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ABSTRACT

Stochastic simulation is driven by the input model, which is a collection of distributions that model the

randomness in the system. The input model is often constructed from data, and hence input uncertainty

arises due to the finiteness of data. Simulation optimization has been mostly studied under the assumption

of a known input model, without accounting for input uncertainty. We propose a new framework to study

simulation optimization under input uncertainty, with the goal to balance the trade-off between optimizing

under the estimated input model and hedging against the risk brought by input uncertainty. A simple

numerical example illustrates different formulations under the new framework, compared with the usual

formulation for simulation optimization.

1 INTRODUCTION

We consider the following simulation optimization problem:

min
x∈X

H(x) = Eξ [h(x,ξ )], (1)

where the solution space X is a non-empty subset of Rd , and the random variable ξ represents the stochastic

effects of the system. In simulation optimization, the system performance (or in other words, the objective

function H(x)) is evaluated through simulation, and hence only sample performance h(x,ξ ) is available.

The distribution of ξ , often called the input distribution, is usually estimated from past data and then used

to generate samples to drive the simulation. For example, in a queueing network the true distribution of the

customer interarrival times is often estimated from the past data of customer arrival times, and in a supply

chain system the customer demand distribution is often estimated from past sales data. The finiteness of

past data leads to uncertainty in the estimated input distribution. However, this input uncertainty is often

ignored in simulation optimization; rather, the estimated input distribution is used as if it were the true

distribution of ξ . This approach brings up at least two questions pertaining to simulation optimization

when there is input uncertainty.

• First, how to quantify the impact of input uncertainty on the optimization results of (1)? Clearly,

each different data set, though from the same unknown distribution, will lead to a different input

distribution estimate and hence lead to a different optimal solution of (1). Hence, it is important

to know how to interpret such an optimization result and how far (statistically) it is away from

the true optimization result. There is a rich body of work studying the impact of input uncertainty

on the system performance evaluation without concerning optimization; see, e.g., survey papers

by Henderson (2003), Barton (2012), Song, Nelson, and Pegden (2014). On the other hand, the

impact of input uncertainty on the optimization has been studied for the special case when the

input distribution is chosen as the empirical distribution based on identically and independently
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distributed (i.i.d.) data, i.e. (1) is essentially the sample average approximation (SAA) of the original

optimization problem under the true input distribution; statistical and convergence properties of

SAA haven been studied by, e.g. Shapiro and Nemirovski (2005), Kim, Pasupathy, and Henderson

(2015), Lam and Zhou (2015).

• A second question that is quite related with the first is, how to make decisions or optimize the system

performance in view of the input uncertainty? The answer to the first question above will probably

give us a statistical range (such as a confidence interval) that contains the optimal solution; however,

most often we can only apply a single decision (rather than a range of solutions) in practice. So

it would be ideal to find one solution that not only optimizes (1) but also hedges against input

uncertainty. The simultaneous consideration of these two criteria often results in a trade-off. For

example, the distributionally robust optimization (DRO) framework (e.g. Scarf, Arrow, and Karlin

(1958), Delage and Ye (2010), Bertsimas, Brown, and Caramanis (2011)) is often used to find the

optimal solution in the worst case among all possible input distributions.

The focus of this paper is to make an attempt at the second question, i.e., how to carry out simulation

optimization when we face input uncertainty. As mentioned above, one way to account for input uncertainty

is to use a DRO formulation that looks for the worst-case input distribution among all possibilities supported

by the data. Another natural approach would be to optimize an expected objective function that is averaged

over all possible input distributions. These two approaches are like the two extremes: the DRO formulation

puts all the weight on the worst-case input distribution and is often considered to be overly conservative

to risk, and whereas averaging is completely risk neutral to all possibilities. It can be imagined there is

a wide spectrum between the two extremes. Indeed we can bridge these two extremes by taking a more

flexible attitude towards the risk associated with input uncertainty. Moreover, we have more knowledge

than just the set of possible input distributions: we can have the probabilistic structure over the set of

input distribution by computing a Bayesian posterior distribution, which represents our belief about the

likelihood of input distributions based on data. By utilizing this information, we can impose a risk measure

(with respect to the posterior distribution) on the objective function to hedge against the input uncertainty.

Therefore, we will propose a risk formulation of simulation optimization when facing input uncertainty. In

particular, this new formulation can be shown to include the DRO and averaging formulations as special

cases.

The rest of the paper is organized as follows. We will briefly review simulation optimization and input

uncertainty quantification in Section 2. In Section 3, we will introduce a new risk formulation of simulation

optimization and show its consistency to the usual formulation. In Section 4, we will study a simple

numerical example to reveal some insights on the new formulation compared with the usual formulation.

Finally we will conclude and outline future directions in Section 5.

2 LITERATURE REVIEW

Simulation optimization has been a challenging problem due to several reasons such as the expensive

evaluation of system models, lack of structure in the performance measure, and the need to balance

estimation and optimization. As characterized by Fu, Chen, and Shi (2008), there are four main classes of

approaches to simulation optimization over continuous solution space: (i) sample average approximation,

e.g. de Mello, Shapiro, and Spearman (1999); (ii) stochastic gradient methods or stochastic approximation,

e.g. Kiefer and Wolfowitz (1952), Kushner and Yin (2004); (iii) sequential response surface methodology,

e.g. Barton and Meckesheimer (2006), Chang, Hong, and Wan (2013); and (iv) deterministic metaheuristics,

a broad category of methods that generalize deterministic metaheuristics to the simulation optimization

setting, e.g., Olafsson (2006), Andradóttir (2006). When the solution space is finite and relatively small

so that every solution can be simulated, the problem is often under the name of “ranking and selection”

(see Kim and Nelson (2006)).
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Simulation optimization inevitably requires the estimation of system performance, which itself is an

interesting problem that has drawn great attention. Earlier work has focused on efficient estimation, such

as variance reduction techniques, while more recent research has studied the impact of input uncertainty on

performance evaluation. Numerous methods have been proposed to quantify the uncertainty in performance

evaluation and estimation, including analytical methods such as the delta method based on Taylor theorem, e.g.

Cheng and Holloand (1997); Bayesian approaches, such as Bayesian model average (BMA) method Chick

(2001), Zouaoui and Wilson (2003), and Biller and Corlu (2011); direct and bootstrap sampling methods,

e.g. Barton and Schruben (1993), Barton and Schruben (2001); and meta-model assisted approaches, e.g.

Barton, Nelson, and Xie (2014), Xie, Nelson, and Barton (2015).

The aforementioned literature consider either simulation optimization under a known input distribution or

input uncertainty quantification for performance evaluation without concerning optimization. However, they

are important building blocks for studying simulation optimization under input uncertainty. Recently, Corlu

and Biller (2013) investigated a ranking-and-selection problem and develops a subset selection procedure by

accounting for parameter uncertainty in the input distribution; to evaluate ranking-and-selection procedures,

Waeber, Frazier, and Henderson (2010) proposed a performance analysis process that takes into account

three layers of risk: the loss of decision, the configuration-specific risk (which is similar to the risk

associated with input distribution in our context), and the overall risk. On the other hand, distributionally

robust optimization (DRO) was first introduced by Scarf, Arrow, and Karlin (1958) in an inventory control

problem and provides a nice framework for stochastic optimization under input uncertainty. The surge of

data-driven applications in recent years has further advanced the research in DRO. However, different from

simulation optimization where problems often lack nice structure and are only evaluated by simulation,

research in DRO has put a great emphasis on the construction of uncertainty sets such that the problem is

tractable either analytically or computationally by exploiting nice structure properties such as convexity.

For example, the uncertainty set can be defined by constraints on the moments of the input distribution,

e.g. Scarf, Arrow, and Karlin (1958), Delage and Ye (2010), Wiesemann, Kuhn, and Sim (2014), or by

constraints on the support of the input distribution, e.g. Shapiro (2006), or as a set confined by a distance

(such as φ -divergence) from a nominal distribution, e.g. Ben-Tal, den Hertog, Waegenaere, Melenberg,

and Rennen (2013), or a set based on statistical hypothesis tests, e.g. Bertsimas, Gupta, and Kallus (2014).

3 A NEW RISK FRAMEWORK FOR SIMULATION OPTIMIZATION

Recall that the true distribution of ξ in (1) is unknown, but we are given n i.i.d. data of ξ , denoted by

φ n , (ξ1, . . . ,ξn).

Depending on the context throughout the paper, ξ1, . . . ,ξn could denote either realizations of the samples

or random variables that are i.i.d. copies of ξ . For ease of exposition, we assume the true distribution of

ξ lives in a parameterized family of distributions { f (ξ ;θ),θ ∈ Θ}, where Θ is a continuous subset in R
p,

and in particular the true input parameter value θ c is in the interior of Θ. To estimate the true distribution

of ξ from data, we adopt a Bayesian approach by viewing θ as a random variable. The Bayesian posterior

distribution will give us a full characterization of the space of all possible input distributions, which is the

information we need to hedge against input uncertainty. We pick a prior p(θ) that represents our initial

belief about the parameter value. Then with Bayesian updating, we obtain a posterior distribution

p(θ |φ n) ∝ p(θ)p(φ n|θ) = p(θ)Πn
i=1 f (ξi;θ),

where p(φ n|θ) = Πn
i=1 f (ξi;θ) is the likelihood of data φ n, and the notation ∝ denotes equivalence up to a

normalization constant. Under some regularity conditions (notably that θ c is an interior point of Θ), as the

data size n → ∞, the posterior distribution approaches normality with mean θ c and variance {nJ(θ c)}−1,

where J(θ c) is the Fisher information at θ c (see Section 4.2 and Appendix B in Gelman et al. 2014). It

implies the posterior distribution will become more and more concentrated on the true parameter value as
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data size increases. It is consistent with our intuition that the input uncertainty should decrease as we have

more data, and in the extreme case when we have infinite amount of data we should recover the true input

distribution. Please note that the Bayesian approach can also be applied to nonparametric distributions,

using Dirichlet processes for example, and the rest of our formulation would still follow.

Now with the posterior distribution p(θ |φ n) that represents our current belief about the input parameter,

we can use a risk measure ρp(θ |φ n)(·) to gauge the risk associated with input uncertainty. A risk measure

is defined as a mapping from a random variable to a real number. Here θ is a random variable, and

Eξ [h(x;ξ )] is a function of θ and represents the loss associated with θ . A risk measure ρp(θ |φ n)(·) with

respect to p(θ |φ n), when applied to Eξ [h(x;ξ )], measures the risk of Eξ [h(x;ξ )] due to the uncertainty of

θ . Therefore, we propose the following new framework for simulation optimization to account for input

uncertainty:

min
x∈X

Hρ(x) = ρθ

{
Eξ [h(x;ξ )]

}
, (2)

where ρθ is short for ρp(θ |φ n)(·), and Eξ short for E f (ξ ;θ). Some salient examples of ρ include expectation,

mean-variance, Value-at-Risk (VaR), and Conditional Value-at-Risk (CVaR). We will elaborate on each of

them below.

First, when ρ is an expectation, (2) can be written as

min
x∈X

Eθ

{
Eξ [h(x;ξ )]

}
= Eθ ,ξ [h(x;ξ (θ))], (3)

where the expectation Eθ ,ξ is with respect to the joint distribution f (ξ ;θ)p(θ |φ n). It essentially reduces

to the usual formulation of simulation optimization but under the joint distribution of θ and ξ . This

formulation is neural to the risk due to both the uncertainty associated with the input parameter θ and the

uncertainty due to stochastic simulation of ξ .

To incorporate the risk aspect, Markowitz (1952) introduced the mean-variance formulation into portfolio

theory, aiming to strike a balance between expected return and the variability. With the mean-variance

choice of ρ , our formulation (2) can be written as

min
x∈X

Eθ

{
Eξ [h(x;ξ )]

}
+aVar

{
Eξ [h(x;ξ )]

}
, (4)

where a is a positive constant that can be used to adjust the trade-off.

When ρ is chosen as the α-level VaR, framework (2) can be written as

min
x∈X

VaRα

{
Eξ [h(x;ξ )]

}
, (5)

where VaRα(l(θ)) (here l(θ) = Eξ [h(x;ξ )]) is defined as the α quantile of the loss function l(θ):

VaRα(l(θ)) , inf{t : F(t) ≥ α}, where F(·) is the cumulative distribution function (c.d.f.) of l(θ).
If l(θ) is a continuous random variable, then the α-level VaR can be simplified as VaRα(l(θ)) = F−1(α).

While VaR has been used and studied extensively, it is not a coherent risk measure because it does not

always satisfy the subadditivity axiom (see e.g. Artzner, Delbaen, Eber, and Heath (1999)). On the other

hand, CVaR is a coherent risk measure and possesses nice properties such as convexity. Letting the risk

measure ρ be CVaR, then framework (2) can be written as

min
x∈X

CVaRα

{
Eξ [h(x;ξ )]

}
, (6)

where CVaRα

{
Eξ [h(x;ξ )]

}
= Eθ

{
Eξ [h(x;ξ )]|Eξ [h(x;ξ )]≥ VaRα

}
, and VaRα is a shorthand notation

for VaRα

{
Eξ [h(x;ξ )]

}
. It can be shown that CVaRα

{
Eξ [h(x;ξ )]

}
= 1

1−α Eθ{Eξ [h(x;ξ )]I{Eξ [h(x;ξ )] ≥
VaRα}}, where I{A} is an indicator function whose value is 1 if A is true and 0 otherwise. Intuitively,

VaR can be understood as the lower bound of large losses, and CVaR is the conditional expectation of

large losses.
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To put things into perspective, we point out the connection of framework (2) with some existing

formulations. The expectation formulation (3) parallels the averaging approach taken by Zouaoui and

Wilson (2003) and Chick (2001) for performance evaluation, which takes into account both input uncertainty

and stochastic uncertainty (i.e., the uncertainty in stochastic simulation caused by ξ ). The VaR formulation

(5), when α set to be 100% (assuming the posterior distribution has a bounded support), reduces to DRO

with the uncertainty set Θ̃ ⊆ Θ being the support of the posterior distribution, i.e.,

min
x∈X

VaR100%

{
Eξ [h(x;ξ )]

}
= min

x∈X

max
θ∈Θ̃

Eξ [h(x;ξ )].

From this viewpoint, the Bayesian posterior distribution p(θ |φ n) can be viewed as a “softer” constraint

than the worst case measure in DRO, as it provides a probability structure over the entire parameter set

rather than a zero-or-one partition of the set. Moreover, the choice of α level in formulation (5) allows the

freedom to adapt to one’s risk preference, as opposed to the DRO formulation that always hedges against

the worst case.

3.1 Consistency of the Risk Framework

The following Theorem 1 shows that as the data size increases the risk framework (2) approaches the

original simulation optimization problem under the true input distribution. To simplify notations, we

denote the response for any fixed x by l(θ), E f (ξ ;θ)[h(x;ξ )], where we suppress the dependence on x for

simplicity. Note that l(θ c) is the response under the true input distribution. Denote by Pn(·) the distribution

function of p(θ |ξ1, . . . ,ξn), and by Gn(·) the distribution function of l(θ) conditional on ξ1, . . . ,ξn, i.e.

Gn(A) = Pr(l(θ) ∈ A|ξ1, . . . ,ξn), where A is a measurable set in Θ.

Assumption 1 The parameter set Θ is a compact set, and any small neighborhood of θ c has a nonzero

prior probability.

Assumption 2 The posterior distribution p(θ |φ n) is a continuous distribution, and the function l(·) is

continuous.

To show Theorem 1, we will use the following consistency result of the posterior distribution of θ ,

which is a direct application of a theorem in Appendix B of Gelman et al. 2014.

Lemma 1 (Gelman et al. 2014) Under Assumption 1, if A is a neighborhood of θ c, then Pn , Pr(θ ∈
A|φ n)→ 1 in probability (with respect to f (·;θ c)) as n → ∞.

Theorem 1 Under Assumptions 1 and 2, for any fixed x ∈ X , the following convergence results hold in

probability with respect to f (·;θ c):

(i) For any neighborhood B that contains l(θ c), Gn(B), Pr(l(θ) ∈ B|φ n)→ 1 as n → ∞;

(ii) For any of the above choices of ρ (i.e., expectation, mean-variance, VaR, CVaR),

ρθ

{
Eξ [h(x;ξ )]

}
→ E f (ξ ;θ c)[h(x;ξ )] as n → ∞.

Proof. All the convergence results stated below are in probability with respect to f (·;θ c). To show

Theorem 1(i), suppose B is a neighborhood of l(θ c). The inverse image of B is defined by l−1(B) =
{θ ∈ Θ : l(θ) ∈ B}. Since l(·) is a continuous function, l−1(B) is a neighborhood of θ c. Hence, Gn(B) =
Pr(l(θ)∈ B|φ n) = Pr(θ ∈ l−1(B)|φ n)→ 1 as n → ∞, where the convergence follows from Lemma 1. Since

B can be arbitrarily small, it implies that Gn converges to a point mass on l(θ c) as n goes to infinity.

Now we will show the statement in Theorem 1 for the different choices of ρ mentioned above,

respectively. First, let ρ be the expectation. Then given a neighborhood A of θ c, Hρ(x) = Eθ [l(θ)] =∫
A l(θ)Pn(dθ)+

∫
Θ\A l(θ)Pn(dθ)→ ∫

A l(θ)Pn(dθ), where the convergence follows from Lemma 1. Since

A can be made arbitrarily small, Hρ(x)→ l(θ c) = E f (ξ ;θ c)[h(x;ξ )] as n → ∞.

Second, let ρ be the mean-variance. Then Hρ(x) = Eθ [l(θ)] + cVarθ [l(θ)], where c is a positive

constant. It is sufficient to show the variance term goes to 0. With the same approach above, we can show

Varθ [l(θ)] = Eθ

[
l(θ)2

]
−Eθ [l(θ)]

2 → l(θ c)2 − l(θ c)2 = 0.
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Third, let ρ be the α-level VaR. Then VaRθ ,α(l(θ)) = inf{t : Gn((−∞, t]) ≥ α}. For any ε > 0,

Gn((−∞, l(θ c)+ ε))→ 1, according to result (i) of Theorem 1 and l(θ c) ∈ (−∞, l(θ c)+ ε),; on the other

hand, Gn((−∞, l(θ c)− ε])→ 0 for any ε > 0, since l(θ c) /∈ (−∞, l(θ c)− ε]. Hence, inf{t : Gn((−∞, t])≥
α}→ l(θ c) as n → ∞.

Last, let ρ be the α-level CVaR. Then CVaRθ ,α(l(θ)) =
1

1−α Eθ [l(θ)I{l(θ) ≥ vα,n}], where vα,n =
inf{t : Gn((−∞, t])≥ α). Denote by y = l(θ). Thus, CVaRθ ,α(l(θ)) can be rewritten as

1

1−α
Eθ [l(θ)I{l(θ)≥ vα,n}] =

1

1−α

∫
yI{y ≥ vα,n}Gn(dy) =

1

1−α

∫
yI{Gn(y)≥ α}Gn(dy).

Now it is sufficient to show that the truncated distribution function G′
n(dy) = I{Gn(y)≥α}Gn(dy)

1−α converges

to a point mass on l(θ c). From Theorem 1(i), we know that given a neighborhood B of l(θ c), for any

ε > 0, there exists a positive integer N such that for any n ≥ N,
∫

Θ\B Gn(dy)≤ ε . Hence,
∫

Θ\B G′
n(dy)≤∫

Θ\B
1

1−α Gn(dy) ≤ ε
1−α . It implies

∫
B G′

n(dy) = 1− ∫Θ\B G′
n(dy)→ 1 as n → ∞. Therefore,

∫
yG′

n(dy) =∫
B yG′

n(dy)+
∫

Θ\B yG′
n(dy)→ l(θ c). The statement is proved.

4 NUMERICAL EXAMPLE

We will illustrate the risk formulation of simulation optimization on a simple first-come-first-served M/M/1

queuing system. Customers arrive at a system according to a Poisson process with rate θ c, and the service

time follows an exponential distribution with mean x. There is a cost c > 0 per unit increase of service

rate; hence, there is a trade-off between decreasing the expected average customer waiting time in system

and decreasing the service cost. Moreover, there is often a practical limit on the total cost M < ∞, which

is much higher than the minimum cost. In particular, when the system is unstable (i.e., server utilization

≥ 1), it will incur the total cost M. The objective is to find a service mean time x that minimizes the total

cost:

min
x>0

H(x) =

{
min

{
Eθ c [T (x;ξ )]+ c

x
,M
}
, if θ cx < 1;

M, otherwise.
(7)

where ξ represents the random interarrival time that follows the exponential distribution f (ξ ;θ c) =
θ c exp(−θ c), and T (x;ξ ) represents the steady-state average customer waiting time. For M/M/1 queue,

Eθ c [T (x;ξ )] has an analytical form x
1−θ cx

. It is easy to see that the objective function is convex, and we

can find a unique optimal solution for (7) in closed-form x∗ =
√

c√
cθ c+1

. This analytical solution will be used

to provide insight on our numerical solutions.

In the numerical experiment, the value of θ c is unknown, but the experimenter observes n i.i.d.

interarrival time data ξ1, . . . ,ξn from the true underlying distribution f (ξ ;θ c) = θ c exp(−θ c). The usual

approach is to estimate the parameter by a point estimator θ̂ = 1/(1
n ∑

n
i=1 ξi), and then solve the simulation

optimization problem under the estimated input model:

min
x>0

H θ̂ (x) =

{
min

{
x

1−θ̂x
+ c

x
,M
}
, if θ̂x < 1;

M, otherwise.
(8)

Note that here the analytical form E
θ̂
[T (x;ξ )] = x

1−θ̂x
is plugged into (8), and hence the optimal solution

is
√

c√
cθ̂+1

. We will refer to this approach as “empirical simulation optimization” (ESO).

Instead, we adopt a Bayesian approach and use the posterior distribution to quantify the input uncertainty.

Specifically, we use a Gamma distribution Gamma(a0,b0) as a prior, which is conjugate with the exponential

distribution; hence, the posterior is

p(θ |φ n), p(θ |ξ1, . . . ,ξn) = Gamma(a0 +n,b0 +
n

∑
i=1

ξi).
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We then solve the risk formulations of the simulation optimization problem, which we will refer to as “risk

simulation optimization” (RSO):

min
x>0

Hρ(x) = ρp(θ |φ n)

[
min

{
x

1−θx
+

c

x
,M

}
· I{θx < 1}+M · I{θx ≥ 1}

]
, (9)

where ρ is one of the four choices: expectation, mean-variance, VaRα , CVaRα . Note that (9) is a stochastic

optimization problem, so we use sample average approximation (SAA) to solve it. That is, we draw i.i.d.

samples θ1, . . . ,θm from the posterior p(θ |φ n), and then solve problem (9) with p(θ |φ n) replaced by the

empirical distribution p̂(θ |φ n) = 1
m ∑

m
i=1 I(θ = θi).

Each formulation yields the respective optimal solution x̂∗. To assess the performance of these solutions,

we define a performance measure by the expected square-deviation in the function value of each solution

from the true optimal function value H(x∗):

D(x̂∗) = E



(

H(x̂∗)−H(x∗)
H(x∗)

)2

 ,

where the expectation is with respect to the joint distribution of {ξ1, . . . ,ξn}. Hence, in implementation

we will run K independent replications: for each replication k, we simulate a set of i.i.d. data ξ1, . . . ,ξn

from the underlying distribution and proceed as described above to solve each formulation to obtain x̂∗,k,

and compute the average square-deviation D = 1
K ∑

K
k=1

(
H(x̂∗,k)/H(x∗)−1

)2

. Hence, a larger D value

implies a more significant deviation from the true optimal performance in average and thus more risk of the

corresponding formulation due to input uncertainty. Of course there are other measures besides D, which

might give us slightly different interpretation of the results.

The parameter setting is as follows: true input parameter θ c = 10 in the first case and θ c = 1 in the

second case, unit service cost c = 1, cost limit M = 500, number of replications K = 100, weight in the

mean-variance formulation a = 20, level in the VaR and CVaR formulation α = 0.95, parameters in the

prior Gamma distribution a0 = 2 and b0 = 0, sample size of SAA m = 1000. We use the same 1000 samples

from the posterior in all risk formulations. In the first case, the true optimal solution is x∗ ≈ 0.091 and

the optimal function value is H(x∗) = 12. In the second case, the true optimal solution is x∗ = 0.5 and the

optimal function value is H(x∗) = 3.

Tables 1 and 2 show the numerical results of the two cases respectively. The first column of the table

shows the data size n, which varies from 10 to 1000; under each formulation, the first subcolumn shows

the average of solved optimal solutions over all replications with the standard error in parentheses below,

and the second subcolumn shows the average square-deviation D. From the numerical results, we have

made the following observations.

• In case 1 (see Table 1), although the average of the solutions of ESO is closer to the true optimal

solutions, the associated function value deviation is much larger compared with the risk formulations

for all data sizes tested except 1000. If we scrutinize the objective function, it is not hard to see that

the objective function has a steep (positive) slope to the right of the optimal solution (see left panel

of Fig. 1). Intuitively, since in this case the optimal server utilization is x∗θ c ≈ 0.91, a deviation

from the true optimal solution to the right (due to an estimator θ̂ smaller than θ c) will drive the

utilization closer to or even higher than 1, which causes the average waiting time to explode. The

risk formulations, however, exhibit a strong resistance to such a deviation from the optimal solution

in order to avoid the extremely large cost; hence, their solutions all tend to be smaller than the true

optimal solution.

• In contrast to case 2 (see Table 2), the ESO formulation yields smaller function value deviation from

the beginning even when the data size is only 10. That is because in this case, the objective function
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is very flat around the true optimal solution x∗ = 0.5 (see the right panel of Fig. 1); and hence, a

reasonable deviation in the solution will not cause much deviation in the functional value. In other

words, here the optimal server utilization is x∗θ c = 0.5, and therefore the average waiting time is

relatively stable around this utilization value. The risk formulations still yield smaller solutions due

to their conservativeness in hedging against larger costs, and the associated function deviations are

slightly higher than ESO.

• As data size n increase, the differences between all formulations become smaller and smaller, which

is guaranteed by Theorem 1. Specifically, solutions of all formulations approach the true optimal

solution with standard errors going to zero, and the associated functional value deviations also

approach zero. When the data size is large (e.g. n = 1000), ESO performs the best compared to risk

formulations, which is probably due to a faster convergence of ESO to the original optimization

problem. Convergence rates of the different formulations to the original optimization problem will

be a future study.

• Among all risk formulations, the expectation formulation appears to have the smallest function

value deviations and least conservative solutions when the data size is not too small (e.g. n > 20).

This is because VaR and CVaR formulations try to avoid the extreme large cost (in the right tail

of the true objective function) by choosing a smaller mean service time x, which is usually smaller

than the true optimal x∗ and thus leads to a slightly increasing cost compared to the expectation

formulation. When the data size is small (n = 10 in this example), we observe in experiments that

the VaR and CVaR formulations are more robust while the expectation formulation is better in

average.

From this simple example, we can make a rough conclusion that it is better to use the risk formulations

of simulation optimization when the data size is relatively small and when the variability of the objective

function value around the optimal solution is relatively large. However, a more precise set of conditions will

be needed to make recommendations on when to use the risk formulations over the traditional simulation

optimization formulation.

Table 1: Comparison of different formulations (Case 1: true input parameter θ c = 10, true optimal server

utilization x∗θ c ≈ 0.91)

ESO Mean RSO Mean-Var RSO VaR RSO CVaR RSO

n x̂∗ D(x̂∗) x̂∗ D(x̂∗) x̂∗ D(x̂∗) x̂∗ D(x̂∗) x̂∗ D(x̂∗)

10 0.092 662 0.052 0.910 0.043 18.4 0.061 33.6 0.048 1.17

(0.003) (0.002) (0.002) (0.002) (0.002)

20 0.091 463 0.059 0.320 0.052 0.636 0.067 33.2 0.054 0.527

(0.002) (0.001) (0.001) (0.001) ( 0.001)

50 0.090 281 0.068 0.094 0.064 0.150 0.074 0.047 0.064 0.138

(0.001) (0.001) (0.001) (0.001) (0.001)

100 0.090 167 0.075 0.032 0.071 0.058 0.078 0.018 0.072 0.051

(0.0008) (0.0007) (0.0007) (0.0007) (0.0007)

1000 0.091 0.0008 0.089 0.0002 0.085 0.001 0.087 0.0005 0.086 0.0009

(0.0003) (0.0003) (0.0002) (0.0002) (0.0002)
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Table 2: Comparison of different formulations (Case 2: true input parameter θ c = 1, true optimal server

utilization x∗θ c = 0.5)

ESO Mean RSO Mean-Var RSO VaR RSO CVaR RSO

n x̂∗ D(x̂∗) x̂∗ D(x̂∗) x̂∗ D(x̂∗) x̂∗ D(x̂∗) x̂∗ D(x̂∗)

10 0.495 0.004 0.423 0.043 0.338 0.097 0.387 0.032 0.351 0.079

(0.008) (0.011) (0.008) (0.007) (0.008)

20 0.494 0.001 0.464 0.004 0.377 0.022 0.412 0.008 0.388 0.017

(0.006) (0.007) (0.005) (0.005) (0.005)

50 0.498 0.0001 0.490 0.0001 0.423 0.002 0.444 0.001 0.430 0.002

(0.003) (0.003) (0.003) (0.003) (0.003)

100 0.498 5e-05 0.4941 6e-05 0.447 0.0008 0.459 0.0004 0.449 0.0007

(0.003) (0.003) (0.003) (0.003) (0.003)

1000 0.499 4e-07 0.500 4e-07 0.490 2e-06 0.486 4e-06 0.483 6e-06

(8e-04) ( 8e-04) (8e-04) (8e-04) ( 8e-04)

5 CONCLUSION AND FUTURE RESEARCH

In this paper, we proposed a new risk framework for simulation optimization in order to account for input

uncertainty. We compared different risk formulations and the usual simulation optimization formulation

on a simple numerical example, and confirmed that the risk formulations can yield more robust solutions

against input uncertainty when the objective function value is more sensitive to small deviations from the

true optimal solution. However, the risk formulation may tend to be overly conservative otherwise.

There are several research directions to go. First, how to solve the risk formulations numerically is a

challenging problem, given that the plain simulation optimization without input uncertainty is already quite

difficult. Two common approaches are the sample average approximation and stochastic approximation,

which can be extended to the risk formulations. Second, when to use which formulation is an interesting

question. As demonstrated in this very simple example in the paper, there seems not a single choice of

the best formulation(s). More precise conditions and more insights about the problem structure may be

needed to determine a good formulation to use.
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