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ABSTRACT

General-purpose ranking and selection (R&S) procedures using bootstrapping were investigated by Lee

and Nelson in WSC ’14; their work provides the seminal idea for this study. Here we present bootstrap

R&S procedures that achieve significant computational savings by exploiting multiple comparison with

the best inference. We establish the asymptotic probability of correct selection for the new procedures,

and report some experiment results to illustrate small-sample performance, both in attained probability of

correct selection and computational efficiency relative to the procedures in Lee and Nelson.

1 INTRODUCTION

In Lee and Nelson (2014a), we presented general-purpose ranking and selection (R&S) procedures based on

bootstrapping. The strength of the procedures is that they are valid for many types of performance measures

(e.g., means, probabilities, variances or quantiles) and types of data (discrete- or continuous-valued and

almost arbitrary distributions). In fact, they can be applied to situations in which not all systems even

have the same output distribution family. Therefore, these procedures need not be tailored to the specific

performance measure of interest or an assumed distribution of the simulation output, unlike virtually every

other R&S procedure; see, for instance, Bechhofer, Goldsman, and Santner (1995) and Kim and Nelson

(2006). Thus, their strength is their generality—two procedures cover virtually all R&S problems—and

they are most valuable when there is no reason to be comfortable with specific distributional assumptions

on the simulation output.

However, the generality of the procedures of Lee and Nelson (2014a) comes at a price: They are based

on simultaneous confidence intervals for all pairs of differences of the performance measures of interest,

which is stronger inference than required for selecting the best, resulting in a larger sample size than is

really needed. Thus, one of the remaining challenges is to reduce the computational overhead to implement

bootstrap R&S.

Our goal in this study is to derive less-conservative procedures while retaining the advantages stated

above. To do this we introduce a bootstrap-based approach that exploits a connection between multiple

comparison with best (MCB) confidence intervals and R&S. MCB attacks the problem of selecting the

best system by forming simultaneous confidence intervals for the difference between the performance

of each system and the best of the others; k confidence intervals rather than k(k− 1)/2 for all-pairwise

multiple comparisons (MCA). MCB has been adapted for R&S problems in computer simulation before,

including Nelson and Matejcik (1995), who established a connection between indifference-zone selection

and MCB, and Damerdji and Nakayama (1999), who proposed MCB procedures in the context of steady-

state simulation. More general discussion about MCB procedures can be found in Hsu (1996) and Hochberg

and Tamhane (1987).
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We propose two new versions of the procedures that parallel those in Lee and Nelson (2014a): with or

without common random numbers (CRN). Our procedures are based on the bootstrap approach, exploiting

intense computation rather than distributional information. Under mild assumptions on the output data we

prove the asymptotic validity of the procedures. We also present results obtained from some experiments

to evaluate their small-sample behavior. The experiment results include comparisons to the previously

proposed bootstrap R&S procedures in Lee and Nelson (2014a).

2 RANKING & SELECTION AND MCB

First, we introduce the key notation. Let Xi j represent the jth observed output of system i, for i = 1,2, . . . ,k,

so that X j = (X1 j,X2 j, . . . ,Xk j)
T is a k×1 vector representing the jth observed output across all systems.

Throughout the paper, we assume that Xi1,Xi2, . . . are independent and identically distributed (i.i.d.) with

marginal distribution Fi(x) = Pr{Xi j ≤ x}. When we employ common random numbers (CRN), we can

consider X1,X2, . . . as i.i.d. with common joint distribution function F(x) = Pr{X1 j 6 x1, . . . ,Xk j 6 xk},

x = (x1, . . . ,xk)
T ∈ R

k. Let Θ = (θ1,θ2, . . . ,θk)
T be a vector whose ith element is a statistical property of

the marginal distribution Fi, such as its mean, a quantile, or a probability. Throughout the paper, we also

assume that larger θi is better and θ1 ≤ θ2 ≤ . . .≤ θk−1 < θk (unknown to us).

We are interested in finding the sample size that allows us to select the system with the largest value

of θi with a specified probability of correct selection (PCS) by choosing the one with the largest empirical

estimate θ̂i of it. The procedures in Lee and Nelson (2014a) build simultaneous fixed-width δ confidence

intervals for all θi −θ j, i 6= j with simultaneous coverage 1−α , and guarantee

Pr{select k|θk −θk−1 ≥ δ} ≥ 1−α

asymptotically where δ is the indifference-zone parameter. However, less is required to provide a PCS

guarantee. The following lemma establishes sufficient conditions under which (constrained) MCB intervals

can be formed, which has been proven in Hsu (1996).

Lemma 1 If

Pr{θ̂i − θ̂k − (θi −θk)≤ δ , ∀i 6= k} ≥ 1−α (1)

then with probability greater than or equal to 1−α

θi −max
j 6=i

θ j ∈ [−(θ̂i −max
j 6=i

θ̂ j −δ )−,(θ̂i −max
j 6=i

θ̂ j +δ )+] (2)

for i = 1,2, . . . ,k, where −x− = min{0,x} and x+ = max{0,x}.

With this lemma, we now approach the problem more directly by building MCB confidence intervals.

Let (1),(2), . . . ,(k) be indices such that θ̂(1) ≤ θ̂(2) ≤ ·· · ≤ θ̂(k). Lemma 1 implies that if we find sample

size n such that (1) holds, and we select the system with the largest performance estimate θ̂(k), then the

MCB confidence lower bounds guarantee with probability ≥ 1−α that

θ(k)−max
j 6=(k)

θ j ≥−(θ̂(k)−max
j 6=(k)

θ̂ j −δ )− ≥ −δ

where the last inequality follows from the definition of (k). This establishes that the selected system

is guaranteed to be the best system or within δ of the best, with probability ≥ 1−α . Furthermore, if

θk −θk−1 > δ , then the selected system is guaranteed to be the best system with probability ≥ 1−α .

On the other hand, from the MCB upper bounds we can conclude that with probability ≥ 1−α

θi −max
j 6=i

θ j ≤ (θ̂i −max
j 6=i

θ̂ j +δ )+.
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This means if the upper bound is zero, we can infer that system i is no better than the best; therefore, since

θk −max j 6=k θ j = θk −θk−1 > 0, system k will not be identified as one of inferior systems with probability

at least 1−α . Thus, procedures based on (1) allow us to select the best system, or a system within δ of

the best system, with a guaranteed probability.

3 PROCEDURES

In this section we describe algorithms for performing bootstrap R&S with a different method of selecting

the best system from Lee and Nelson (2014a). We guarantee the PCS more directly through (1), that

is, we form fixed-width δ simultaneous CIs on the difference between each system and the best of the

other systems, resulting k CIs, whereas the algorithms presented Lee and Nelson (2014a) were based on

fixed-width simultaneous CIs on all pairwise differences, resulting in k(k−1)/2 CIs. Typically, the more

fixed-width CIs we require to be simultaneously correct, the more observations are required to guarantee

it. We refer the reader to Swanepoel et al. (1983) and Lee and Nelson (2014a) for more details on how

bootstrapping is performed to generate a single (or multiple) fixed-width CI(s) for R&S for k ≥ 2 systems.

Let Xin = {Xi1,Xi2, . . . ,Xin} be a sample of size n from a system with output distribution Fi having

distributional property θi, and F̂in the empirical distribution function (ecdf) based on Xin for system i =

1,2, . . . ,k. Let θ̂(Xin) be an estimate of θi based on Xin for i = 1,2, . . . ,k, and θ̂i(k)(Xn) = θ̂(Xin)− θ̂(X(k)n)

for all i 6= (k). Let X∗
inb = {X∗

i1b,X
∗
i2b, . . . ,X

∗
inb}, b = 1,2, . . . ,B be B random samples of size n from F̂in. Let

θ̂(X∗
inb) be an estimate of θ̂(Xin) based on X∗

inb and θ̂i[k](X
∗
nb) = θ̂(X∗

inb)− θ̂(X∗
[k]nb) for all i 6= [k] where

[k] is the index of the system with the largest sample statistic, θ̂(X(k)n). We need the additional notation

because we use (k) to indicate the sample best, but θ̂(X∗
[k]nb) may not be the largest among the k bootstrap

estimates.

We want to build simultaneous fixed-width δ confidence intervals for the differences between each

system and the best of the rest, θi−max j 6=i θ j for i = 1,2, . . . ,k (i.e., MCB intervals) by finding n such that

Pr
{

θ̂i − θ̂k − (θi −θk)≤ δ , ∀i 6= k
}
> 1−α. (3)

We call a procedure for selecting the system with the largest performance estimate based on (3) R&S via

MCB.

In the bootstrap version of R&S via MCB, given Xin and X∗
inb for i = 1,2, . . . ,k; b = 1,2, . . . ,B, the

estimated coverage probability in (3) using bootstrapping is given by

P∗
nB =

1

B

B

∑
b=1

∏
i6=(k)

I
{

θ̂i[k](X
∗
nb)− θ̂i(k)(Xn)≤ δ

}
. (4)

Then the value of n will be the smallest one for which the estimated bootstrap coverage probability P∗
nB

in (4) is at least 1−α . Notice that in the bootstrap version of (3), simultaneous CIs for the differences

between each system and the sample best, instead of the true best, are formed as the sample best (k) is

estimated but θ1 ≤ ·· · ≤ θk−1 < θk is unknown.

We now present algorithms for performing bootstrap R&S via MCB in two versions, with CRN and

without CRN as in Lee and Nelson (2014a). We first describe the procedure without CRN.

Bootstrap R&S procedure via MCB without CRN

1. Specify N = n0, set 1/k < 1−α < 1, δ > 0, and ∆n ≥ 1.

2. Obtain XiN = {Xi1,Xi2, . . . ,XiN} a sample of size N from the distribution Fi for i = 1,2, . . . ,k.

3. Compute θ̂i(k)(XN) = θ̂(XiN)− θ̂(X(k)N) for all i 6= (k) where θi is a distributional property of Fi,

θ̂(XiN) is an estimate of θi based on XiN , and (k) = argmaxi=1,...,k θ̂(XiN). Form the ecdf F̂iN of

Fi for system i = 1,2, . . . ,k.
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4. Obtain B bootstrap samples of size N from F̂iN : X∗
iN1, . . . ,X

∗
iNB, i = 1,2, . . . ,k.

5. Compute θ̂i[k](X
∗
Nb) = θ̂(X∗

iNb)− θ̂(X∗
[k]Nb), b = 1,2, . . . ,B for all i 6= (k).

6. Estimate the PCS as

P∗
NB =

1

B

B

∑
b=1

∏
i6=(k)

I
{

θ̂i[k](X
∗
Nb)− θ̂i(k)(XN)≤ δ

}
.

7. If P∗
NB > 1−α , report argmaxi=1,...,k θ̂(XiN) as the best.

Else

Obtain Xi∆n a sample of size ∆n from the distribution Fi for i = 1,2, . . . ,k.
Set XiN = XiN ∪Xi∆n for i = 1,2, . . . ,k and N = N +∆n.

Go to Step 3.

End If

We also present the procedure with CRN below. In the algorithm with CRN, a sample will be taken

from each of the k systems using CRN across systems to induce a joint distribution on {F1,F2, . . . ,Fk},

denoted by F . Below we list only the steps that change from the Bootstrap R&S procedure via MCB

without CRN.

Bootstrap R&S procedure via MCB with CRN

2. Obtain a sample X j = (X1 j,X2 j, . . . ,Xk j)
T

j = 1,2, . . . ,N from the joint distribution F .

3. Compute θ̂i(k)(XN) = θ̂(XiN)− θ̂(X(k)N) for all i 6= j where θi is a distributional property of Fi,

and θ̂(XiN) is an estimate of θi based on XiN . Form the ecdf F̂N based on XN = {X1,X2, . . . ,XN}
as

F̂N(x) =
1

N

N

∑
j=1

I{X1 j 6 x1, X2 j 6 x2, . . . , Xk j 6 xk}.

4. Obtain B bootstrap samples of size N from F̂N : {X∗
1b,X

∗
2b, . . . ,X

∗
Nb} for b = 1,2, . . . ,B, where

X∗
jb = (X∗

1 jb,X
∗
2 jb, . . . ,X

∗
k jb)

T
for j = 1,2, . . . ,N.

7. If P∗
NB > 1−α , report argmaxi=1,...,k θ̂(XiN) as the best.

Else

Obtain X∆n = {X j, j = 1,2, . . . ,∆n} a sample of size ∆n from the distribution F .

Set XN = XN ∪X∆n and N = N +∆n.

Go to Step 3.

End If

The sample-size increment on each iteration, ∆n, will be generated adaptively as in Lee and Nelson

(2014b); ∆n is large when the bootstrap coverage probability is far from the desired PCS, and ∆n is small

when the bootstrap coverage probability is close to the desired PCS. Here we briefly describe the jump-ahead

algorithm in Lee and Nelson (2014b) adjusted to the MCB procedure.

Given an observed (N,P∗
NB) pair, we fit a simplified normal-theory approximation for PCS as a function

of N. Specifically, we compute the target sample size N̂∗ to obtain the desired PCS value (≥ 1−α) as

N̂∗ ≥ N ×

(
Ω−1

AIA⊤(1−α)

Ω−1

AIA⊤(P
∗
NB)

)2

and set ∆n = c(N̂∗ −N), where 0 < c < 1 and Ω and A are described in Definition 1, and (7), respectively,

in the next section, and I is the k×k identity matrix. We do this provided Ω−1

AIA⊤(P
∗
NB)> ε for some ε > 0;
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otherwise, ∆n = 2N. That is, we double the sample size if the bootstrap coverage probability P∗
NB is very

close to zero since fitting a simplified normal-theory approximation for PCS as a function of N will not

be applicable for such cases.

4 ASYMPTOTIC VALIDITY

The asymptotic results presented in this section support R&S via MCB using bootstrapping for k ≥ 2

systems when the performance measures are means or quantiles. Proofs can be found in Lee and Nelson

(2015). Our key notation is reviewed before stating the results.

Let Xn = {X1,X2, . . . ,Xn} be a random sample of size n from distribution F (in R
k) with a k× 1

vector of marginal distribution properties Θ, where X j = (X1 j,X2 j, . . . ,Xk j)
T , j = 1,2, . . . ,n. Further, let

X∗
n = {X∗

1,X
∗
2, . . . ,X

∗
n} denote a random sample of size n from F̂n where F̂n is the ecdf based on Xn defined

in one of two different ways as described in Step 3 of the algorithms with CRN and without CRN in Section

3.

Consider Θ = E[X] for the mean case. Then Θ̂(Xn) and Θ̂(X∗
n) are the sample mean vectors based on

Xn and X∗
n, respectively. That is Θ̂(Xn) = X̄n = ∑

n
j=1 X j/n and Θ̂(X∗

n) = X̄
∗
n = ∑

n
j=1 X∗

j/n.

For the quantile case, consider Θ being a set of specific quantiles of the k marginal distributions where

the ith element is defined as

θi = F−1
i (q) = inf{x : Fi(x)> q}, 0 < q < 1 i = 1,2, . . . ,k.

Then Θ̂(Xn) and Θ̂(X∗
n) are the sample qth quantiles based on Xn and X∗

n, respectively, where the ith

element of Θ̂(Xn) is the sample qth quantile of Xi1,Xi2, . . . ,Xin and the ith element of Θ̂(X∗
n) is the sample

qth quantile of X∗
i1,X

∗
i2, . . . ,X

∗
in. Let Pr and Pr∗ denote probabilities under F and F̂n, respectively.

The bootstrap stopping time used in our procedure is given by

N∗ = inf
{

n > n0 : Pr∗{AnΘ̂(X∗
n)−AnΘ̂(Xn)6 δ ·1k−1}> 1−α

}
(5)

where the linear transformation An is defined as follows:

An = [ai j], i = 1,2, . . . ,k−1; j = 1,2, . . . ,k (6)

where

ai j =





1, i = j for j < (k); i+1 = j for j > (k)

−1, 1 6 i 6 k−1; j = (k)

0, otherwise

and (·) denotes an index such that θ̂(X(1)n)≤ θ̂(X(2)n)≤ ·· · ≤ θ̂(X(k)n). We also need to define the linear

transformation A to state our theoretical results as follows:

A = [ai j], i = 1,2, . . . ,k−1; j = 1,2, . . . ,k (7)

where

ai j =





1, 1 6 i = j 6 k−1

−1, 1 6 i 6 k−1; j = k

0, otherwise.

To state our asymptotic results, we also need the following definitions:
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Definition 1

(a) For any c ∈ R and positive definite covariance matrix Σ, define ΩΣ : R 7→ [0,1] as

ΩΣ(c) =
∫

(−∞,c]k
(2π)−k/2|Σ|−1/2e−yT Σ−1y/2 dy. (8)

(b) For η ∈ (0,1), define aη = Ω−1
Σ (η) such that ΩΣ(aη) = η .

We now state the asymptotic validity of our generic R&S procedures in Theorems 1 and 2. These

results show two things: As the smallest difference we care to detect δ → 0, the sample-size stopping time

N∗ grows as O(1/δ 2), and the coverage of the MCB intervals (which guarantees PCS) converges to 1−α .

The theorems assume the number of bootstrap resamples B = ∞, which in practice means that B is large

enough that the bootstrap PCS estimate is reasonably precise.

Theorem 1 considers the performance measure being the mean, i.e., Θ = E[X]; this includes variances

and probabilities.

Theorem 1 Let Θ = E[X]. Suppose that E[|X−Θ|3] < ∞ and Σ = E
[
(X−Θ)(X−Θ)T

]
is a positive

definite matrix. Consider N∗ as defined in (5).

(a) As δ ↓ 0, we have

δ 2N∗ → a2
1−α a.s.

where a1−α = Ω−1
AΣAT (1−α).

(b) As δ ↓ 0, we have

Pr
{

AΘ̂(XN∗)−AΘ ≤ δ ·1k−1

}
→ 1−α.

The theorem below considers the quantile case; Θ is a set of specific quantiles of the k marginal

distributions.

Theorem 2 Let Fi be twice continuously differentiable in a neighborhood of θi and ζi = fi(θi)> 0, for

i = 1,2, . . . ,k, where fi is the density associated with Fi. Further, let Fi j be (i, j)th bivariate marginal

distribution function. Consider N∗ as defined in (5).

(a) As δ ↓ 0, we have

δ 2N∗ → a2
1−α a.s.

where a = Ω−1
AΣAT (1−α) with covariance matrix

Σ =




q(1−q)

ζ 2
1

σ12

ζ1ζ2

· · ·
σ1k

ζ1ζk

...
... · · ·

...
σk1

ζkζ1

σk2

ζkζ2

· · ·
q(1−q)

ζ 2
k




with

σi j = Fi j(θi,θ j)−q2.

(b) As δ ↓ 0, we have

Pr
{

AΘ̂(XN∗)−AΘ ≤ δ ·1k−1

}
→ 1−α.
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5 NUMERICAL RESULTS

This section illustrates computational improvements achieved by R&S via MCB compared to the MCA-

based procedure presented in Lee and Nelson (2014a). We also demonstrate that the new procedure is

robust to the distribution of the output data, unlike a normal-theory procedure due to Rinott (1978).

To establish the computational improvement, we consider systems with outputs having normal marginal

distributions when the performance measure θ is the mean. All results presented here are averaged over

100 macroreplications of the entire experiment. To speed up the procedure, the jump-ahead modification

introduced in Section 3 is incorporated for the sample-size increment ∆n.

In Tables 1–2, the true mean vector is the slippage configuration (5,5, . . . ,5,5+δ )⊤. In Tables 3–4, the

true mean vector is the monotone increasing means configuration with θi = 5+(i−1)(0.05), i = 1,2, . . . ,k.

Variances of the normally distributed output are all 1, and CRN are used inducing a correlation of 0.9.

We vary the initial sample size n0 and the number of systems of interest. The indifference-zone parameter

is δ = 0.1 or 0.05, the number of bootstrap resamples is B = 200, and the nominal confidence level is

1−α = 0.95 for all experiments.

Tables 1 and 3 report the results obtained from applying R&S via MCB, while Tables 2 and 4 report the

corresponding results obtained from the procedure based on fixed-width CIs for all-pairwise comparisons

(R&S via MCA) presented in Lee and Nelson (2014a). We distinguish “correct selection” (CS) from “good

selection” (GS): PCS refers to the probability of choosing the true best system, while PGS refers to the

probability of choosing the best, or a system within δ of the best system. As stated in Section 2, our

procedures provide a PGS guarantee. When the true difference between the best and the rest is ≥ δ , then

CS and GS are the same event.

Since both R&S via MCB and MCA are based on confidence intervals, we also evaluate their coverage.

In Tables 1 and 3, the estimated coverage probability is P∗
NB from Step 6 of the algorithm, and the true

coverage probability is computed as the fraction of macroreplications on which all k (constrained) MCB

intervals simultaneously cover θi −max j 6=i θ j for i = 1,2, . . . ,k. In Tables 2 and 4, the estimated coverage

probability is computed based on Step 6 of the algorithm in Lee and Nelson (2014a), and the true coverage

probability is computed as the fraction of macroreplications on which all k(k−1)/2 CIs simultaneously

cover θi −θ j for all i 6= j. We know that the estimated coverage will always be ≥ 0.95 because we do not

terminate the algorithm until it is; the true coverage results show that we do not overshoot by much.

In all cases the required sample size in R&S via MCB (Tables 1 and 3) is smaller than the corresponding

sample size of R&S via MCA (Tables 2 and 4). The PCS values in Tables 2 and 4 are larger than the

nominal PCS, while those in Tables 1 and 3 as much closer. For example, when k = 20 and n0 = 100,

the sample size in R&S via MCA is 257 and its PCS is 1.00, while the sample size in R&S via MCB is

141 and its PCS is 0.96. The sample size savings achieved by R&S via MCB increases as the number of

systems k increases and δ decreases. Therefore, as the number of systems increases, the new procedure

yields more sample-size savings; in addition, the bootstrap computational effort is greatly reduced relative

to R&S via MCA. In summary, R&S via MCB is clearly superior in these experiments.

If we knew the output distributions of our simulation were normal, then there would be no need for our

bootstrap R&S procedures. Their value comes from the fact that we never know the distributions for certain

in practice. To illustrate that R&S via MCB is robust, Table 5 reports results in the slippage configuration,

with or without using CRN, for problems with a mix of output distributions. Specifically, half of the systems

have normally distributed output and the other half of the systems have exponentially distributed output.

When employing CRN for this case, we used the NORTA method as described in Nelson (2013), with the

resulting correlation approximately 0.9. In Table 5, “n” and “e” indicate that the best system has normally

or exponentially distributed outputs, respectively. Notice that there are two cases where the nominal PCS

is not attained; the estimated PCS of 0.92 and 0.90 are around two standard errors from the nominal.

To illustrate that a robust R&S procedure is actually needed for this problem, we also applied Rinott’s

procedure to the n0 = 50 and k = 10 cases without CRN; these cases are indicated by the † in Table 5.

Rinott’s procedure is a two-stage, normal-theory procedure for which the sample size from each system
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Table 1: Empirical results of R&S via MCB from 100 macroreplications for normal distributions with

CRN under the slippage configuration.

k n0 δ Average N∗ PCS PGS Est. Coverage True Coverage Ave Jumps

10 50 0.1 119 0.94 0.94 0.96 0.94 3.29

10 100 0.1 119 0.96 0.96 0.96 0.96 2.38

20 50 0.1 143 0.92 0.92 0.96 0.92 3.61

20 100 0.1 141 0.96 0.96 0.96 0.96 2.98

Table 2: Empirical results of R&S via MCA from 100 macroreplications for normal distributions with

CRN under the slippage configuration.

k n0 δ Average N∗ PCS PGS Est. Coverage True Coverage Ave Jumps

10 50 0.1 205 0.98 0.98 0.96 0.96 4.12

10 100 0.1 205 1.00 1.00 0.96 0.98 3.72

20 50 0.1 260 1.00 1.00 0.96 0.98 4.74

20 100 0.1 257 1.00 1.00 0.96 0.98 3.99

Table 3: Empirical results of R&S via MCB from 100 macroreplications for normal distributions with

CRN under the monotone increasing means configuration.

k n0 δ Average N∗ PCS PGS Est. Coverage True Coverage Ave Jumps

10 50 0.05 494 1.00 1.00 0.96 0.98 3.54

10 50 0.1 121 0.84 1.00 0.96 0.93 3.68

20 50 0.05 581 1.00 1.00 0.96 0.97 3.49

20 50 0.1 143 0.92 1.00 0.96 0.98 3.61

Table 4: Empirical results of R&S via MCA from 100 macroreplications for normal distributions with

CRN under the monotone increasing means configuration.

k n0 δ Average N∗ PCS PGS Est. Coverage True Coverage Ave Jumps

10 50 0.05 814 1.00 1.00 0.96 0.94 4.82

10 50 0.1 205 0.97 1.00 0.96 0.96 4.12

20 50 0.05 1024 1.00 1.00 0.96 0.96 5.86

20 50 0.1 260 0.97 1.00 0.96 0.98 4.74

Table 5: Empirical results of R&S via MCB from 100 macroreplications for half exponential and half

normal distributions under the slippage configuration.

k n0 δ Average N∗ PCS PGS Est. Coverage True Coverage Ave Jumps CRN

10 (n)† 50 0.1 19207 1.00 1.00 0.97 1.00 4.37 N

10 (e)† 50 0.1 25191 0.98 0.98 0.96 0.98 6.01 N

10 (n) 50 0.1 7133 0.90 0.90 0.96 0.90 6.21 Y

10 (e) 50 0.1 5632 0.97 0.97 0.96 0.97 6.11 Y

20 (n) 50 0.1 27065 1.00 1.00 0.97 1.00 4.28 N

20 (e) 50 0.1 29779 0.95 0.95 0.96 0.95 5.71 N

20 (n) 50 0.1 7977 0.92 0.92 0.96 0.92 6.87 Y

20 (e) 50 0.1 6041 0.99 0.99 0.96 0.99 5.99 Y
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is proportional to its sample variance; it cannot exploit CRN. The average sample size per system for

Rinott’s procedure based on 100 macroreplications was 17,767 and 18,185, with corresponding PCS values

of 0.35 and 0.46, when the best system is exponentially distributed and normally distributed, respectively.

The corresponding sample size per system for our R&S via MCB was 19,207 and 25,191, and their PCS

values were 1.00 and 0.98, respectively. Clearly Rinott’s procedure—which assumes normally distributed

output—obtains too few samples, resulting in a PCS that is far from the nominal, while our R&S via MCB

attains at least the desired PCS.
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