sampling decision is

made, so that the next sampling decision can benefit from the most recent data. This assumption is not true

in a number of contexts, including clinical trials. In this paper we extend sequential sampling tools from

simulation optimization to be useful when there exists a delay in observing the data from sampling, with

a specific focus on the situation in which the sampling variance is unknown. We demonstrate the benefits

of doing so by benchmarking the optimization algorithms with data from a published clinical trial.

1 INTRODUCTION

Recent advances in simulation optimization are enabling effective use of sequential sampling to achieve

optimization goals. Some of these techniques are based on Bayesian principles (Chick and Inoue 2001,

Frazier, Powell, and Dayanik 2008), and others on heuristics (Chen 1996, Branke and Schmidt 2004, Chen

and Kelton 2005, Chen, Yücesan, Dai, and Chen 2010) or frequentist techniques (Kim and Nelson 2006,

Xu, Nelson, and Hong 2010). Significant advances are also found in others areas of operations (Gittins and

Jones 1974, Bertsimas and Mersereau 2007, Caro and Gallien 2007, Ahuja and Birge 2015), biostatistics

and health economics (Berry and Eick 1995, Pertile, Forster, and La Torre 2014).

One key decision in sequential sampling is whether to continue sampling, or whether to stop and make a

so-called implementation decision. In a simulation context, sequential sampling decisions might represent

allocations of alternative system designs to CPUs in an attempt to infer the mean performance of the

various alternatives in a way which helps the analyst identify the system design which has the largest mean

performance. In a health or medical context, sequential sampling decisions might represent the allocation

of patient pairs in a clinical trial, in an effort to infer whether a new treatment or clinical process is better

than an existing one. The vast majority of this literature assumes that outcomes are observed, alone or in

groups, before the next decision to take samples or to stop sampling arises. That is, this type of analysis

often assumes that delays in observing outcomes are not important in the decision process.
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But delays arise very naturally in many contexts, and can have practical importance. For example,

clinical trials and health technology assessments often involve delays between the time that a sampling

decision is made and the time that the outcome from that sample is ultimately observed. For example,

Marple et al. (2010) measured recovery two weeks after administering a comparator antibiotic for treating

acute sinusitis and Connor et al. (2015) measured the primary end point at 90 days in an adaptive trial

carried out by the stroke hyperglycemia insulin network effort.

This paper focuses on the design of a sequential experiment in which the observation on the outcome

of interest arrives with a fixed delay and the sampling variance is unknown. We assume that a number

τ ≥ 0 sampling allocation decisions are made between making an allocation and observing the data from

that allocation. This means that, when at least τ samples have been allocated and sampling continues,

there will be τ samples ‘in the pipeline’, whose outcomes are yet to be observed. We are interested in

knowing for how long sampling should continue before stopping, observing the remaining pipeline data,

and making an implementation decision.

Chick, Forster, and Pertile (2015) (hereafter CFP) derive a Bayesian decision-theoretic model of optimal

sequential sampling which allows for samples to arrive with a fixed delay when the sampling variance

is known. The authors apply the model to clinical trials and health technology assessments which seek

to compare two alternatives, one a ‘new’ health technology, the other an existing one. They allow for

on-line (‘earn while you learn’) and off-line learning as well as the absence or presence of two types of

sampling cost (marginal cost per sample, and discounting costs). Their model extends work in simulation

optimization (Chick and Gans 2009, Chick and Frazier 2012), biostatistics and health economics (Pertile,

Forster, and La Torre 2014).

This paper extends the model of CFP, summarized in section 2 to the case of an unknown sampling

variance. The extension proceeds in two steps: the first considers the use of predictive distributions in one

stage sampling plans; the second involves the specification of a diffusion model when sampling variances are

unknown. For the first step, we follow the standard technique of using a conjugate normal-inverse-gamma

distribution for the unknown mean and variance of a normal distribution (DeGroot 1970, Chick and Inoue

2001), and extend the treatment in a straightforward way to allow for delayed samples. For the second

step, the extension of an optimal stopping time for unknown variances is more subtle. When sampling

variances are known and the unknown mean is inferred through sampling, the continuation region C is

the set of sufficient statistics for the unknown mean as a function of time t, such as (µ̂t , t), for which it is

optimal to continue sampling. This can be handled by solving a free boundary problem for a heat equation

in one dimension, say µ̂t . When the sampling variance is also unknown, the sufficient statistic has an extra

dimension, say (µ̂t , σ̂
2
t , t), which adds an extra dimension, and associated numerical computation, to the

free boundary problem. At the same time, observing a diffusion over an interval of positive measure gives

full information about the sampling variance, but in applications the diffusion is really used as a surrogate

for observations at discrete time points (e.g., integer number of samples).

We seek an approximation to the stopping boundary of the continuation set which is not too challenging

computationally and which is appropriate to use when sampling and observing outcomes takes place at

discrete time points. One approach is to compute the solution to the diffusion under the assumption that the

sampling variance is known, and then plug in the sample variance estimator to rescale the optimal stopping

boundaries in an appropriate way. This approach has been tried in the past (Chick and Frazier 2012, for

example) but does not account for uncertainty in the sampling variance when modeling the progression of

the posterior mean on the sample path of the diffusion. We propose two alternatives below to handle the

approximation of the optimal stopping boundaries. Our goal is to model better the effect of not knowing

the sampling variance on the evolution of the sample path of the posterior mean. This, in turn, influences

the diffusion approximation which determines the optimal stopping boundaries. We hope to do so in a

way which does not require solving a higher dimensional free boundary problem for a diffusion than is

required for the case of a known sampling variance.
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These two alternative approaches are presented in section 3. The first endogenizes the increased

variance inside the trinomial grid which is used to solve the free boundary problem. The second adapts

the KG∗ approach (Chick and Frazier 2009, Frazier and Powell 2010), which has typically assumed a

known sampling variance, to the context here of an unknown sampling variance and potentially delayed

observations. Section 4 presents preliminary output.

There are several other papers which also model delays in samples. Hardwick, Oehmke, and Stout

(2006) account for Poisson arrivals and exponential delays, and develop heuristics to minimize losses. Caro

and Yoo (2010) show that certain bandit problems with stationary random delays satisfy an indexability

criterion as long as the order in which samples are observed is the same as the order in which they are

allocated. Hampson and Jennison (2013) incorporate delay in a group sequential trial within a Neyman-

Pearson hypothesis testing framework, minimizing the expected sample size of the trial subject to satisfying

prespecified Type I and Type II error rates.

2 OPTIMAL SEQUENTIAL SAMPLING WITH DELAY: KNOWN SAMPLING VARIANCE

This section recalls the model of CFP. A risk neutral decision-maker faces a choice between using a new

technology or an existing one to earn a monetary reward from treating a defined number of patients. The

difference between the expected reward of the new technology and the existing one (the sampling mean)

is unknown to the decision maker; the sampling variance is known. The decision maker has the option

to sample at a constant marginal cost before deciding which technology to use. The outcome of each

sampling allocation is observed with delay. If sampling commences, the solution to the optimal stopping

problem indicates whether the sampling statistics so far justify continuing to sample after each outcome is

observed, or whether the analyst should stop sampling so as to wait for the data in the ‘pipeline’ in order

to inform the adoption decision.

This framework is directly applicable to simulation optimization by allowing the difference in expected

rewards to be the difference in unknown means of two alternatives which are simulated in pairs (with

either CRN or independent random numbers), or comparing an alternative with unknown mean against a

known standard. At present, the framework does not allow for more than two alternatives, although we are

working to overcome that limitation. Another limitation which might be more significant in the simulation

context is the assumption that the delays are of fixed duration. This might not be a good assumption if the

run times of different alternatives vary widely.

2.1 Basic Framework

CFP consider a two-armed, sequential experiment in which patients are allocated at random, and in a pairwise

manner, to either a control (standard) technology or a new technology. There is a cost c ∈ R≥0 ≡ [0,∞)
per pairwise allocation made. The experiment evaluates which of the two technologies should be used to

treat P ∈R≥0 patients upon stopping the trial. A switching cost I ∈R≥0 is incurred if the decision is made

to move to the new technology. No cost is incurred if the decision is made to continue with the standard

technology.

The data collected for each patient is the measure of effectiveness, denoted by the random variable

En ∈R if the patient is assigned to the new technology and Ec ∈R if the patient is assigned to the control.

The patient-level costs of using each technology are the random variables Cn ∈ R≥0 and Cc ∈ R≥0. CFP

assume that all patients complete their assigned course of treatment, there is no loss to follow up, and En,

Ec, Cn and Cc are observed without measurement error.

Following standard approaches in Bayesian decision-theoretic models (e.g., Pertile, Forster, and La

Torre 2014, Lewis, Lipsky, and Berry 2007 and Berry and Ho 1988), a common unit of measurement is

used to value benefits and costs. The realisation of the individual level incremental net monetary benefit

( INMB ) of the new technology versus the existing one for pairwise allocation i is:

Xi = λ (En,i −Ec,i)−δCE(Cn,i −Cc,i), (1)
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where λ ∈ R>0 ≡ (0,∞) is the monetary value of one unit of effectiveness and δCE = 1 if the experiment

assesses cost-effectiveness and δCE = 0 if it assesses effectiveness only. The authors assume that Xi ∼
Normal(W,σ2

X), i = 1,2, . . . ,Tmax, where Tmax is the maximum number of pairwise allocations which can be

made. W is assumed to be unknown and σ 2
X is assumed known. The prior distribution on W is assumed to

be Normal(µ0,σ
2
0 ). Then n0 = σ2

X/σ2
0 is the so-called effective number of samples in the prior distribution,

to be consistent with Bayesian nomenclature.

The annual rate of accrual is constant and equal to R ∈ Z>0. Realisations of X arrive with a delay of

τ ∈Z≥0, τ < Tmax, where Tmax is the maximum number of patient pairs which may be observed. Realizations

are used to update the prior/posterior distribution of W in a sequential manner. The model permits future

benefits and costs to be down-weighted using a discount factor. The annual continuous discount rate is

ρyear ≥ 0, so that ρ = ρyear/R is the continuous discount rate when time units are per patient pair allocation,

and ρ̃ = exp[ρyear/R]−1 is the discrete time discount rate per patient pair. CFP let δon = 1 if the rewards

for patients in the trial are to be included in the reward function (known as ‘online learning’) and δon = 0

if they are not (‘offline learning’).

Define T ≡ {0,1, . . . ,Tmax} and define T ∈ T as the time at which pairwise allocations cease to be

made. It is assumed that sampling cannot be restarted once pairwise allocations cease to be made. At

each t ∈ T\{Tmax}, an action at must be chosen from the set of available actions, A ≡ {0,1}, such that

at = 0 denotes ceasing to make pairwise allocations (so T = t) and at = 1 denotes making another pairwise

allocation (T > t).

For t ≤ τ , at is chosen only on the basis of prior information. For τ < t < Tmax, the action can be

a function of the realisations {Xi}1≤i≤t−τ . For t = τ, . . . ,Tmax − 1, the ordering of events is as follows:

action at is chosen; realisation Xt+1−τ is observed; prior on W is updated. If sampling continues as far as

t = Tmax, T = Tmax and sampling stops at this terminal stage.

Once sampling is stopped, the decision maker waits to observe all outcomes for the pipeline subjects

– those who have been treated but whose outcomes are yet to be observed – before making the technology

adoption decision. Define D ∈ {n,c} as the decision concerning whether to choose the new technology

(D = n) or the existing one (D = c). This adoption decision is made at time 0 if a0 = 0, because no samples

will be observed. It is made at time T + τ if a0 = 1, because of the delay in the arrival of observations.

More compactly, the adoption decision is made at time 1T>0(T +τ), where 1F is the indicator function,

equal to 1 if the event F is realized and 0 otherwise. The reward from selecting technology D is 1D=n(PW −I),
ignoring the cost of sampling and discounting.

Define F = (Ft)t∈T̄ as the natural filtration generated by the realisations ({Xi}i≤(t−τ)) for t ∈ T̄ ≡
{0,1, . . . ,Tmax +τ}. Note that Ft = F0 for t ∈ {0,1, . . . ,τ} due to the delay in the arrival of observations.

Define a variable tracking the effective sample size in the posterior distribution for W given information

available to time t ∈ T̄,

nt = n0 +(t − τ)+, (2)

where (m)+ = max(0,m). Define:

Yt = µ0n0 +
(t−τ)+

∑
i=1

Xi, (3)

where the sum is equal to 0 if the upper bound for the summation is less than 1.

Posterior beliefs about W at time t have a normal distribution

W |Ft ∼ Normal(µt ,σ
2
X/nt), where: (4a)

µt = Yt/nt . (4b)

(yt ,nt) may be used as a sufficient statistic for W conditional on Ft and (yt , t) may be used as a state

because it also provides information about the number of pipeline subjects.
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0 t T

Stage I
(recruitment only)

Stage II
(recruitment and updating)

Stage III
(updating only)

T+t
Figure 1: Stages of the optimal sequential sampling with delay problem with stopping time T and delay τ .

A policy π defines a mapping f (yt , t) : R×T\{Tmax} → A from states to a decision to stop or to

continue sampling, which in turn determines T . A policy π also specifies the choice of the new technology

or control, D ∈ {n,c}, as above. By construction, T ∈ T is a stopping time of the filtration F ; D ∈ {n,c}
is F1T>0(T+τ)-measurable and π is measurable with respect to F . Let Π be the set of all policies which

are measurable in this way with respect to F .

The expected reward from a policy π ∈ Π depends on the parameters of the prior distribution (µ0,n0),

and is determined by the cost of samples, benefits to patients during the trial (in the case of online learning),

and benefits from the technology adoption decision:

V π(µ0,n0) = Eπ

[{

T−1

∑
t=0

−c+δonXt+1

(1+ ρ̃)t

}

+
1D=n(PW − I)

(1+ ρ̃)1T>0(T+τ)

∣

∣

∣
µ0,n0

]

. (5)

The denominators account for discounting. The term 1T>0(T + τ) indicates that a penalty for discounting

is only relevant for the terminal reward if at least one pairwise allocation is made. The optimal sequential

sampling with delay problem of CFP is defined formally to be that of finding a policy π∗ ∈ Π such that

V π∗
(µ0,n0) = sup

π∈Π

V π(µ0,n0). (6)

CFP define three distinct stages of the trial in order to characterise the optimal policy. These stages

are illustrated in Figure 1. In Stage I (recruitment only, t ∈ {0,1, . . . ,τ − 1}) pairwise allocations are

made sequentially, no outcomes are observed owing to the delay. In Stage II (updating and recruitment,

t ∈ {τ,τ + 1, . . . ,T − 1}) pairwise allocations are made, realisations Xt+1−τ for pipeline subjects arrive

sequentially and are used to carry out Bayesian updating. In Stage III (updating only, t ∈{T,T +1, . . . ,T +τ})

no pairwise allocations are made, observations on pipeline subjects arrive sequentially and are used to carry

out Bayesian updating.

2.2 Solution

CFP prove a number of structural results about the solution to this problem. First, they write the Bellman

equation for this problem and show that the following policy is optimal: at each step, maximize the expected

reward from choosing to continue to sample or to stop sampling in the Bellman equation and, when all data

are observed, pick the new alternative if it has a posterior mean of at least I/P (the threshold determined

by spreading adoption costs over all patients to benefit from the new technology); to continue with the

existing technology otherwise. CFP also observe that the set of (µt , t) for which it is optimal to continue

sampling is symmetric above and below the line µ = I/P when there is off-line learning and ρ̃ = 0.

In order to describe the posterior expected reward after all observations on pipeline subjects are observed,

given that stage III has just been entered, let Zt,s be the posterior expected INMB at the patient level, given

that t pairwise allocations have been made and that s outcomes are yet to be observed. Given the known
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sampling variance assumptions above, Zt,s and its predictive distribution (DeGroot 1970) are:

Zt,s = E[µt+s | Ft ,Xt+1,Xt+2, . . . ,Xt+s ]; (7)

Zt,s ∼ Normal

(

µt ,
σ 2

X s

nt(nt + s)

)

. (8)

As is customary, Zt,0 is taken to be a point mass at µt .

The optimal reward upon entering stage III at time T is shown to be:

G(µt , t) = (1+ ρ̃)−τ1t>0E[(PZT,min(T,τ)− I)+ | (µt , t),T = t]. (9)

where (µt , t) are the sufficient statistics given that t samples have already been allocated, and s = min{T,τ}
is the number of pipeline samples to be observed.

CFP describe the optimal reward during stage II is conceptually found by writing a continuous time

approximation to the Bellman equation which gives the expected reward of stopping or of continuing to

sample. This involves writing and solving a free boundary problem for a diffusion model / heat equation.

They solve this free boundary problem numerically by using a trinomial grid to approximate the resulting

diffusion model.

CFP solve for the optimal reward during stage I by using the predictive distribution for the expected

reward from the optimal one stage policy of length β = τ or less, and compare it with the expected reward

of continuing to stage II. The ‘Optimal Bayes One Stage’ policy chooses a sample size s∗(µ0;β ) so as to

maximise the net benefit of sampling and selecting a technology, in expectation, over fixed-length sampling

policies of length β or less:

s∗(µ0;β ) = arg max
s=0,1,...,β

{

s−1

∑
t=0

−c+δonµ0

(1+ ρ̃)t

}

+E

[

(PZ0,s − I)+

(1+ ρ̃)1s>0(s+τ)

∣

∣

∣
(µ0,0)

]

. (10)

These techniques all require modification in order to handle the case of unknown sampling variances.

The solutions for stages I and III are relatively straightforward, but the solution for stage II is more subtle.

3 OPTIMAL SEQUENTIAL SAMPLING WITH DELAY: UNKNOWN SAMPLING VARIANCE

This section describes a standard Bayesian inference model to handle the case of unknown variances. It

then summarizes how the model of CFP can be extended to handle the case of unknown sampling variances.

We will refer to several properties of the Student t distribution. Let φν(x) and Φν(x) be the density

function and cumulative distribution function, respectively, of a standard Student t distribution with ν
degrees of freedom. If Tν is a standard Student t random variable with ν degrees of freedom, we say that

µ +Tν/
√

κ is a three parameter Student t random variable, denoted St(µ,κ,ν), with precision κ . When

ν > 2, the variance is κ−1ν/(ν −2). Let Ψν [s] = E[(Tnu− s)+] =
∫ ∞

s (x− s)φν(x)dx denote the standard

Student t linear loss function. Note that Ψν [s] =
ν+s2

ν−1
φν(s)− sΦν(−s) for ν > 1 (Chick and Inoue 2001).

3.1 Model

We now suppose that the samples Xi are normally distributed and conditionally independent, given the

unknown mean and unknown sampling variance. Because they are unknown, we assume they are random

variables whose values are to be inferred. Let ς be the random variable whose realization is the sampling

variance σX
2. Then

Xi |W,ς
iid∼ Normal(W,ς).

We presume that the prior distribution for each unknown mean and variance is in the family of conjugate

priors for normally distributed samples with unknown means and variances (DeGroot 1970, § 9.6),

ς ∼ InvGamma(ξ0,χ0), (11)

W |ς ∼ Normal(µ0,ς/η0),
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where ξ0 > 1 and χ0 are shape and scale parameters of an inverse-gamma distribution with mode χ0/ξ0

(one’s best a priori guess of σ2
X ), a finite mean E[ς ] = χ0/(ξ0−1), E[1/ς ] = ξ0/χ0 and Var[1/ς ] = ξ0/χ2

0 ,

and where µ0 and η0 describe the a priori mean and variance of the unknown sampling mean. It follows

that W is a St(µ0,ξ0η0/χ0,2ξ0) random variable and that Var[W ] = χ0/[(ξ0 −1)η0]. Thus, if ξ0 exceeds

1, then the a priori variance of W exists. For further discussion on choosing these parameters of the prior

distribution, see DeGroot (1970) or Bernardo and Smith (1994) or Chick and Frazier (2009).

With the prior distribution in Eq. (11), the posterior distribution has the same form. Given information

to time t, the data from the t +1st sample can be used to update the posterior distribution as follows:

ς |xt+1,Ft ∼ InvGamma(ξt+1,χt+1),

W |ς ,xt+1,Ft ∼ Normal(µt+1,ς/ηt+1),

W |xt+1,Ft ∼ St(µt+1,ηt+1ξt+1/χt+1,2ξt+1), (12)

where, for t = τ,τ + 1, . . ., we have ξt+1 = ξt + 1/2, χt+1 = χt +
ηt

2(ηt+1) (µt − xt+1−τ)
2, ηt+1 = ηt + 1,

and µt+1 = (ηt µt + xt+1−τ)/ηt (given a simple adaptation of DeGroot 1970 to account for delays). For

t = 0,1, . . . ,τ −1, no data arrives, so ξt+1 = ξt , χt+1 = χt , ηt+1 = ηt , and µt+1 = µt for those values of t.

With these modifications, the state vector for the case of an unknown sampling variance is (µt ,χt , t),
in comparison with the state (µt , t) for the case of a known sampling variance (ξt and ηt are functions of

t, given ξ0 and η0). This state vector is sufficient to summarize Ft for purposes of inference about X .

This leads us to a key requirement for generalizing our model to handle an unknown sampling variance

in section 3.2. Specifically, with this model we can obtain the distribution of the posterior distribution to

be realized after pipeline samples come in, given that sampling stops at time T = t, with state (µt ,χt , t),
and with min(T,τ) pipeline samples to arrive. Thus, we substitute Eq. (8) with (Chick and Inoue 2001)

Zt,s ∼ St

(

µt ,
ξtηt(ηt + s)

χt s
,2ξt

)

. (13)

3.2 Solution

The optimal solution to the sequential sampling with delay problem depends on solving stages I, II and III

as illustrated in Figure 1 and as discussed in section 2.2 for the case of known sampling variances.

Stage I and stage III are straightforward to modify to account for unknown variances. In particular,

the terminal reward function in Eq. (9) for stage III is modified to handle the case of unknown variances

by taking the expectation in its right hand side with respect to the Student-t distribution for Zt,s in Eq. (13)

rather than with respect to the normal distribution in Eq. (8). A similar change is sufficient to modify the

expectation in the right hand size of Eq. (10) for Stage I.

A more interesting challenge arises when attempting to adapt the solution for stage II, and there are

several potential plans of attack to compute (at least approximately) the optimal solution. The solution

for stage II in CFP is to use an optimal stopping problem for a continuous time diffusion, in the spirit

of Chernoff (1961) and many after, adapted to handle delayed observations. That technique computes

stopping boundaries which define a continuation set. That technique is appropriate for the case of known

sampling variances, but might introduce suboptimality if used with plug-in estimators for the unknown

sampling variance.

3.2.1 Scaling for Optimal Sequential Sampling with Known Sampling Variance and No Delay

We use results for the case of zero delay (τ = 0) and known σ2
X to motivate new results to handle the case

of τ ≥ 0 and unknown σ2
X , at least when one of c or ρ are 0.

When the discount rate is 0 and c > 0, Chick and Frazier (2012) give results for a special case (τ = 0,

known σ2
X , ρ = 0, large Tmax and offline learning) which justify bounding the continuation set C above
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and below by stopping boundaries:

b(nt) = (I/P)± (c/P)1/3σ
2/3
X b̃2(σ

2/3
X /((c/P)2/3nt)) (14)

where c1/3σ
2/3
X is the cube root of the inverse of the sampling efficiency (Hammersley and Hanscomb

1964, p. 22) and b̃2(s) is a specific increasing function s with b̃2(0) = 0 (Chick and Frazier 2012).

Importantly, both the mean and time are scaled in this result. The appropriate scaling factor for µt is

(c/P)1/3σ
2/3
X above and below I/P if there is no discounting and a positive marginal cost of sampling.

Time is scaled for b̃2 via σ
2/3
X /((c/P)2/3nt).

When the discount rate is positive and c=0, (Chick and Gans 2009, Online Companion) give an

approximation to the optimal stopping boundary for a special case (τ = 0, known σ2
X , ρ > 0, large Tmax

and offline learning) which justify bounding the continuation set C above by

b(nt) = (I/P)+σX

√

ρ/Pb̃1(1/ρnt) (15)

where b̃1(s) in Eq. (16) makes a slight improvement upon the approximation of ?Online Companion]chick:09a

b̃1(s) =







s/
√

2 if s ≤ 1/7

exp
[

−.0275(logs)2 + .8797logs− .5024
]

if 1/7 < s ≤ 100√
s [2logs− log logs− log16π]1/2

if 100 < s.

(16)

Thus, the appropriate scaling factor for µt is σX

√

ρ/P about I/P if there is positive discounting. Time

is scaled for b̃1 via 1/(ρnt). The associated stopping boundary is influenced by both of these scalings.

These results do not characterize the functional form of the lower boundary in our context when the discount

rate is positive – that boundary is computed here using the trinomial grid – but suggests that the same

scaling factor can be used to scale upper and lower boundaries about I/P.

We compute the case of c > 0, ρ > 0 numerically, and note a similar baseline of I/P when there is

offline learning. In the implementation reported below, we forced the stopping boundaries to be monotone

in order to manage to numerical stability issues. These issues arose for certain parameter combinations

especially when the variance is unknown.

3.2.2Approximation to Optimal Stopping Boundaries with Unknown Sampling Variance, Fixed Delay

We now turn to several potential mechanisms to approximate the optimal stopping boundary for the case of

delayed samples and an unknown sampling variance. Each approximation to the optimal stopping boundary

results in a different stopping rule: stopping continues as long as the statistics of the process are inside of the

stopping boundaries. The numerical results in section 4 illustrate the shape of those stopping boundaries.

The first mechanism is a plug-in estimator for the sampling variance in the formula for the stopping

boundaries. Chick and Frazier (2012) suggested this technique for the case of τ = 0, ρ = 0. This plug-in

approach is adapted to our context by substituting E[ς |Ft ] = χt/(ξt −1) for σ2
X in Eq. (14) for the case of

c > 0,ρ = 0 and in Eq. (15) for the case of c = 0,ρ > 0. Note that this substitution may change both the

space and time scaling of the boundaries, but is implementable by solving the PDE only once by assuming

the variance is known to be χ0/(ξ0 −1) and making the appropriate substitutions.

This first mechanism does not endogenize the variance of the sampling mean as it evolves on sample

paths of inference. That is, the free boundary problem (PDE) which is used in the diffusion to compute

the optimal stopping time does not fully account for the variance in the mean.

The second mechanism we propose now is to endogenize the variance of the posterior means in the

PDE by more fully modeling the variance in posterior mean over the interval [t, t + h], where h is the

time step in the trinomial grid for solving the PDE. This is done using the variance of Zt,h implied by

Eq. (13) rather than by Eq. (8). This technique increases the volatility of the diffusion, as desired, especially
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when few samples have been observed, because the variance of a Student-t random variable is a factor of

ν/(ν −2) times bigger than the variance of a normal distribution with the same precision parameter. This

is computed for a fixed value of σ2
X and the boundaries are then rescaled with a plug-in estimator as above.

The third mechanism we propose is to adapt the KG∗ framework to our context of unknown sampling

variances and delayed observations, with online or offline learning, and with zero or positive discounting.

Prior work on the KG∗ focused largely on its application to case of a known sampling variance. The KG∗
idea was originally proposed and used in numerical experiments by Chick and Frazier (2009) and was then

later analyzed more thoroughly by Frazier and Powell (2010).

To recall, the KG∗ idea is roughly based on the idea of one-stage sampling as follows. A one-stage

sampling policy is one for which exactly s samples are observed, and then a selection decision must be

made. In this context, this corresponds to having s pipeline samples together with information Ft to

time t, and using that information to select whether to adopt the new technology or to retain the existing

technology. Informally, if there is a one-stage sampling policy of length s ≥ 1 such that the expected value

of information from sampling exceeds its cost, then KG∗ suggests to continue sampling. If not, then KG∗
suggests stopping.

We now apply that idea to our context, and allow for both unknown sampling variances and for delays

in observations of samples. When in stage II of sampling, the expected value of sampling s more samples,

waiting to observe the outcomes, and selecting an alternative optimally is:

V̂s(t) = E

[{

s−1

∑
t=0

−c+δonXt+1

(1+ ρ̃)t

}

+
1D=n(PZt,s − I)

(1+ ρ̃)(s+τ)

∣

∣

∣
Ft

]

. (17)

Delay and the unknown variance are modeled via the distribution of Zt,s in Eq. (13). For t ≥ τ let

V̂ ∗(t) = max
s=0,1,...,Tmax−t

{

s−1

∑
i=0

−c+δonµt

(1+ ρ̃)i

}

+E

[

(PZt,s − I)+

(1+ ρ̃)(s+τ)

∣

∣

∣
Ft

]

. (18)

Formally, if ŝ∗(t) = 0 is the argmax of V̂ ∗(t) in Eq. (18), then the KG∗ stopping rule, adapted to this

context, says to stop sampling. If ŝ∗(t)> 0 is the argmax of V̂ ∗(t) in Eq. (18), then the KG∗ stopping role

says to continue sampling. Ties for the argmax can be broken by taking the larger value of s. In summary,

sampling stops unless there is a feasible non-zero length one-stage policy whose expected reward is at least

as great as the expected reward of stopping.

The maximum in Eq. (18) may be computationally tedious to compute when Tmax is even a moderate

amount larger than t. It is therefore interesting to get approximations to values of s which are close to

the maximizer of V̂s(t) for a given t. When the discount rate is zero and the sampling variance is known,

analytic approximations have been given by Frazier and Powell (2010) for off-line learning and by Ryzhov,

Frazier, and Powell (2010) for online learning. An interesting area of future work would be to identify

good approximations for the general case of unknown variances. In computational results below, we test

the maximum over s ∈ {1,21/2,2,23/2, . . . ,min(128,Tmax− t)} in order to approximate the continuation set

for KG∗ in a computationally reasonable way.

4 NUMERICAL RESULTS

Figure 2 displays results motivated by an application from a published study. Moses et al. (2003) and Cohen

et al. (2004) report on a clinical trial and health technology assessment to compare drug eluting stents

(DES) with bare metal stents (BMS). We use data from those papers and some additional assumptions.

We assume the same rate of patient enrolment and a one year time delay, so τ = 904 (based on the study’s

enrolment of 529 patient pairs in 7 months); and σX = 17538. Additional assumptions include I = 0;

P = 5× 106; c = 800; Tmax = 4000; µ0 = 0; zero discounting; offline learning; n0 = 20 for the known

variance case, and η0 = 20,ξ0 = 40 for the unknown variance case. CFP study this problem under the

assumption of a known sampling variance. Here, we explore the case of unknown variance.
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(a) Known (‘+’) and unknown (‘o’) variance with PDE (with

t0 in graph set to n0 from known variance model).
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(b) PDE (‘+’) and KG∗ (‘o’) with unknown variance (with

t0 in graph set to η0 from unknown variance model).

Figure 2: Advantage of the Optimal Bayes Sequential policy over two alternative policies using the

illustrative simulations (averages ± 1.96 standard errors are also shown)

Figure 2(a) illustrates the first two mechanisms for approximating the optimal stopping boundaries

described in section 3.2.2. The first mechanism, which assumes a known sampling variance in the PDE, is

labeled with ‘UnkVariance = 0’. The second mechanism is labeled ‘UnkVariance = 1’. The x-axis gives n0

+ the number of patients started, the vertical axis gives the posterior mean INMB per patient. The delay

is seen at n0 + τ ≈ 924, after which stage II starts. From 924 to 4024 on the x-axis, we see the stopping

boundary (with ‘o’) when the PDE endogenizes the uncertainty due to an unknown sampling variance is

inside of the boundary (with ‘+’) when the sampling variance is assumed known.

We further interpret Figure 2(a). Stage 1: If the prior mean µ0 exceeds 17500 then it is optimal

to not run a trial and to immediately adopt. If µ0 is between 16000 and 17500, then the dots (for the

first mechanism) and circles (for the second mechanism) in the range of 200-900 on the x-axis indicate

it is optimal to run a one-stage trial of the given length. If µ0 is between -16000 and 16000, then it is

optimal with both mechanisms to take at least τ samples and to continue into stage II (sequential sampling).

Sampling continues until the posterior mean crosses the line with the ‘+’ symbols (for the first mechanism)

or circles (for the second mechanism), after the appropriate corrections to those curves are made with the

plug-in estimator for σ 2
X .

Figure 2(b) serves to explain the second mechanism (as above; labeled now with ‘DOPDE = 1’) and

third mechanism (adaptation of KG∗; labeled with ‘DOPDE = 0’) for approximating the optimal stopping

boundaries described in section 3.2.2. As KG∗ uses a subset of potential future stopping plans (namely, the

one-stage sampling plans), it is not surprising that the continuation set for KG∗ is inside of the continuation

set for the PDE-based stopping rule. The KG∗ continuation set has, however, the advantage of not requiring

a free boundary problem for a diffusion to be solved.

5 CONCLUSIONS

This paper proposed new estimators for the continuation sets of stochastic optimization tools for the special

case of comparing two alternatives. Contributions are new proposals to handle unknown sampling variances
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in a setting which can handle delayed samples, in addition to other (more studied) features such as online

and offline learning, discounting and marginal costs per samples.

This is preliminary work for a more detailed study of the properties of the proposed approximations

to the continuation sets, and additional numerical analysis. Initial results suggest that endogenizing the

sampling variance in the PDE which determines optimal stopping boundaries seems to lead to somewhat

smaller continuation sets as compared to similar continuation sets when the sampling variance is known.

The KG∗ approach was also extended to this context, and provides an alternative which does not require

the solution of a free boundary PDE. Further work will also explore practical implications for costs and

benefits for clinical trials.
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