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ABSTRACT

We consider the bi-objective simulation optimization (SO) problem on finite sets, that is, an optimization

problem where for each “system,” the two objective functions are estimated as output from a Monte Carlo

simulation. The solution to this bi-objective SO problem is a set of non-dominated systems, also called the

Pareto set. In this context, we derive the large deviations rate function for the rate of decay of the probability

of a misclassification event as a function of the proportion of sample allocated to each competing system.

Notably, we account for the presence of dependence between the estimates of each system’s performance

on the two objectives. The asymptotically optimal allocation maximizes the rate of decay of the probability

of misclassification and is the solution to a concave maximization problem.

1 INTRODUCTION

The simulation optimization (SO) problem is an optimization problem in which the objective(s) and

constraint(s) are estimated as output from a Monte Carlo simulation. The literature on SO on finite sets,

broadly called Ranking and Selection (R&S), is particularly rich in the context of a single objective (see,

e.g., Kim and Nelson 2006 for an overview). By comparison, the body of work on R&S in the presence of

multiple performance measures is new, and is developing along the classic lines of literature for a single

objective — class P procedures, which provide a finite-time guarantee on solution quality, and class L

procedures, which provide no finite-time guarantee on solution quality, and instead focus on providing

efficiency (Pasupathy and Ghosh 2013). Recent work on R&S in the context of multiple performance

measures, one of which is used as the objective function and the rest as constraints, includes a class

P procedure by Andradóttir and Kim (2010) and class L procedures by Lee et al. (2012), Hunter and

Pasupathy (2013), and Pasupathy et al. (2014).

R&S with multiple competing objectives has arguably seen less development to date than stochastically

constrained R&S, since we are not aware of any published class P procedures in this area. However the

current standard among class L procedures for efficient sampling in this context is Multi-objective Optimal

Computing Budget Allocation (MOCBA) (Lee et al. 2010). Under the assumption of normally distributed

simulation output, Lee et al. (2010) provide a heuristic sampling framework for the case of simultaneous

multiple objectives, developed along the lines of the popular Optimal Computing Budget Allocation (OCBA)

framework for a single objective by Chen et al. (2000). This procedure does not explicitly account for

correlation between the objectives. (See Butler, Morrice, and Mullarkey 2001 for a utility function approach

to multi-objective R&S; work on multi-objective SO on integer-ordered or continuous sets includes Ryu

et al. 2009, Kim and Ryu 2011b, Kim and Ryu 2011a, Huang and Zabinsky 2014, Li et al. 2015).

We provide mathematical results underlying a competing class L procedure for R&S in the case of

two objectives; our results specifically account for dependence between the objective vector estimates for
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a single system. (For corresponding work in the more-than-two-objectives case, see Feldman, Hunter, and

Pasupathy 2015.) In the bi-objective case, the solution to the R&S problem is a Pareto set, that is, a set of

systems that are non-dominated in the objectives. A misclassification event occurs if a truly Pareto system

is falsely estimated as non-Pareto or a truly non-Pareto system is falsely estimated as Pareto. To derive a

competing procedure, we employ a large deviations (LD) analysis to find the rate of decay of the probability

of a misclassification event as a function of the proportional simulation budget allocated to each of the

competing systems. We then characterize the asymptotically optimal sampling allocation as the solution

to a concave maximization problem that maximizes the rate of decay of a misclassification event. Our

work is preceded by Glynn and Juneja (2004), Szechtman and Yücesan (2008), Hunter (2011), Hunter and

Pasupathy (2013), Pasupathy et al. (2014), who likewise use an LD analysis to derive an asymptotically

optimal sampling allocation in the context of a single objective, a single constraint, and a single objective

with multiple constraints, respectively.

The asymptotically optimal sampling allocation we present cannot be implemented as written, since

we assume prior knowledge of the rate functions. However, our allocation can easily be incorporated into

a sequential sampling framework, as in Hunter (2011), Hunter and Pasupathy (2013), Pasupathy et al.

(2014), Hunter and McClosky (2015). Indeed, Hunter and McClosky (2015) presents an implementable

version of the proposed allocation for the special case in which the simulation output is Gaussian and

the two objectives are the mean and variance of the underlying Gaussian distribution; therefore the two

objective function estimators are independent. A numerical comparison of the approach with MOCBA

in the context of plant breeding is also included in Hunter and McClosky (2015). However, in more

general applications, solving for the optimal allocation requires solving a potentially burdensome bi-level

optimization problem. While this approach is successful in Hunter and McClosky (2015), we ideally seek

a framework that is easier to implement. Therefore we view this work as the first step in deriving easily

implementable Sampling Criteria for Optimization using Rate Estimators (SCORE) allocations (Pasupathy

et al. 2014) in the bi-objective context — that is, allocations that are provably optimal, in a certain rigorous

sense, both as the sampling budget tends to infinity and as the number of systems tends to infinity.

1.1 Problem Statement

Consider a finite set of r systems, each with unknown objective values gi ∈ IR and hi ∈ IR for i = 1,2, . . . ,r.

We wish to select the set of systems that are non-dominated in both objectives, where system k dominates

system i, written k � i, if gk ≤ gi and hk < hi, or gk < gi and hk ≤ hi. That is, we consider

Problem P : Find arg min
i∈{1,2,...,r}

(gi,hi),

where gi and hi are expectations, and estimates of gi and hi are observed together through simulation as

sample means. The solution to Problem P is the Pareto set of non-dominated systems

P := {systems i : ∄ system k ∈ {1,2, . . . ,r} such that k � i},

which we assume is unique.

Let ααα = (α1,α2, . . . ,αr) be a vector containing the proportion of the sampling budget allocated to each

system, where ∑
r
i=1 αi = 1 and αi ≥ 0 for all systems i = 1, . . . ,r. After the sampling budget has been

expended, a misclassification event occurs if a Pareto system has been falsely estimated as non-Pareto, or

non-Pareto system has been falsely estimated as Pareto. The probability of a misclassification event tends

to zero as the sampling budget tends to infinity. Then we ask, what proportional allocation of the sampling

budget ααα maximizes the rate of decay of the probability of misclassification as the sampling budget tends

to infinity?
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1.2 Assumptions

To estimate the unknown quantities gi and hi, we assume we may obtain replicates of the random variables

(Gi,Hi) from each system. We also assume the following, where i ≤ r is shorthand for i = 1,2, . . . ,r.

Assumption 1 We assume the random variables (Gi,Hi) are mutually independent for all i ≤ r.

That is, we develop a model to guide sampling that does not specifically account for correlation between

systems, such as the correlation that would arise with the use of common random numbers (CRN). Note that

we do account for correlation between objectives, since we do not require that Gi and Hi be independent

for a particular system i. We also require the following technical assumption which is standard in optimal

allocation literature, since it ensures all systems in the Pareto set are distinguishable on each objective with

a finite sample size.

Assumption 2 We assume gi 6= gk and hi 6= hk for all i ∈ P, k = 1,2, . . . ,r, i 6= k.

Since we employ a large deviations (LD) analysis, we require the following Assumptions 3 and 4,

included here for completeness. We refer the reader to Dembo and Zeitouni (1998) for further explanation;

we note that these assumptions are similar to those required in Glynn and Juneja (2004), Hunter and

Pasupathy (2013), and Pasupathy et al. (2014). First, we define the required notation.

Let the vector of sample means after n samples be (Ḡi(n), H̄i(n)) := ( 1
n ∑

n
k=1 Gik,

1
n ∑

n
k=1 Hik) for all

i = 1,2, . . . ,r. We define (Ĝi, Ĥi) := (Ḡ(αin), H̄(αin)) as the estimators of gi and hi after scaling the total

sample size n by αi > 0, the proportional sample allocation to system i. Since our analysis is asymptotic,

we ignore issues relating to the fact that αin is not an integer. Let Λ
(n)
(Gi,Hi)

(θθθ) = logE[e〈θθθ ,(Ḡi(n),H̄i(n))〉], be

the cumulant generating function of (Ḡi(n), H̄i(n)), where θθθ ∈ IR2 and 〈·, ·〉 denotes the dot product. Let

the effective domain of a function f (·) be denoted D f = {x : f (x) < ∞}, and its interior D◦
f . Let ∇ f (xxx)

be the gradient of f with respect to xxx. We make the following standard assumption.

Assumption 3 For each system i = 1,2, . . . ,r,

(i) the limit Λ(Gi,Hi)(θθθ) = lim
n→∞

1
n
Λ
(n)
(Gi,Hi)

(nθθθ) exists as an extended real number for all θθθ ∈ IR2;

(ii) the origin belongs to the interior of DΛ(Gi,Hi)
;

(iii) Λ(Gi,Hi)(θθθ) is strictly convex and C∞ on D◦
Λ(Gi,Hi)

;

(iv) Λ(Gi,Hi)(θθθ) is steep, that is, for any sequence {θθθ n} ∈DΛ(Gi,Hi)
converging to a boundary point of

DΛ(Gi,Hi)
, lim

n→∞
|∇Λ(Gi,Hi)(θn)|= ∞.

Assumption 3 implies that by the Gärtner-Ellis theorem, the probability measure governing (Ḡi(n), H̄i(n))
obeys the large deviations principle (LDP) with good, strictly convex rate function

Ii(xi,yi) = sup
θ∈IR2

{〈θθθ ,(xi,yi)〉−Λ(Gi,Hi)(θθθ)}

(Dembo and Zeitouni 1998, p.44). Let

(x,y) ∈ F
◦
(Hi,Gi)

= int{∇Λ(Hi,Gi)(θθθ) : θθθ ∈D
◦
Λ(Gi,Hi)

},

and let Fc
d denote the closure of the convex hull of the set {(gi,hi) : (gi,hi) ∈ IR2, i ∈ {1,2, . . . ,r}}.

Assumption 4 The closure of the convex hull of all points (gi,hi)∈ IR2 is a subset of the intersection of the

interiors of the effective domains of the rate functions Ii(xi,yi) for all i= 1,2, . . . ,r, that is, Fc
d ⊂∩r

i=1F
◦
(Gi,Hi)

.

Henceforth, for ease of notation, all vectors are column vectors. For brevity, we omit proofs of the

results.
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2 RATE FUNCTION DERIVATION

Consider a procedure to estimate the Pareto set that consists of expending some amount of simulation budget

n to estimate the objective values for each system, and then returning the estimated set of non-dominated

or Pareto systems to the user. Let us define the estimated Pareto set as

P̂= {systems i : ∄ system k ∈ {1,2, . . . ,r} such that k �̂ i},

where k �̂ i if and only if Ĝk ≤ Ĝi and Ĥk < Ĥi, or Ĝk < Ĝi and Ĥk ≤ Ĥi. Recall that ααα = (α1,α2, . . . ,αr) is

the proportional allocation of the total simulation budget n to the systems i ≤ r, where for now, we ignore

that nαi is not necessarily an integer. To derive an efficient sampling method, in this section, we construct

the rate function corresponding to the rate of decay of the probability of misclassification, as a function of

the proportion of the sample given to each system, ααα .

In the context of our estimation procedure, a misclassification (MC) event can occur in two ways. First,

misclassification by exclusion (MCE) is the event in which a truly Pareto system is falsely excluded from

the estimated Pareto set by being estimated as dominated by another system, be it Pareto or non-Pareto.

Second, misclassification by inclusion (MCI) is the event in which a truly non-Pareto system is falsely

included in the estimated Pareto set by being estimated as non-dominated. That is,

MCE := ∪
i∈P

∪
k≤r, k 6=i

(Ĝk ≤ Ĝi)∩ (Ĥk ≤ Ĥi)

︸ ︷︷ ︸
some i ∈ P dominated by some k

and MCI := ∪
j∈Pc

∩
k≤r, k 6= j

(Ĝ j ≤ Ĝk)∪ (Ĥj ≤ Ĥk).

︸ ︷︷ ︸
some j ∈ Pc not dominated by any k

A straightforward way of writing the MC event is MC := MCE∪MCI, and hence the probability of an

MC event is P{MC}= P{MCE∪MCI}. However, this probabilistic statement is difficult to analyze, since

there is dependence in the MCI term. We now reformulate the MC term for easier analysis, using what

we call phantom Pareto systems.

2.1 Misclassification event reformulation

Let us label the true Pareto systems by the ordering of their means as

g1 < g2 < .. . < gp−1 < gp < gp+1 := ∞ and h0 := ∞ > h1 > h2 > .. . > hp−1 > hp,

where p is the cardinality of P. Then the true Pareto systems are at the coordinates (gℓ,hℓ), for ℓ= 1, . . . , p,

where ℓ uniquely indexes the Pareto systems. To reformulate the misclassification event, we introduce the

notion of phantom Pareto systems. The phantom Pareto systems are constructed by taking the g coordinate

of the (ℓ+ 1)th Pareto system with the h coordinate of the ℓth Pareto system. More formally, the true

phantom Pareto systems are at the coordinates (gℓ+1,hℓ) for ℓ= 0,1, . . . , p, where we place phantom systems

at (g1,∞) and (∞,hp). There are a total of p+1 phantom systems. Assuming the true Pareto set is known,

Figure 1 displays the Pareto systems and the phantom Pareto systems. The phantom Pareto systems allow

us to rewrite the MCI term by considering the event in which non-Pareto systems falsely dominate the

phantom systems, resulting in an MCI event or MCE event.

Since the locations of the Pareto systems are unknown, the phantom Pareto systems must be estimated.

Define Ĝ[ℓ] and Ĥ[ℓ] as the ℓth order statistics of the estimated objectives of the true Pareto set. That is,

Ĝ[1] < .. . < Ĝ[p−1] < Ĝ[p] < Ĝ[p+1] := ∞ and Ĥ[0] := ∞ > Ĥ[1] > Ĥ[2] > .. . > Ĥ[p],

where the definitions of Ĝ[p+1] and Ĥ[0] hold for all n. Now the estimated phantom systems for the true

Pareto set are at coordinates (Ĝ[ℓ+1], Ĥ[ℓ]) for ℓ = 0,1, . . . , p. Define misclassification by dominating a

phantom system (MCIph) as

MCIph := ∪
j∈Pc

∪p
ℓ=0(Ĝ j ≤ Ĝ[ℓ+1])∩ (Ĥj ≤ Ĥ[ℓ]),

︸ ︷︷ ︸
some j ∈ Pc dominates some phantom system
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Figure 1: Suppose the true Pareto set is known. Then to be falsely estimated as Pareto without dominating

any of the true Pareto systems, the non-Pareto systems must be falsely estimated as being in the light-gray

MCI “region,” which implies that they dominate a phantom Pareto system. Non-Pareto systems falsely

estimated in the dark-gray region result in an MCE event.

and rewrite the misclassification event as MCph := MCE∪MCIph. The following Theorem 1 states the

equivalence of the probability of an MC event and the probability of an MCph event. This result was first

stated and proved in Hunter and McClosky (2015) in a slightly different context, but the result still holds

in our context.

Theorem 1 (Hunter and McClosky 2015) P{MC}= P{MCph}.

Since Theorem 1 holds, henceforth we use the notation P{MC} to refer to the probability of a misclassification

event.

2.2 Rate Function Derivation

Recall that our goal is to to identify the sampling allocation vector ααα that maximizes the rate of decay

of the P{MC}. Then letting ℓb = max(P{MCE},P{MCIph}), it follows that ℓb ≤ P{MC} ≤ 2ℓb, which

implies

− lim
n→∞

1

n
logP{MC}= min

(
− lim

n→∞

1

n
logP{MCE},− lim

n→∞

1

n
logP{MCIph}

)
, (1)

assuming the limit exists. (Also, recall that we have assumed αk > 0 for all k = 1, . . . ,r, so that each system

has nonzero sample for the derivation of the rate functions.)

2.2.1 Rate of Decay of P{MCE}

Since the rate function corresponding to the MCE term in equation (1) is most straightforward, we analyze

it first in the following Lemma 1. For brevity, for all i ∈ P,k ≤ r,k 6= i, define the rate function

Ri(αi,αk) := inf
xk≤xi, yk≤yi

αiIi(xi,yi)+αkIk(xk,yk).

Lemma 1 The rate of decay of P{MCE} is

− lim
n→∞

1

n
logP{MCE}= min

i∈P
min

k≤r,k 6=i
Ri(αi,αk).

Lemma 1 states that the rate of decay of P{MCE} is determined by the slowest rate function for the

probability that a Pareto system is falsely dominated by some other system. We note that a similar result

appears in Li (2012).
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2.2.2 Rate of Decay of P{MCIph}

Now, consider the term corresponding to MCIph in (1). To begin, when considering the MCIph event, note

that many arrangements of the true Pareto systems can occur. In addition to some system j dominating a

phantom Pareto system, the Pareto systems themselves may be estimated out of “order;” hence the need

for order statistics in the statement of MCIph.

To handle details of the ordering of Pareto systems, we require additional notation. Recall that we

labeled the Pareto systems from 1,2, . . . , p. Let O= {(1,1),(2,2), . . . ,(p, p)} be an ordered list denoting

the positions of the true Pareto set on each objective, where we “count” from left to right and top to

bottom according to the ordering in Figure 1. For example, Pareto system 1 is in “position 1” on objective

g (smallest) and “position 1” on objective h (largest), corresponding to (1,1), and Pareto system 2 is in

position 2 on objective g (2nd smallest) and position 2 on objective h (2nd largest), corresponding to (2,2),

and so on. Let Ô denote the ordered list of estimated positions of the true Pareto set. Then the first element

in the list Ô will be (2,6) if Pareto system 1 is estimated as being in the position 2 on objective g and

position 6 on objective h. Let S denote a (fixed) realized instance of Ô, where S is an ordered set of p

elements of the form {(x1,y1),(x2,y2), . . . ,(xp,yp)} where the x and y coordinates are separately drawn

without replacement from the set of Pareto indices {1,2, . . . , p}. Define MCIph without order statistics as

MCI∗ph := ∪
j∈Pc

∪p
ℓ=0(Ĝ j ≤ Ĝℓ+1)∩ (Ĥj ≤ Ĥℓ),

where Ĝp+1 := ∞, Ĥ0 := ∞ for all n. The following Lemma 2 breaks down the P{MCIph} rate into rates

that explicitly account for the Pareto set “ordering,” and then shows that the only rate that can be the

unique minimum when determining the overall rate of decay of P{MC} is the rate corresponding to the

probability that MCI∗ph occurs and the Pareto ordering is estimated correctly.

Lemma 2 The rate of decay of P{MC} is

− lim
n→∞

1

n
logP{MC}= min

(
− lim

n→∞

1

n
logP{MCE},− lim

n→∞

1

n
logP{MCI∗ph ∩ Ô= O}

)
. (2)

Loosely speaking, the result in Lemma 2 makes sense: the event that a false inclusion occurs and the

true Pareto set is estimated “out of order” is, intuitively, less likely than the event that a false inclusion

occurs while the true Pareto set is estimated “in order.” The proof proceeds by bounding the rate of decay

of all other events below by the rate of decay of P{MCE}. In the following Theorem 2, we present the

overall rate of decay of P{MC}, where for brevity in Theorem 2 and the remainder of the paper, for all

j ∈ Pc, ℓ= 0, . . . , p, define the rate function

R j(α j,αℓ,αℓ+1) :=





inf
x j≤x1

α jI j(x j,y j)+α1I1(x1,y1) if ℓ= 0

inf
x j≤xℓ+1, y j≤yℓ

α jI j(x j,y j)+αℓIℓ(xℓ,yℓ)+αℓ+1Iℓ+1(xℓ+1,yℓ+1) if ℓ ∈ {1, . . . , p−1}

inf
y j≤yp

α jI j(x j,y j)+αpIp(xp,yp) if ℓ= p,

where α0 := 1 and αp+1 := 1. This rate function corresponds to the rate of decay of the probability of a

subset of events contained in MCI∗ph ∩ Ô= O (from Lemma 2). Then Theorem 2 follows.

Theorem 2 The rate of decay of the probability of misclassification is

− lim
n→∞

1

n
logP{MC}= min

(
min
i∈P

min
k∈P,k 6=i

Ri(αi,αk),min
j∈Pc

min
ℓ=0,...,p

R j(α j,αℓ,αℓ+1)

)
.

Theorem 2 states that the overall rate of decay of P{MC} is the minimum of two rates. The first

rate corresponds to the minimum pairwise rate of decay of the probability that Pareto systems falsely
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exclude each other (MCE), and the second rate corresponds to the minimum “pairwise” rate of decay of

the probability that a non-Pareto system falsely dominates a phantom Pareto system (MCIph). Note that

the rate of decay of the probability that a Pareto system is falsely excluded by a non-Pareto system is

accounted for in the second rate corresponding to MCIph, since a non-Pareto system falsely excludes a

Pareto system if and only if it also falsely excludes a phantom Pareto system.

2.3 OPTIMAL ALLOCATION STRATEGY

Since Ri(αi,αk) and R j(α j,αℓ,αℓ+1) are concave functions of (αi,αk) and (α j,αℓ,αℓ+1), respectively, for

all i,k ∈ P, j ∈ Pc, and ℓ = 0,1, . . . , p, the asymptotically optimal sample allocation can be expressed as

the solution to the concave maximization problem

Problem Q : maximize z s.t.

Ri(αi,αk)≥ z for all i,k ∈ P,k 6= i,

R j(α j,αℓ,αℓ+1)≥ z for all j ∈ P
c, ℓ= 0, . . . , p,

∑
r
i=1 αi = 1, αi ≥ 0 for all i ≤ r,

where, for some i,k ∈ P, k 6= i and a given value of (αi,αk), the value of Ri(αi,αk) is obtained by solving

Problem RP
ik : minimize αiIi(xi,yi)+αkIk(xk,yk) s.t. xk ≤ xi, yk ≤ yi,

and for some j ∈ Pc, ℓ ∈ {0, . . . , p}, and a given value of (α j,αℓ,αℓ+1), the value of R j(α j,αℓ,αℓ+1) is

obtained by solving

Problem R jℓ : minimize α jI j(x j,y j)+αℓIℓ(xℓ,yℓ)I[ℓ6=0] +αℓ+1Iℓ+1(xℓ+1,yℓ+1)I[ℓ6=p]

s.t. (x j − xℓ+1)I[ℓ6=p] ≤ 0, (y j − yℓ)I[ℓ6=0] ≤ 0.

Recall that Problems RP
ik and R jℓ are strictly convex minimization problems for which the KKT conditions

are necessary and sufficient.

Problem Q has p× (p−1) constraints corresponding to controlling the rate of decay of P{MCE} and

(r− p)×(p+1) constraints corresponding to controlling the rate of decay of P{MCIph}. Slater’s condition

(Boyd and Vandenberghe 2004) holds for this problem, so the KKT conditions are necessary and sufficient

for global optimality.

We remind the reader that to solve Problem Q and obtain the asymptotically optimal sampling allocation,

we would have to know the entire rate function. Since the rate function is unknown, the optimal allocation

cannot be implemented as written, but must be incorporated into some type of sequential sampling framework,

as in Hunter and Pasupathy (2013), Pasupathy et al. (2014), Hunter and McClosky (2015). Broadly, the

philosophy in these papers is to assume knowledge of the distributional family, e.g., normal, and use plug-in

estimators for the distributional parameters. While this approach is somewhat theoretically controversial

(Glynn and Juneja 2011), it is numerically successful; in particular, see Pasupathy et al. (2014), Hunter

and McClosky (2015).

3 CONCLUDING REMARKS

We have characterized the asymptotically optimal sampling allocation for bi-objective R&S problems, fully

accounting for dependence between the objectives. Since the computational complexity of Problem Q

increases with the number of systems, ongoing work includes obtaining an easily-implementable SCORE

allocation for the case when the number of systems is large.
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Andradóttir, S., and S.-H. Kim. 2010. “Fully Sequential Procedures for Comparing Constrained Systems

via Simulation”. Naval Research Logistics 57 (5): 403–421.

Boyd, S., and L. Vandenberghe. 2004. Convex Optimization. New York: Cambridge University Press.

Butler, J. C., D. J. Morrice, and P. Mullarkey. 2001. “A Multiple Attribute Utility Theory Approach to

Ranking and Selection”. Management Science 47 (6): 800–816.
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