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ABSTRACT

In simulation–optimization, the accurate evaluation of candidate solutions can be obtained by running a

high–fidelity model, which is fully featured but time–consuming. Less expensive and lower fidelity models

can be particularly useful in simulation–optimization settings. However, the procedure has to account

for the inaccuracy of the low fidelity model. Xu et al. (2015) proposed the MO2TOS, a Multi–fidelity

Optimization (MO) algorithm, which introduces the concept of ordinal transformation (OT) and uses optimal

sampling (OS) to exploit models of multiple fidelities for efficient optimization. In this paper, we propose

MO–MO2TOS for the multi–objective case using the concepts of non–dominated sorting and crowding

distance to perform OT and OS in this setting. Numerical experiments show the satisfactory performance

of the procedure while analyzing the behavior of MO–MO2TOS under different consistency scenarios of

the low–fidelity model. This analysis provides insights on future studies in this area.

1 INTRODUCTION

Simulation models have been widely applied for the analysis and optimization of complex system. This has

been particularly true in the past decades, also due to the explosive revolution of computing technology,

which has greatly facilitated the realization of running simulation models. In this setting, simulation–

optimization has received a remarkable attention as an effective set of techniques coupling simulation with

search procedures to identify strategies or designs leading to the best performance. Specifically, a search

algorithm which selects candidate solution(s) and a simulator which evaluates the objective performance

of selected solutions. These two components are iteratively called until a specific stopping criteria is met

(Fu et al. 2005).

However, in case simulation models have a high level of detail (i.e., they are high–fidelity models),

despite the accuracy in the performance estimate, they result in high computational effort. However, the
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available simulation budget is limited in nature and this results in the possibility of evaluating only a

small fraction of candidates. If less detailed simulation models are available (i.e., low–fidelity models),

these might be run over a more extended set of solutions and the results might be used in combination

and in support of the, few, expensive simulations. Low fidelity models are by construction less accurate

than the high fidelity counterpart. Intuitively, the effectiveness of an approach which uses low fidelity

models is remarkably influenced by their consistency with the high–fidelity counterpart (Xu et al. 2014,

Xu et al. 2015): if the low–fidelity model contains significant bias, misleading results may be obtained.

Therefore, Xu et al. (2014) proposed Multi-fidelity Optimization with Ordinal Transformation and Optimal

Sampling (MO2TOS), a framework for single objective simulation–optimization problems which combines

low and high–fidelity simulation. Specifically, it makes use of ordinal ranking of low–fidelity model

observations based on which samples are selected for high–fidelity evaluation. Xu et al. (2015) shows

that this procedure can efficiently perform optimization by reducing variances within a group of candidate

solutions and enlarged distances between groups.

Nevertheless, currently MO2TOS can manage multi–objective optimization only in case the multiple

objectives are scalarized into a single value, which is possible only if the relative preference for each

objective is available. However, such preferences are not easy to define. Several algorithms have been

proposed for finding the Pareto set, e.g., NSGA-II (Deb et al. 2000), MO-PSO (Lee et al. 2014) and

MO-COMPASS (Li et al. 2015), but none them considers the possibility of using evaluations from models

with different fidelities.

In this paper, we firstly define the problem, and introduce some preliminary knowledge on the Pareto

optimality and the generic framework for the MO2TOS algorithm. Then we develop the multi-objective

MO2TOS (MO-MO2TOS) and analyze it through numerical experiments.

2 PROBLEM DEFINITION

We refer to the family of deterministic multi–objective optimization problems defined on any finite solution

space Θ, i.e., ‖Θ‖ < ∞, such that for any solution x ∈ Θ, we have a high–fidelity simulation model that

can be used to evaluate the performance with sufficient accuracy, i.e., without bias and noise. We denote

the high–fidelity results as g(x) =
[

g(1) (x) , . . . ,g(H) (x)
]

, where H indicates the number of objectives.

According to the definition of Pareto optimality, we are aiming to find the Pareto set Π on Θ, namely

(Li et al. 2015):

Π(Θ)≡ {x ∈Θ |6 ∃y ∈Θ, g(y)≺ g(x)} , (1)

where, ‘≺’ denotes the dominance, i.e., g(y)≺ g(x) if an only if

∀l ∈ {1, . . . ,H},g(l)(y)≤ g(l)(x) and ∃l ∈ {1, . . . ,H},g(l)(y)< g(l)(x). (2)

The high–fidelity model is time consuming, i.e., obtaining g(x) is computationally costly. However, a

low–fidelity simulation model is available giving an estimate of the true performance in a remarkably

shorter time than the high–fidelity one. We denote the low–fidelity result as g̃(x) ,∀x ∈ Θ, and we model

the low–fidelity bias as follows (Xu et al. 2015):

g̃(x) = g(x)+δx, (3)

where δx represents the bias of the low fidelity model corresponding to the feasible solution x.

Therefore, in this study, we propose an efficient procedure to exploit simulation models at both fidelity

levels in order to identify an estimated Pareto set denoted by Π̂ when the computational budget in terms of

number of high–fidelity evaluation is limited and remarkably lower than the number of candidate solutions.

Formally, if S ⊆ Θ is the set of solutions that are sampled for high–fidelity evaluation according to the

procedure, the resulting estimated Pareto Set is:

Π̂(Θ) = {x ∈ S |6 ∃y ∈ S, g(y)≺ g(x)} . (4)
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3 MO–MO2TOS FRAMEWORK

In Xu et al. (2015), the MO2TOS algorithm is proposed for solving simulation–optimization problem with

single–objective. Grounding on this proposal, we propose the extension in Algorithm 1 that consists of

the same two fundamental steps as MO2TOS: Ordinal Transformation (OT) as in Step 4, and the Optimal

Sampling (OS) as in Step 8 & 9. In particular, we modify the two essential procedures to make them

suitable for solving multi-objective problems.

Algorithm 1: Generic Procedure for MO2TOS Algorithm

1 forall the x ∈Θ do

2 Apply low-fidelity model to evaluate x, and obtain g̃(x);
3 end

4 (OT): Sort all x ∈Θ considering g̃(x), as Θ =
{

x(1), . . . ,x(|Θ|)
}

;

5 Following the sequence, evenly divide Θ into m groups, i.e., let K = {1, . . . ,m} and

Θk =
{

x(⌊ k−1
m
·|Θ|+1⌋), . . . ,x(⌊ k

m
·|Θ|⌋)

}

,∀k ∈ K;

6 Let S = /0;

7 while not stopped do

8 (OS-1): Sample k∗ ∈ K, considering g(x) ,∀x ∈Θk∩S,∀k ∈ K;

9 (OS-2): Sample x∗ ∈Θk∗ , considering g̃(x) ,∀x ∈Θk∗ \S;

10 Apply high-fidelity model to evaluate x∗, and obtain g(x∗);
11 S← S∪{x∗};

12 end

13 With S, return Π̂(Θ) by (4).

For OT, the low–fidelity model is used to derive a relative relationship (ranking) among candidate

solutions. Since the time for low–fidelity model is assumed to be negligible and the solution set is finite,

the low-fidelity model is run for all the candidates x ∈ Θ, which are subsequently ordered according to

increasing values of g̃(x). Although affected by bias, we use the low–fidelity to transform the solution

space to the 1-dimensional ordinal space according to Xu et al. (2015). In a single–objective case, once

g̃(x) is computed through the low–fidelity simulator the ordinal transformation ranks x based on the g̃(x)
itself. However, in the multi–objective case, such a transformation is complicated by the need to consider

the concept of dominance. The solution of this issue represents the most important aspect in extending the

MO2TOS to its multi–objective version.

Once the dominance–based OT has been performed, we can exploit the efficiency of the optimal

sampling scheme in Xu et al. (2015) to select the candidates for high–fidelity evaluations. Specifically, OS

is performed by grouping solutions according to the ranking resulting from OT. Compared with a random

grouping, the variability within a group of solutions decreases and differences between groups increase.

With OS, two decisions are to be made at every iteration, i.e., which group to select, and, within the

selected group, which solution to sample for high–fidelity evaluation. Moreover, from iteration to iteration,

the evaluated high-fidelity results are used to update the expected quality of each group of solutions.

In the next few sections we detail how to implement OT and OS for the multiple–objective case.

Herein, we do not consider scalarizing methods since they lead to the possibility to use MO2TOS and no

extension is required in this case. The same holds for the hyper-volume concept in the objective space that

is dominated by a multi-objective solution (Bradstreet et al. 2008), and the solutions with larger dominated

hyper-volume (DHV) have higher order in the ranking. This is relatively fair comparison between solutions

that are non-dominated by each other. But, the DHV does not explicitly reflect the distribution of solutions

on the Pareto front. Besides, boundary points need to be identified to make the DHV finite, and the selection

of them could also affect the ordering.
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3.1 Ordinal Transform

Several ways for ordering solutions with multiple objectives have been proposed in the literature (Swisher

et al. 2003, Zitzler et al. 2003).

A particularly common method is the non-dominated sorting (NS), proposed by Deb et al. (2000),

based on which NSGA-II is developed (Deb et al. 2000). According to this concept, solutions are first

ranked according to the Pareto layers, and one dominating solution has higher rank than the dominated;

then, within each Pareto layer where solutions are non-dominated by each other, the crowding distance is

used to rank the solutions. The crowding distance reflects the density around a solution in the corresponding

Pareto layer, and the solution with lower density has higher rank in the layer.

Algorithm 2: Procedure for calculating the crowding–distance in Pareto layer P

1 forall the x ∈ P do

2 d (x)← 0;

3 end

4 forall the l ∈ {1, . . . ,H} do

5 ∆(l)←maxx∈Θ ĝ(l) (x)−minx∈Θ ĝ(l) (x);

6 Sort all x ∈ P by ĝ(l) (x) in ascending order, as P =
{

x(1), . . . ,x(|L|)
}

;

7 d
(

x(1)
)

← ∞ and d
(

x(|L|)
)

← ∞;

8 forall the i ∈ {2, . . . , |L|−1} do

9 d
(

x(i)
)

← d
(

x(i)
)

+
ĝ(l)(x(i+1))−ĝ(l)(x(i−1))

∆(l)

10 end

11 end

12 Return d (x) ,∀x ∈ P.

To be more specific, in MO2TOS, given any solution set Ω, we assume ĝ(x) is the observed objective

values for x, i.e., ĝ(x)← g(x) for high–fidelity evaluation, and ĝ(x)← g̃(x) for low–fidelity evaluation;

then P is any Pareto layer that contains solutions that are non-dominated by each other, i.e.,

P⊆Ω, s.t. ∄x,y ∈ P, ĝ(x)≺ ĝ(y) (5)

For each P, the procedure to compute the crowding-distance d (x) ,∀x ∈ P works as in Algorithm 2.

Subsequently, the NS rule can be described as follows:

Ω =
{

x(1), . . . ,x(|Ω|)
}

,

s.t. 1≤ i < j ≤ |Ω| =⇒ ĝ
(

x( j)

)

⊀ ĝ
(

x(i)
)

and d
(

x(i)
)

≤ d
(

x( j)

)

.
(6)

The NS rule can be applied for the Step 4 in Algorithm 1 by letting Ω←Θ and ĝ(x)← g̃(x) ,∀x ∈Θ, so

as to form an OT procedure for multi–objective problems.

3.2 Optimal Sampling

Given an ordered set of items, solutions or groups, we propose to sample according to a truncated geometric

scheme parametrized over p∈ [0,1]. Let Φ be the ordered set containing the elements a(i),∀i∈ {1, . . . , |Φ|},
where i refers to the order. The truncated geometric sampling (TGS) is described in Algorithm 3. With

this procedure, we guarantee that the higher rank (smaller i) items have larger probabilities to be sampled.

The TGS is used to developed both sub-procedures for the OS. As in Step 8 of Algorithm 1 (OS-1), we

need to sample a group Θk∗ from {Θ1, . . . ,Θm}. Algorithm 4 shows how TGS is utilized with an algorithm

parameter pg ∈ [0,1], in sampling k∗ ∈ K considering g(x) ,∀x ∈ Θk ∩ S,∀k ∈ K. The procedure firstly
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Algorithm 3: Procedure of truncated geometric sampling (TGS)

1 while true do

2 forall the i ∈ {1, . . . , |Φ|} do

3 Sample u from a uniform distribution on [0,1];
4 if u < p then

5 Return a(i).

6 end

7 end

8 end

ensures that each group is sampled at least once (Step 1 – 4). Then the groups are sorted according to the

averaged ranking performed using the high–fidelity results and TGS is applied to select the k∗ (Step 6 –

9).

Algorithm 4: Procedure of sampling k∗ ∈ K (OS-1)

1 forall the k ∈ K do

2 if Θk∩S = /0 then

3 Return k∗ = k.

4 end

5 end

6 Sort S according to (6), in which Ω← S and ĝ(x)← g(x) ,∀x ∈ S;

7 Let I (x) denotes the order of x in S, and Ik← ∑x∈Θk∩S I (x)/ |Θk∩S| ,∀k;

8 Sort K according to Ik in ascending order, as K =
{

k(1), . . . ,k(m)

}

;

9 Sample k∗ from K by TGS as in Algorithm 3, by Φ← S and p← pg;

10 Return k∗.

With TGS defined in Algorithm 3, the sampling of x∗ ∈Θk∗ as in Step 9 of Algorithm 1 (OS-2) can be

straight-forward, by applying TGS with Φ←Θk∗ \S and p← ps, where ps is another algorithm parameter.

The sequence of all x ∈Θk∗ remains as by OT.

Therefore, we have defined a procedure of OS for multi-objective problems.

4 NUMERICAL RESULTS

Numerical experiments on MO–MO2TOS algorithm were conducted in order to: (1) understand the effect

of the different algorithm parameters over the performance, (2) compare the performance of the procedure

against random search (i.e., an algorithm which does not use the low–fidelity model information).

Specifically, we focus on an optimization problem defined on the solution space Θ = {1, . . . ,N} where

N = 10000. Each point is associated with the high–fidelity value:

g(x) =
[

g(1) (x) ,g(2) (x)
]

(7)

where g(1) (x) and g(2) (x) are randomly generated from a standard normal distribution, i.e., N (0,1), for

all x ∈ Θ. Despite the high–fidelity evaluation is trivial, it is good enough to provide a testbed scenario

for finding Pareto solutions. Figure 1 shows the distribution of the solutions in the objective space. A

spectrum of colors are used to indicate different Pareto Layers, where the red color denotes the Pareto set.

Then, each solution has an low–fidelity estimation as g̃(·):

g̃(x) =
[

g̃(1) (x) , g̃(2) (x)
]

. (8)
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Figure 1: Objective values of high-fidelity model (colored for Pareto layers).

According to the definition in Section 2, we randomly assign the low–fidelity values from the high–fidelity

model according to the following:

g̃(1) (x) = α1 ·g
(1) (x)+ ε in which ε ∼N

(

0,σ 2
1

)

, (9)

g̃(2) (x) = α2 ·g
(2) (x)+ ε in which ε ∼N

(

0,σ 2
2

)

. (10)

This artificial construction of the low-fidelity response give us the chance, as it will be illustrated later on,

to construct scenarios with different “quality” of the low-fidelity model.

Intuitively, a better low-fidelity model has both coefficients α1,α2 positive, i.e., the low-fidelity model

is indeed consistent with respect to the high-fidelity model. But, in case α1 < 0 or α2 < 0, it means that at

least one of the two low-fidelity objective values does not consist with respect to the high-fidelity model and

we can expect the ordinal transformation, and, consequently, the optimal sampling, illustrated in Sections

3.1–3.2 to be negatively affected.

The variance component σ2
1 ,σ

2
2 , characterizing the bias also hinders the algorithm performance. As

previously stated, by controlling the magnitude and variability of the bias, we can create several scenarios

which refer to different quality levels.

By varying the parameters of the low–fidelity model, we obtained the experimental conditions in Figure

2. In particular, as shown in the picture, we can separate the entire experiment space into 3 main scenario:

(1) positive correlation, i.e., α1 = α2 = 1, (2) positive and negative correlation, i.e., α1 = 1,α2 = −1 or

α1 =−1,α2 = 1 , and (3) negative correlation, i.e., α1 = α2 =−1. In the figures, the σ1 and σ2 are set to

0.2, but in the experiment we test different possible noise levels.

In the numerical test, we have a limited budget of 1000 evaluations with the high fidelity model, while

we performed 100 macro–replications of the algorithm procedure in order to derive the 25, 50, and 75

percentile of the DHV by the observed Pareto set resulting from the macro–replicated experimentation.

4.1 Effect of the parameters in the algorithm performance

As reported in Table 1, there are 32 conditions tested based on the scenarios shown in Figure 2.

4.1.1 Scenario 1: with α1 = α2 = 1

Not surprisingly, the most relevant factor in this case is represented by the low fidelity model variance.

Intuitively, the DHV increases for a low fidelity model characterized by lower variance. Indeed, a large

variance results in the diffusion of solutions, leading to groups containing dominated and non–dominated
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Figure 2: Distortions of Pareto layers & rankings in low-fidelity models under different scenarios.

Table 1: Experimental conditions for each low fidelity level

Level σ1 σ2 m pg ps

Low 0.2 0.2 10 0.2 0.1

High 0.8 0.8 30 0.8 0.3

solutions. Such a condition, hinders the effectiveness of the ordinal transformation which is indeed based

on the group. Some solutions may jump out of its front and drop into other fronts nearby, and this would

decrease algorithm efficiency. Under scenario 1, the ranking obtained by OT is close to the true ranking

due to the positive correlation characterizing the relationship between the low and the high fidelity function

in both objectives.

4.1.2 Scenario 2: with α1 = 1,α2 =−1 or α1 =−1,α2 = 1

In these conditions, the number of groups m (as in Step 5 of Algorithm 1) and pg (as in Step 9 of Algorithm

4) have the most important impact over the DHV. In particular, smaller values of the parameters lead to

better performance. Intuitively, the algorithm tends to broadly explore the whole solution space. As we

can observe in Figure 2, when one low fidelity model is positively correlated with its high–fidelity model

while the other one is negatively correlated with its high fidelity model, the OT ranking is not effective:

solutions from the true Pareto set tend to distribute among different groups, and a low probability of group

selection tends to favor a spread search among different groups hence increasing the chance to identify

Pareto solutions.

4.1.3 Scenario 3: with α1 = α2 =−1

It is relevant to notice that the scenario with both low-fidelity models negatively correlated marks an important

difference between the single–objective optimization case in Xu et al. (2015) and the multi–objective case

of interest in this paper. In fact, when a single objective is of concern, in case the low–fidelity model is

“perfectly” negatively correlated with the high-fidelity model (i.e., α = −1), at the first iteration of the
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algorithm we might simply consider to revert the ordering. Afterwards the procedure works exactly as

in the positively correlated case. However, if multiple objectives are consider, the reverting of the Pareto

front will not produce the aforementioned results. In fact, solutions in different layers at the boundary

of the frontier will be assigned to different layers. This can be observed in Figure 2, where the Pareto

Solutions, despite concentrated in the area with smaller high-fidelity and larger low fidelity ranking, tend

to distribute in the solution space with several possible values of low-fidelity performance. Given this,

reverting the low fidelity evaluations as it would be natural is the single objective case, will not produce

the same performance observed in Section 4.1.1.

Specifically, we observed that factor m and pg have a major impact on the algorithm performance. This

is reasonable: larger values of m as well as pg lead to focus on the “bad observations” hence increasing

the chance to recognize a fairly good Pareto set. In fact, as previously stated, a large portion of solutions

in the true Pareto set would fall into the last group, before reversion of the OT ranking is performed, while

solutions from the last front in true Pareto set would probably fall into the first group, and solutions with

non-dominated or near objective performance would still stay close with each other. As a result, after

the re–ranking according to the high-fidelity model performance, the obtained groups should be consistent

with the high-fidelity model. Therefore, we prefer larger values of pg to focus on the best solutions and a

larger number of groups in order to maximize the chance to identify also misclassified solutions.

4.2 Benchmark Comparison

To show the algorithm performance and demonstrate the efficiency of MO–MO2TOS, we compare it with

uniform random search applied to the cases in Figure 2. Based on the analysis in the previous section,

we focus on the effect of the parameter pg, which varies in the set {0.1,0.5,0.9}, with regard to each

scenario, ps, instead, was set to the value 0.1 for all tests. Concerning m, two levels were considered as

in the previous section, namely, 10 and 30.

Also in this case, for each experiment setting, 100 macro-replications were performed. The results

are reported in Figure 3–7 each corresponding to one of the three scenarios, respectively. Here, the x-axis

represents the number of sampled solutions and the y-axis represents the average DHV resulting from the

100 independent macro-replications.

(a) m = 10 (b) m = 30

Figure 3: Benchmark comparison for Scenario 1.

From Figure 3, we observe that for Scenario 1, compared to random sampling, MO–MO2TOS performs

much better even for small values of sampled solutions (x–axis), which obtains a Pareto set close to the

true one with limited samples. This is reasonable since the low fidelity is particularly good under this

scenario. After OT, the ranking of solutions, which follows a similar sequence to the true one, facilitates the

algorithm to quickly focus on optimal or near optimal solutions. According to the testing result, with 95%

acceptance level, the performance of MO–MO2TOS is statistically better than that of random sampling

for all cases, i.e., independently from the specific algorithm parameters. Despite this, we observe that

when m is low (Figure 3(a)) we prefer larger values of pg, and vice versa (Figure 3(b)). Figure 4 shows

the reason behind the performance of the proposed algorithm. In particular, m = 10 is considered. In the

3744



Li, Li, Pedrielli, Lee, Chew, and Chen

(a) pg = 0.1 (b) pg = 0.9

Figure 4: Sampling history for Scenario 1.

Figure, the red color corresponds to the solutions sampled at early stages of the procedure, while darker

colors correspond to solutions sampled in later stages. We observe that, when pg = 0.1 (Figure 4(a)), the

algorithms spreads the sampling among several groups at least at the first iterations and only towards the

end it focuses on the lower left group containing the Pareto solutions. On the contrary, when pg = 0.9, the

algorithm will focus on the first group, ending up with a more in–depth exploration of the best groups. As

(a) m = 10 (b) m = 30

Figure 5: Benchmark comparison for Scenario 2.

already observed in the previous section, Scenario 2 is the most critical for the performance. In particular,

we observe a much lower values for DHV which at the end of 1000 iterations compared with Scenario 1. The

difference between MO–MO2TOS and random search is relatively small. The reason for this performance

resides in the fact that the Pareto solutions are spread among several groups (Figure 6). Hence, as we

observe from Figure 5, a lower value for both m and pg are preferable as they enable a more exploratory

search. In the Scenario 3 with both negative correlations, the number of groups plays a remarkable role

as we can observe from Figure 7. When m = 10, the performance of MO-MO2TOS is worse than random

search at the beginning of the algorithm execution, and only if pg is set to a large value, the algorithm

outperform the random search in a later phase. This may be caused by the large diversity of solutions with

different performance within each group if m is too small (Figure 8(a)), for which the good solutions do

not gain priority (marked in black) in the group since they are badly observed in low-fidelity model. On the

contrary, when m = 30, it performs better than random search, especially when pg is large, because once

the high-fidelity evaluation re-rank a small group with higher priority, all solutions inside are eventually
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(a) pg = 0.1, m = 10 (b) pg = 0.9, m = 10

Figure 6: Sampling history for Scenario 2

(a) m = 10 (b) m = 30

Figure 7: Benchmark comparison for Scenario 3

explored. Therefore, the algorithm is able to identify a good Pareto set under such setting. In conclusion,

we suggest large values for both m and pg are preferred for this scenario.

5 CONCLUSIONS

In this paper, a stochastic search algorithm MO-MO2TOS for multi-objective optimization is developed,

and a numerical experiment is designed to test its performance with uniform random search set as the

benchmark. It has been shown that MO-MO2TOS can perform more efficiently than random search with

proper algorithm parameter setting, for all scenarios. Specifically, when only a small number of iterations

can be executed due to computing budget limit, the advantage of the proposed algorithm is obvious.

However, there is still significant difference between the different scenarios depending on the quality

of the low-fidelity models. Specifically, when the low-fidelity model is negatively correlated with its high

fidelity model, the ranking obtained from OT will be impaired and thereby affects the performance of

MO-MO2TOS. In order to improve the algorithm efficiency, except for tuning the algorithm setting, other

approaches can be adopted to reduce the bias brought by low fidelity model. One possible approach is to

use the negative objective value of a solution if the low and high fidelity models turn out to be negatively

correlated. In other words, the first iterations of the algorithm should be used also to learn the correlation

and the noise describing the bias of the low-fidelity model in order to improve the algorithm performance

by dynamically changing the parameters.
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(a) pg = 0.9, m = 10 (b) pg = 0.9, m = 30

Figure 8: Sampling history for Scenario 3

In this work, we have discussed the application of MO-MO2TOS to the case of deterministic optimization

problems. An additional direction would then be to consider the case of stochastic simulations. In this

setting, MO-MO2TOS might still prove to be effective by integrating techniques such as Optimal Computing

Budget Allocation (Lee et al. 2010) to allocate simulation replications to the sampled configurations.
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