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ABSTRACT

Stochastic optimization facilitates decision making in uncertain environments. In typical problems, proba-

bility distributions are fit to historical data for the chance variables and then optimization is carried out, as

if the estimated probability distributions are the “truth”. However, this perspective is optimistic in nature

and can frequently lead to sub-optimal or infeasible results because the distribution can be misspecified and

the historical data set may be contaminated. In this paper, we propose to integrate existing approaches to

decision making under uncertainty with robust and efficient estimation procedures using Hellinger distance.

Within the existing decision-making methodologies that make use of parametric models, our approach

offers robustness against model misspecifications and data contamination. Additionally, it also facilitates

quantification of the impact of uncertainty in historical data on optimization results.

1 INTRODUCTION

Stochastic optimization and its variants have received much attention during the last few decades. An

important aspect of the stochastic optimization problem is that it facilitates decision making in uncertain

environments. In typical problems, historical data are used to estimate the probability distributions for the

random variables and then optimization is carried out, assuming that the estimated probability distributions

are the “nominal”. However, this perspective is optimistic in nature and can frequently lead to sub-optimal or

infeasible results because the distribution may be misspecified and parameter estimates may have significant

uncertainty due to the limited size of the data set and/or data contamination. This has been adequately

described in the literature (Scarf et al. 1958, Ben-Tal and Nemirovski 1998, Ben-Tal and Nemirovski

2000, Bertsimas and Sim 2004). To address this issue these authors introduced the concept of robust

optimization (RO). In this approach the goal is to find an optimal solution, for the parameters governing

the optimization problem, which are immune to ambiguity in the parameters. The method models the

ambiguity by restricting the parameters to a set, referred to as an uncertainty set and the optimization is

carried out under the worst case scenario.

An alternative approach, referred to as distributionally robust optimization (DRO), accounts for stochastic

nature of the parameters. In this method, a stochastic optimization problem is considered, where the
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distributions of the parameters are allowed to vary in an ambiguity set. The optimization is then carried

out under the worst case distribution in the ambiguity set. An important question concerns the construction

of ambiguity/uncertainty sets (we use “ambiguity set” and “uncertainty set” interchangeably in this paper).

One of the earlier methods studied by Scarf et al. (1958) and later extended to more complex objective

functions (Yue et al. 2006, Zhu et al. 2006, Popescu 2007), assumed that the first two moments were

known. Delage and Ye (2010) studied stochastic optimization allowing for moment uncertainty. They

constructed confidence intervals for the mean and the covariance matrix using concentration inequalities

of McDiarmid (1998). Additionally, they also studied the usefulness of including support constraints.

Recently, Hu and Hong (2013) studied DRO, where the ambiguity set was determined by Kullback-Leibler

divergence between the probability distributions and the “nominal” distribution. It is worth pointing out

here that the nominal distribution is based on historical data and hence is typically estimated.

The impact of input uncertainty has also been recently studied in the stochastic simulation literature

under a likelihood scenario (Cheng and Holland 1997, Chick 2001, Zouaoui and Wilson 2003, Zouaoui

and Wilson 2004, Ng and Chick 2006, Barton et al. 2014, Xie et al. 2013, Xie et al. 2014). The focus

is on quantifying the impact of parametric input distribution model uncertainty, arising from historical

data uncertainty, on simulation estimations in the presence of simulation noise in output. Also related is a

rich body of literature on measuring parametric uncertainty via derivative estimation (L’Ecuyer 1990, Ho

and Cao 1991, Glasserman 1991, Fu and Hu 1997, Fu 1994, Glasserman and Tayur 1995, Hong 2009,

Hong and Liu 2009). Alternatively, Lam (2013a), Lam (2013b) consider a non-parametric approach in

which one evaluates the sensitivity in a non-parametric “neighborhood” around the “true” distribution. This

neighborhood is defined using Kullback-Leibler (KL) divergence between the probability distributions. All

these methods provide useful assessment of distribution uncertainty for a fixed decision variable, but do

not consider the impact on the optimizers and the values of the objective function at the optimizers.

The primary objective of this article is to provide an alternative paradigm for stochastic optimization

that provides robustness. Our proposed method does not increase the complexity of the computation.

Indeed, in some examples, the method reduces the computational complexity by a significant factor. Our

method is based on tools that incorporate statistical robustness and sample average approximation (SAA).

In the rest of the article, we describe the problem in Section 2 and provide two motivating examples.

Section 3 provides precise mathematical formulation. Section 4 studies the asymptotic properties of the

estimates. Section 5 provides numerical experiment results. Section 6 contains concluding remarks.

2 PROBLEM DESCRIPTIONS

We assume that the decision space X ⊆Z
d where X is compact and Z

d is the d-dimensional integer lattice.

Let ξ : Ω →R be a random variable. Let h(x,ξ ) : X ×Ω →R be a real-valued Borel measurable function.

Let Y1,Y2, . . . ,Yn denote the historical data set, which consists of a collection of n independent and identically

distributed (i.i.d.) random variables with distribution µG. Assume that g(·) is the density of µG. Let the

postulated distribution of Y1 be µθ0
with density f (y;θ0) belonging to the family F = { f (y;θ);θ ∈ Θ}.

The problem we study concerns estimating

max
x∈X

Eν [h(x;ξ )]
∆
= M, (1)

and

argmax
x∈X

Eν [h(x;ξ )]
∆
= x∗, (2)

where ν represents either µG or µθ0
, using Y1,Y2, . . . ,Yn. When there are multiple optimizers, we denote

the set of solutions of (2) by S∗.
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2.1 Motivating Examples.

We consider two examples in this section to motivate our work. The first example is the well-known

news-vendor problem in inventory theory (Hopp and Spearman 2011). The second example is a three-

stage flowline system, which showcases a queueing system that may be part of a large-scale and complex

manufacturing or service system (Buzacott and Shantikumar 1993).

2.1.1 The News Vendor Problem.

In the news-vendor problem, the decision maker needs to decide how many units of a product to order

before the selling period begins. There is no replenishment of inventory during the selling period. Let co

be the cost per unit of product left over after the sale is over, and cs be the per unit cost of shortage. Let

F(·;θ) be the cumulative distribution function (CDF) for the demand. Then the optimal order quantity is

given by

x∗ = F−1 (1− co/(cs + co);θ) , (3)

In practice, the decision maker often postulates a distribution model F(·;θ) and estimates θ from a

data set (historical sale records) of size n, denoted as θ̂n. Equation (3) shows that the optimal order quantity

x∗ is a function of the postulated CDF F(·;θ) and the parameter estimate θ̂n, which is a function of the

data set. We make this dependence explicit by writing x̂∗n in (3), where n is the number of samples in the

data set.

2.1.2 Flowline Optimization.

In this example, we consider optimizing the design of an N-stage flowline (Buzacott and Shantikumar 1993,

Pichitlamken and Nelson 2003), as illustrated in Figure 1. There are finite buffer storage spaces in front of

stations 2, . . . ,N, denoted by b2, . . . ,bN . The total number of buffer spaces ∑
N
i=1 bi cannot exceed B. There

is an infinite number of jobs in front of station 1 for processing. We adopt the production blocking policy

(Buzacott and Shantikumar 1993), i.e., each station will serve a job as long as there is a job available and

the station is not blocked, that is, the job it has completed cannot be released to the downstream station

because the buffer for that station is full.

Figure 1: A N-stage flowline system.

Each station has a single server and there are N flexible servers that can be allocated to each of these

N stations. The service time distributions of these N servers have CDFs F1(·;θ1),F2(·;θ2), . . . ,FN(·;θN).
The objective is to allocate these N servers to N stations and determine the number of buffer spaces in

front of stations 2 to N such that the steady-state throughput is maximized.

In the special case of N = 3, if service time distributions can be ordered by likelihood ratio, the optimal

server allocation calls for the allocation of the fastest server to station 2 (Buzacott and Shantikumar 1993).

The allocations of the other two servers do not matter. With this server allocation decision, one can then

solve the optimal buffer space allocation b∗2 and b∗3, subject to the total buffer space constraint b∗2+b∗3 ≤ B.

When the service time distributions are postulated to be exponential with mean service times µi, i = 1,2,3,

we can analytically calculate the throughput of the flowline for a buffer allocation by solving the Markov

state balance equations for the flowline, parameterized by µi, i = 1,2,3 (Buzacott and Shantikumar 1993).

One can then identify the allocation with the maximum throughput.
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In reality, one has to estimate µi, i = 1,2,3 from data sets recording the service times for each of the

three servers. Therefore, the identity of the fastest server is not certain and really depends on the data set.

Since Markov state balance equations are parameterized by the estimates µ̂i, i = 1,2,3, the optimal buffer

sizes are also a function of data set, and we make this dependence on data set explicit by denoting them

as b̂∗2,n and b̂∗3,n.

When the service time distributions can still be ordered by likelihood ratio but are not exponential,

e.g., Pareto random variables, we can no longer analytically determine the throughput and thus have to use

an optimization via simulation approach to find the optimal buffer space allocation (Xu et al. 2010).

3 ESTIMATORS AND ESTIMATED OPTIMIZERS

Recall that Yn = (Y1,Y2, . . . ,Yn) denote a collection of n i.i.d. random variables with distribution µG and

g(·) is the density of µG, and is postulated to be of a parametric family { f (y;θ);θ ∈ Θ}, where Θ ⊆ R
q.

We first provide a concise description of minimum Hellinger distance estimator (MHDE) in this section,

in comparison with the widely used maximal likelihood estimator (MLE).

3.1 Methods of Estimation.

Let θ̂n denote the estimators of θ using the historical data Yn which is assumed to have a density

f (·;θ0),θ0 ∈ Θ. Then we set

x̂∗n = argmax
x∈X

Eµ
θ̂n
[h(x;Y )]

= argmax
x∈X

∫

Rq
h(x;Y ) f (y; θ̂n)dy.

It is common to use for θ̂n, the MLE of θ0 obtained by maximizing

Ln(θ |Y1,Y2, . . . ,Yn) =
n

∏
i=1

f (Yi;θ). (4)

In such a situation, it is known that under moment and regularity conditions (Lehmann and Casella 1998)

θ̂n
a.s.−→ θ0,

and √
n
(

θ̂n −θ0

)
d−→ N(0, I−1(θ0),

where

I(θ0) =−Eθ

[
∂ 2 log f (Y ;θ)

∂θ 2

]
|θ=θ0

is the Fisher information matrix. Hence, under the assumption that h∗(y) = maxx∈X |h(x;y)| is a bounded

function, it follows that under additional smoothness conditions

lim
n→∞

∫
h(x;y) f (y; θ̂n)dy =

∫
h(x;y) f (y;θ0)dy, w. p. 1.

This would imply, due to the finiteness of the decision space X , that

x̂∗n = argmax
x∈X

∫
h(x;y) f (y; θ̂n)dy

converges almost surely to x∗. However, if the model is misspecified, the resulting estimator of x∗ will

incur a substantial bias as illustrated in Section 5. It is known that MHDE yields efficiency when the model
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is correctly specified while is robust to model misspecification and data contamination (Beran 1977, Beran

1978). The Hellinger distance between two densities f (·) and g(·) is given by

HD( f ,g) =

(∫

R

(
√

f (y)−
√

g(y))2dy

)1/2

.

Then HD2( f (·;θ),g) can be used as an objective function that one can minimize with respect to θ ; set

θg = argmin
θ∈Θ

HD2( f (·;θ),g).

Here θg is the population version of MHDE of θ .

Let gn(·) denote a nonparametric estimator of g(·). A useful choice for gn(·) is the kernel density

estimators, namely

gn(y) =
1

ncn

n

∑
i=1

K

(
y−Yi

cn

)
,

where K(·) is a kernel function (e.g., Gaussian kernel) and cn is referred to as the bandwidth or window

width and cn → 0, ncn → ∞ as n → ∞. Then the sample version of the MHDE is

θ̃n = argmin
θ∈Θ

HD2( f (·;θ),gn).

The above minimization problem is equivalent to the following maximization problem; namely,

θ̃n = argmax
θ∈Θ

∫

R

f 1/2(y;θ)g
1/2
n (y)dy. (5)

Then, it is well-known that θ̃n converges w.p. 1 to θg. When the postulated model coincides with the true

model, i.e., f (·;θ0)≡ g, then θg = θ0. Additionally, under additional regularity conditions, it can be shown

√
n
(
θ̃n −θg

) d−→ N

(
0,

1

4

∫
ρg(y)ρg(y)

T dy

)
, (6)

where

ρg(y) =−
[∫

s̈θ (y)
√

g(y)dy

]−1 [
∇θ f (y;θ)|θ=θg

]
,

where sθ (y) =
√

f (y;θ) and s̈θ (·) is the matrix of second partial derivatives. For notational simplicity, we

use V to denote the covariance matrix of the multivariate normal distribution in (6). When g = f (·;θ0),
then V = I−1(θ0), where I(θ0) is the Fisher information matrix (Beran 1977, Cheng and Vidyashankar

2006, Sriram and Vidyashankar 2000, Chan 2008).

It is helpful to compare the estimation equations (4) and (5) to understand why MHDE is robust.

We approximate the integrals in (4) and (5) by summations at Y1,Y2, . . . ,Yn. For MHDE, this leads to

θ̃n ≈ argmaxθ∈Θ ∑
n
i=1 f 1/2(Yi;θ)g

1/2
n (Yi). The first order condition requires solving the equation

n

∑
i=1

u(Yi;θ) f 1/2(Yi;θ)g
1/2
n (Yi) = 0, (7)

where u(Yi;θ) = ḟ (Yi;θ)/ f 1/2(Yi;θ) is the score function, and gn(Y ) =
1
n ∑

n
i=1 I{Y=Yi}. In comparison, MLE

solves
n

∑
i=1

u(Yi;θ)gn(Yi) = 0. (8)

Comparing (7) and (8), we see MHDE weighs each observation Yi by the postulated density f 1/2(Yi;θ),
while MLE assigns equal weight to all observations. When MHDE sees outliers, it will apply smaller

weights to these outliers and dampen their influence, and thus achieves robustness.
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3.2 Estimation of the Optimizer and Optimal Objective Value.

For a fixed x, an estimator of Eµθg
(h(x,Y )) is given by

Eµθ̃n
(h(x,Y )) =

∫

R

h((x,y)) f (y|θ̃n)dy. (9)

In general, the integral in (9) is difficult to evaluate. One can then adopt SAA (Kleywegt et al. 2002,

Nemirovski et al. 2009) to obtain the approximation

An(x)≡
1

mn

mn

∑
i=1

h(x,Yn,i), (10)

where Yn,i is the ith i.i.d. sample drawn from the fitted parametric model f (y|θ̃n).
Recall that the set of solutions to (2) is denoted by S∗. Now let

S∗n,mn
= {x|An(x) is maximized}.

Also let S∗ε and S∗ε(n,mn) denote the ε-optimal solutions to (2) and (11) respectively, i.e.,

S∗ε = {x ∈ X|Eµθ0
(h(x,Y ))≤ Eµθ0

(h(x′,Y ))+ ε,∀x′ ∈ X,x′ 6= x},

and

S∗ε(n,mn) = {x ∈ X|An,mn
(x)≤ An,mn

(x′)+ ε,∀x′ ∈ X,x′ 6= x}.

4 PROPERTIES OF ESTIMATORS AND ESTIMATED OPTIMIZERS

Our first result is concerned with the uniform approximation of (9) by (10).

Theorem 1 Assume that (i) the decision space X is a finite discrete space; (ii) maxx∈X Eµg
(|h(x,Y )|) < ∞;

(iii) the density function of the historical data satisfies the regularity conditions of Vidyashankar and Xu

(2015); and (iv) cn → 0,ncn → ∞ hold. Then

sup
x∈X

|An(x)−EPθ̃n
(h(x,Y ))| a.s.−→ 0 as n → ∞ and mn → ∞,

sup
x∈X

|An(x)−EPθg
(h(x,Y ))| a.s.−→ 0 as n → ∞ and mn → ∞.

We notice here that the result improves and sharpens the work of Kleywegt et al. (2002) by explicitly

taking into account data-driven aspects. Traditionally in SAA, Monte Carlo approximations to the integral

using a fixed probability distribution is performed and then the optimization is carried out on the approximated

objective function. However, in our approach, the approximation changes with n, the size of the historical

data. Hence the behavior of the optimizer needs to be evaluated over the distribution of the historical data.

This brings into play the role of (i) sample size n and (ii) the estimate of the density, both of which are

addressed in Theorem 1. Our next result is concerned with the behavior of the objective functions.

Theorem 2 The following hold:

(i) limn→∞ minx∈X An(x) = minx∈X Eθg
(h(x,Y )) with probability 1;

(ii) For any ε > 0, there exists a Nε (which is typically random) such that ∀n ≥ Nε , S∗ε(n,mn)⊂ S∗ε with

probability 1.
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We now turn our attention to the properties of the minimizer. To provide a succinct description of the

problem, we need to introduce some aspects of large deviation theory (Dembo and Zeitouni 1998). To this

end, we study the random function

HD(x,Y ) = h(x∗,Y )−h(x,Y ),

where x∗ = argmaxEµθg
[h(x,Y )], and we assume here that S∗ is a singleton. Under exponential moment

hypothesis and steepness of Kx(θ) = logE[eθHD(x)] (Dembo and Zeitouni 1998), one can establish a

large-deviation principle for the quantity

Tn(x)≡
1

mn

mn

∑
i=1

HD(x,Yn,i).

Indeed, the main result is that {Tn(x),n ≥ 1} satisfies the large-deviation principle with rate function

Λ∗
x(u) = sup

θ
[θu−Kx(θ)].

A significant new difficulty arises here due to the triangular array nature of the random variables Yn,i and

the role of the kernel density estimates. Our main result concerning the minimizers is that

Theorem 3 Under the assumption that HD(x,Y ) possesses a steep generating function, the minimizer

x̂∗n = argminx∈X
1

mn
∑

mn

i=1 h(x,Yn,i) converges to x∗ = argminx∈X Eµθg
(h(x,Y )), and that

lim
n→∞

1

n
log(1−P(x̂∗n = x∗)) =− inf

x∈X,x6=x∗
Λ∗

x(0).

The significance of the above theorem is that it helps identify the historical data sample size so that

the probability that the optimizer corresponding to the estimated objective function is different from the

true optimizer is small. Once again we notice that the probability distribution is based on the historical

data and not a fixed probability distribution as is typically done in stochastic optimization. We now turn

our attention to objective values. Let σ2(x) = Var(h(x,Y )).

Theorem 4 Assume that σ2(x) is finite for all x ∈ X. Let x̂∗n = argminx∈X An(x). Then under regularity

conditions in Cheng and Vidyashankar (2006) (see also Hooker and Vidyashankar (2014))

√
n(x̂∗n −x∗)

d−→ min
x∈S∗

Z(x),

where for every x1,x2, . . . ,xk ∈ X, (Z(x1), . . . ,Z(xk))
d−→ Nk(0,Σkk), with Σkk being the covariance matrix

of h(x1,Y ), . . . ,h(xk,Y ).

It is critical to notice that all our statements are with respect to the distribution of the historical data.

A critical issue here is that SAA approximation itself is based on simulations from the fitted parametric

model and is reminiscent of the parametric bootstrap method. However, the asymptotic behavior of the

parametric bootstrap beyond MLE has remained open for a long time.

5 NUMERICAL EXPERIMENTS

In this section, we report results of applying MHDE to optimize the order quantity in the newsvendor

problem described in Section 2.1.1 and the flowline design described in Section 2.1.2. Notice that the

decision x̂∗n and the associated objective values M̂∗
n ≡ Eµ

θ̂n
[h(x̂∗n;ξ )] are random variables, depending on

the data set and model specification. For each example, we report four types of statistics:

• The sample mean of x̂∗n;
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• The mean squared error (MSE) of x̂∗n;

• The mean relative optimality gap (ROG) of M̂∗
n ;

• The empirical probability distribution of the ROG of M̂∗
n .

We define ROG as follows. Recall we denote the true optimal objective value as M. Let

M ≡ 1

|X | ∑
x∈X

Eµ
θ̂n
[h(x̂;ξ )],

where |X | is the number of feasible solutions. Then

ROG ≡

∣∣∣M− M̂n

∣∣∣
∣∣M−M

∣∣ .

In words, M represents the expected quality of the decision if one does not perform any optimization and

simply randomly pick a feasible solution x∈X . The numerator in (11) measures the expected improvement

of optimization with perfect information. The denominator measures how much we lose by using imperfect

information. It is worthwhile to notice that ROG may be larger than 1, indicating that the “optimal” decision

based on the postulated model with estimated parameters µ
θ̂n

is actually worse than randomly picking a

feasible decision. We propose to use ROG instead of the perhaps more commonly used optimality gap

|M−M̂n|/|M| because ROG is less problem dependent (i.e., the scale of |M|) and thus helps better illustrate

how much optimization benefit we lose due to imperfect information.

5.1 Newsvendor Problem

We conduct the following three numerical experiments with cs = 600,co = 400. For each experiment, we

generate m = 5000 data sets. We fit a normal distribution to these data sets using MHDE and MLE. The

estimated θ̃n, and θ̂n are then plugged into (3) to calculate x̂∗n. For MHDE, Epanechnikov kernel was used

with the bandwidth cn calculated using Silverman’s plug-in bandwidth approach cn = 2.34× σ̂ × n−1/5,

where σ̂ is the sample standard deviation of the data set.

• Baseline. D ∼ N(30,9). The data set is n i.i.d. realizations of N(30,9), and x∗ = 30.8.

• Model misspecification. We consider the case where D has a shifted lognormal distribution 28.97+
LN(µ =−1.096,σ2 = 2.250). The data set is n i.i.d. realizations of this distribution. D still has a

mean of 30 and a variance of 9. But now the true optimal protection level is x∗ = 29.5.

• Data contamination. D ∼ N(30,9). The data set is generated from a normal mixture 0.9N(30,9)+
0.1N(60,9). x∗ = 30.8, since the underlying true distribution is the same as in the baseline case.

The sample means and mean squared errors (MSE) of x̂∗n are reported in Tables 1 and 2. We observe

that MHDE estimators are asymptotically efficient as their MSE values are very close to those of MLE.

The reason that the MSE values of MHDE are slightly higher is we used a Monte Carlo procedure to

obtain MHDE as explained in detail in Vidyashankar and Xu (2015). MHDE make the optimization results

robust against both model misspecifications and data contamination. In comparison, the MLE approach

suffers from biases caused by model misspecification and data contamination, setting x̂∗n larger than the

true optimal values.

To calculate ROG, we need to specify the feasible decision space X . We let X = [µ −5σ ,µ +5σ ],
where µ and σ are the mean and standard deviation of the demand. We believe this represents a large

and yet fairly reasonable decision space as an inventory manager would hardly have an order quantity

beyond ±5σ of the forecast demand with non-negligible shortage and overstock cost. Table 3 reports

the results. From the table, we see that model misspecification and data contamination has substantial

3709



Vidyashankar and Xu

Table 1: Sample Means of x̂∗n

Baseline Lognormal Contamination

n MHDE MLE MHDE MLE MHDE MLE

25 30.8 30.7 29.8 30.5 31.1 36.1

50 30.8 30.7 29.8 30.5 31.0 35.4

100 30.8 30.8 29.7 30.6 30.9 35.4

Table 2: Mean Squared Errors of x̂∗n

Baseline Lognormal Contamination

n MHDE MLE MHDE MLE MHDE MLE

25 .387 .377 .196 2.00 .568 29.2

50 .198 .193 .0963 1.63 .254 21.5

100 .0943 .0925 .0482 1.484 .133 21.5

Table 3: The Sample Means of ROG (in %) of the Newsvendor Problem

Baseline Lognormal Contamination

n MHDE MLE MHDE MLE MHDE MLE

25 0.91 0.91 0.51 3.17 1.28 45.95

50 0.48 0.49 0.18 2.92 0.57 36.28

100 0.24 0.27 0.08 2.86 0.24 35.97

impact on the actual quality of the decisions when MLE estimates are used. This is especially so with the

data contamination case, with decisions made based on MLE estimates lose about half of the benefit of

optimization.

5.2 Flowline Results

We study the allocation of three servers to the three stations and the allocation of a total of 6 buffer spaces

to b2 and b3. Sample sizes are set to n = 25,50 and 100. For each experiment, we generate m = 5000

data sets and fit exponential distribution to the data sets. We then calculate the estimates of µ1,µ2,µ3 for

each data set, µ̂1,n, µ̂2,n, µ̂3,n via MHDE or MLE. Because of the exponential distribution assumption, we

would place the machine with the smallest estimated mean service time in the middle station. The optimal

buffer sizes b̂∗2,n and b̂∗3,n are found by numerically solving the Markov balance equations parameterized

by µ̂1,n, µ̂2,n, µ̂3,n. We compare optimization results under three settings.

• Baseline. Data sets contain i.i.d. observations generated from exponential distributions with mean

service times µ1 = 0.5,µ2 = 1,µ3 = 1.5. The true optimal flowline design has the server 1 in the

middle, server 2 in the first station, and server 3 in the last station. Then we have the optimal buffer

allocation as b∗2 = 2,b∗3 = 3.

• Model misspecification. Service times of all three servers follow Pareto distributions: Pareto(1.25,0.1),
Pareto(1.25,0.2), and Pareto(1.25,0.3). The mean service times are the same as in the baseline.

Because Pareto can also be ordered by likelihood ratio, optimal server allocation remains unchanged.

Optimal buffer allocation requires simulation-based optimization techniques, and is found to be

b∗2 = 2,b∗3 = 3.

• Data Contamination. he true service times for servers 1, 2, and 3 are the same as in the baseline case,

with the optimal flowline design same as in the baseline. However, the data set for server 1’s service
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Table 4: Proportions of Incorrect Server Allocation

Baseline Lognormal Contamination

n MHDE MLE MHDE MLE MHDE MLE

25 1.18% 0.94% 2.24% 13.0% 3.84% 62.8%

50 0.40% 0.40% 0.16% 10.2% 1.06% 84.0%

100 0 0 0 7.92% 0.08% 92.4%

Table 5: Mean Squared Errors of b∗2

Baseline Lognormal Contamination

n MHDE MLE MHDE MLE MHDE MLE

25 0.123 0.118 0.150 0.270 0.128 7.32E-2

50 5.30E-2 4.96E-2 7.30E-2 0.247 6.48E-2 1.44E-2

100 1.02E-2 9.20E-3 2.34E-2 0.218 1.84E-2 6.00E-4

Table 6: The Mean ROGs (in %) of the Throughput

Baseline Lognormal Contamination

n MHDE MLE MHDE MLE MHDE MLE

25 2.95 2.74 4.20 19.8 4.16 62.3

50 0.98 0.87 1.51 15.9 1.57 80.5

100 0.16 0.13 0.37 13.3 0.29 84.4

times is contaminated, modeled as a mixture of exponential distributions 0.9Exp(0.5)+0.1Exp(10).
MLE would estimate µ̂1,n ≈ 1.45, and thus would mistakenly place server 2 in the middle.

We first report the results on the proportion of times when server allocation is not correct, i.e., the

fastest server 1 is not assigned to the middle station. Results are based on 5,000 i.i.d. replications.

Epanechnikov kernel was used with the bandwidth cn calculated using Silverman’s plug-in bandwidth

approach cn = 2.34× σ̂ ×n−1/5, where σ̂ is the sample standard deviation of the data set.

We then report results on the MSE of the buffer space in front of station 2 in the following table

Finally, we report results on ROGs in Table 6. From the table, we see that MHDE consistently maintains

the benefit of optimization using the estimated parameters for the exponential distribution model, despite

the impact of model misspecification and data contamination. In contrast, data contamination has a drastic

impact on the quality of the decision when MLE is used, losing up to 85% of the benefit of optimization.

6 CONCLUSION

In this paper, we propose to use MHDE instead of the commonly used MLE to estimate probability distribution

models from data sets in stochastic optimization. We present results on the asymptotic properties of the

estimated optimizers and optimal objective values, and demonstrated using two sets of experiments the

efficiency and robustness of stochastic optimization with MHDE.

ACKNOWLEDGMENTS

Jie Xu’s research is supported in part by the National Science Foundation under Grant No. CMMI- 1233376

and CMMI-1462787. Anand Vidyashankar’s research was supported in part by a grant from NSF DMS

1107108.

3711



Vidyashankar and Xu

REFERENCES

Barton, R. R., B. L. Nelson, and W. Xie. 2014. “Quantifying Input Uncertainty via Simulation Confidence

Intervals”. INFORMS Journal on Computing 26:74–87.

Ben-Tal, A., and A. Nemirovski. 1998. “Robust convex optimization”. Mathematics of Operations Re-

search 23 (4): 769–805.

Ben-Tal, A., and A. Nemirovski. 2000. “Robust solutions of linear programming problems contaminated

with uncertain data”. Mathematical programming 88 (3): 411–424.

Beran, R. 1977. “Minimum Hellinger distance estimates for parametric models”. The Annals of Statistics:445–

463.

Beran, R. 1978. “An efficient and robust adaptive estimator of location”. Ann. Statist. 6 (2): 292–313.

Bertsimas, D., and M. Sim. 2004. “The price of robustness”. Operations research 52 (1): 35–53.

Buzacott, J. A., and J. G. Shantikumar. 1993. Stochastic Models of Manufacturing Systems. Englewood

Cliffs, NJ: Prentice-Hall.

Chan, S. S. 2008. Robust and Efficient Inference for Linear Mixed Models using Skew-Normal Distributions.

Ph. D. thesis, Cornell University.

Cheng, A.-L., and A. Vidyashankar. 2006. “Minimum Hellinger distance estimation for randomized play

the winner design”. Journal of Statistical Planning and Inference 136:1875–1910.

Cheng, R., and W. Holland. 1997. “Sensitivity of computer simulation experiments to errors in input data”.

Journal of Statistical Computation and Simulation 58:219–241.

Chick, S. E. 2001. “Input distribution selection for simulation experiments: Accounting for input uncertainty”.

Operations Research 49:744–758.

Delage, E., and Y. Ye. 2010. “Distributionally robust optimization under moment uncertainty with application

to data-driven problems”. Operations Research 58:595–612.

Dembo, A., and O. Zeitouni. 1998. Large deviations techniques and applications, Volume 2. Springer.

Fu, M. 1994. “Sample path derivatives for (s,S) inventory systems”. Operations Research 42:351–364.

Fu, M. C., and J.-Q. Hu. 1997. Conditional Monte Carlo: Gradient Estimation and Optimization Applications.

Norwell, MA: Kluwer Academic Publisher.

Glasserman, P. 1991. Gradient Estimation via Perturbation Analysis. Norwell, MA: Kluwer Academic

Publisher.

Glasserman, P., and S. Tayur. 1995. “Sensitivity analysis for base-stock levels in multiechelon production-

inventory systems”. Management Science 41:263–281.

Ho, Y.-C., and X.-R. Cao. 1991. Perturbation Analysis and Discrete Event Dynamic Systems. Norwell,

MA: Kluwer Academic Publisher.

Hong, L. J. 2009. “Estimating quantile sensitivities”. Operations Research 57:118–130.

Hong, L. J., and G. Liu. 2009. “Simulating sensitivities of conditional value at risk”. Management Sci-

ence 55:281–293.

Hooker, G., and A. Vidyashankar. 2014. “Bayesian model robustness via disparities”. TEST 23 (3): 556–584.

Hopp, W. J., and M. L. Spearman. 2011. Factory physics. Waveland Press.

Hu, Z., and L. J. Hong. 2013. “Kullback-Leibler divergence constrained distributionally robust optimization”.

Technical report, Hong Kong University of Science and Technology.

Kleywegt, A. J., A. Shapiro, and T. Homem-de Mello. 2002. “The sample average approximation method

for stochastic discrete optimization”. SIAM Journal on Optimization 12 (2): 479–502.

Lam, H. 2013a. “Robust sensitivity analysis for stochastic systems”. Technical report, Department of

Mathematics and Statistics, Boston University, Boston, MA.

Lam, H. 2013b. “Sensitivity to serial dependency of input processes: a robust approach”. Technical report,

Department of Mathematics and Statistics, Boston University, Boston, MA.

L’Ecuyer, P. 1990. “A unified view of the IPA, SF, and LR gradient estimation techniques”. Management

Science 36:1364–1383.

Lehmann, E. L., and G. Casella. 1998. Theory of point estimation, Volume 31. Springer.

3712



Vidyashankar and Xu

McDiarmid, C. 1998. “Concentration”. In Probabilistic methods for algorithmic discrete mathematics,

195–248. Springer.

Nemirovski, A., A. Juditsky, G. Lan, and A. Shapiro. 2009. “Robust stochastic approximation approach to

stochastic programming”. SIAM Journal on Optimization 19 (4): 1574–1609.

Ng, S.-H., and S. Chick. 2006. “Reducing parameter uncertainty for stochastic systems”. ACM Transactions

on Modeling and Computer Simulation 16:26–51.

Pichitlamken, J., and B. L. Nelson. 2003. “A combined procedure for optimization via simulation”. ACM

Transactions on Modeling and Computer Simulation 13:155–179.

Popescu, I. 2007. “Robust mean-covariance solutions for stochastic optimization”. Operations Research 55

(1): 98–112.

Scarf, H., K. Arrow, and S. Karlin. 1958. “A min-max solution of an inventory problem”. Studies in the

mathematical theory of inventory and production 10:201–209.

Sriram, T., and A. Vidyashankar. 2000. “Minimum Hellinger distance estimation for supercritical Galton–

Watson processes”. Statistics & probability letters 50 (4): 331–342.

Vidyashankar, A., and J. Xu. 2015. “Distributionally robust stochastic optimization: a data-driven strategy”.

Technical report, George Mason University, Fairfax, VA.

Xie, W., B. Nelson, and R. Barton. 2013. “Statistical Uncertainty Analysis for Stochastic Simulation”.

Technical report, Department of Industrial Engineering and Management Sciences, Northwestern

University, Evanston, IL.

Xie, W., B. Nelson, and R. Barton. 2014. “A Bayesian Framework for Quantifying Uncertainty in Stochastic

Simulation”. Operations Research forthcoming.

Xu, J., L. J. Hong, and B. L. Nelson. 2010. “Industrial Strength COMPASS: A Comprehensive Algo-

rithm and Software for Optimization via Simulation”. ACM Transactions on Modeling and Computer

Simulation 20:3:1–3:29.

Yue, J., B. Chen, and M.-C. Wang. 2006. “Expected value of distribution information for the newsvendor

problem”. Operations research 54 (6): 1128–1136.

Zhu, Z., J. Zhang, and Y. Ye. 2006. “Newsvendor optimization with limited distribution information”.

Technical report, Working Paper, Stanford University, Stanford, CA.

Zouaoui, F., and J. R. Wilson. 2003. “Accounting for parameter uncertainty in simulation input modeling”.

IIE Transactions 35:781–792.

Zouaoui, F., and J. R. Wilson. 2004. “Accounting for input-model and input-parameter uncertainties in

simulation”. IIE Transactions 36:1135–1151.

AUTHOR BIOGRAPHIES

ANAND N. VIDYASHANKAR is an Associate Professor in the Department of Statistics at George Mason

University. He received his Ph.D. in Statistics and Mathematics from Iowa State University and has held

subsequent positions in the Departments of Statistics at the University of Georgia and Cornell University.

His main interests are in the areas of Branching Processes and Branching Random Walks, Stochastic

Fixed Point Equations, Rare Event Simulations, Nested Simulations, Network Analysis, High-dimensional

Statistical Inference, Robust Statistical Methods, and Risk Theory. He is a member of American Statistical

Association, Institute of Mathematical statistics, and INFORMS. His email address is avidyash@gmu.edu.

JIE XU is an Assistant Professor in the Department of Systems Engineering and Operations Research

at George Mason University. He received his Ph.D. from the Department of Industrial Engineering and

Management Sciences of Northwestern University. His research interests include Monte Carlo simulation,

stochastic optimization, computational intelligence, and applications in risk management and aviation. He

is a member of INFORMS, IEEE, ACM, and SIAM. His email address is jxu13@gmu.edu.

3713

mailto://avidyash@gmu.edu
mailto://jxu13@gmu.edu

