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ABSTRACT

In Peng et al. (2015b), we show that the probability of correct selection (PCS), a commonly used metric, is

not necessarily monotonically increasing with respect to the number of simulation replications. A simple

counterexample where the PCS may decrease with additional sampling is provided to motivate the problem.

The reference identifies the induced correlations as the source of the non-monotonicity, and characterizes

the general scenario under which the phenomenon occurs by a condition where coefficient of variations

of the difference in sample means are large. Numerical examples further illustrate the non-monotonic

behavior of the PCS for some well-known sampling schemes.

1 INTRODUCTION

Statistical ranking and selection procedures that have been developed for simulation optimization problems

involving a given finite set of fixed alternatives include indifference zone (IZ) procedures (Rinott 1978,

Bechhofer et al. 1995, Goldsman and Nelson 1998, Hong and Nelson 2005, Kim and Nelson 2006), optimal

computing budget allocation (OCBA) (Chen et al. 2000, Chen and Lee 2011, Pasupathy et al. 2014, Peng

et al. 2015a, Xu et al. 2015), and expected value of information (EVI) procedures (Chick and Inoue 2001,

Branke et al. 2007). In these procedures, one of the most commonly used metrics is the probability of correct

selection (PCS). Recently, Peng et al. (2015b) demonstrated that PCS is not necessarily monotone in the

number of simulation replications. In particular, the PCS may actually decrease with additional sampling

under certain scenarios if the additional replications are allocated to the best alternative. After providing a

simplified counterexample to demonstrate the phenomenon, we review some of the theory behind the main

results in that paper, which involves analyzing the joint distribution on the difference of pairwise sample

means and the induced correlations when there are at least three alternatives. For the general case, a lower

bound on the derivative of PCS with respect to the number of simulation replications is provided, which

leads to a necessary condition under which the PCS is non-monotonic and a sufficient condition under

which the PCS is increasing. In the special case of three designs, the conditions can be determined by one

factor, i.e., the coefficient of variations of the difference in sample means. Non-monotonicity of PCS occurs
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under the condition in which the variances are large relative to the differences in means and the sample size,

or in other words a setting where the coefficient of variations (CVs) of the difference in sample means are

large (DISMAL), henceforth referred to as the CVs-DISMAL scenario. This corresponds, for example, to

the least favorable configuration IZ setting with relatively large variances and small sample size. Even in

such situations, the PCS can be shown to be increasing if additional replications are allocated to alternatives

other than the best, but such an allocation may contradict, for example, the proportional-to-variance (PTV)

allocations typically specified by IZ procedures, as well as OCBA ratio allocations, which are derived

in the asymptotic regime where the CVs go to zero. Specifically, numerical experiments illustrate in the

CVs-DISMAL scenario the PCS of PTV, OCBA and EVI procedures actually decrease.

Induced correlations were also considered in the optimal selection policy in a Bayesian framework,

which has been studied in Gupta and Miescke (1986), Berger and Deely (1988), Gupta and Miescke (1989),

Gupta and Miescke (1996), and Peng et al. (2015a). By proving that the value of information is non-

negative, it follows that the integrated PCS (IPCS) under a Bayesian framework with an optimal selection

policy must be increasing with respect to the number of simulation replications. However, calculation of

the optimal selection policy in general is computationally expensive for ranking and selection, although

in principle it can be numerically estimated by particle filtering algorithms. Incorporating the induced

correlation structure into the allocation policy would be another potential way to ensure the monotonicity

of the IPCS, and deserves further exploration.

The rest of the paper is organized as follows. In section 2, we define the problem setting and present

a simple counterexample showing that the PCS does not necessarily increase with the simulation budget.

Section 3 provides the theoretical explanation for the example by studying the sensitivity of PCS with

respect to the number of replications allocated to each alternative. In Section 4, the performances of

different allocation policies are tested. In Section 5, we conclude.

2 SETTING AND COUNTEREXAMPLE

We define the problem setting as choosing the maximum mean among k alternatives, and introduce the

following notation:

µi: mean of ith alternative, i = 1, ..,k;

Ni: number of replications allocated to ith alternative, i = 1, ..,k;

Xi j: jth replication of ith alternative, i = 1, ..,k;

X̄i
.
=

∑
Ni
j=1 Xi j

Ni
, i = 1, ..,k.

Without loss of generality, assume the 1st alternative is the best, i.e., µ1 > µ j, j = 2, ..,k. Then the PCS

is given by

PCS
.
= P(X̄1 > X̄2, · · · , X̄1 > X̄k) .

More replications decrease the standard error of the sample mean, which intuition might suggest would

always lead to higher PCS. However, the following counterexample demonstrates otherwise: for k = 3,

suppose µ1 = 0.2, µ2 = µ3 = 0, with the three alternatives independent and normally distributed, with

common variance σ2 = 1, i = 1,2,3. With simulation replications increasing from Ni = 1, i = 1,2,3, to

N1 = 2, N2 = N3 = 1, the PCS is changed from

PCS1 =
∫ ∫

{x1>0,x2>0}
f
(

x1,x2; 0.2/
√

2,0.2/
√

2,1/2
)

dx1dx2

to

PCS2 =
∫ ∫

{x1>0,x2>0}
f
(

x1,x2; 0.2/
√

3/2,0.2/
√

3/2,1/3
)

dx1dx2,
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where f is the density of the two-dimensional normal distribution is given by

f (x1,x2;m1,m2,c23) =
1

2π
√

1− c2
23

exp

{

−(x1 −m1)
2 −2c23(x1 −m1)(x2 −m2)+(x2 −m2)

2

2(1− c2
23)

}

. (1)

Numerical calculation shows PCS decreases from 0.39 to 0.37 with one additional replication allocated

to the best alternative. The theoretical and graphical explanation for this simple counterexample will be

discussed in detail in Section 3, but first we generalize it to highlight the main issues.

3 A SIMPLE COUNTEREXAMPLE FOR THREE ALTERNATIVES

For k = 3, suppose µ1 = 2∆, µ2 = ∆, µ3 = 0, ∆ > 0, with the three alternatives independent and normally

distributed, with common variance σ 2 = 1, i = 1,2,3. Then we have

E

[

X̄1 − X̄2
√

1/N1 +1/N2

]

= ∆

√

N1N2

N1 +N2

, E

[

X̄1 − X̄3

σ
√

1/N1 +1/N3

]

= 2∆

√

N1N3

N1 +N3

,

var

(

X̄1 − X̄2
√

1/N1 +1/N2

)

= var

(

X̄1 − X̄3
√

1/N1 +1/N3

)

= 1,

and

cov

(

X̄1 − X̄2
√

1/N1 +1/N2

,
X̄1 − X̄3

√

1/N1 +1/N3

)

=

√

N2N3

(N1 +N2)(N1 +N3)
.

The positive correlation exists because the random variable X̄1 appears in both pairs of differences.

If Ni = N, i = 1,2,3, then (X̄1 − X̄2)/
√

2/N and (X̄1 − X̄3)/
√

2/N jointly follow a two-dimensional

normal distribution with means

E

[

X̄1 − X̄2
√

2/N

]

= ∆
√

N/2, E

[

X̄1 − X̄3
√

2/N

]

= ∆
√

2N,

and variances and covariance given by

var

(

X̄1 − X̄2
√

2/N

)

= var

(

X̄1 − X̄3
√

2/N

)

= 1, cov

(

X̄1 − X̄2
√

2/N
,
X̄1 − X̄3
√

2/N

)

= 1/2.

Then as the differences between the means of the three designs go to zero, we know lim∆→∞ PCS = 1/3

by symmetry, where

PCS = P

(

X̄1 − X̄2
√

2/N
> 0,

X̄1 − X̄3
√

2/N
> 0

)

.

Therefore, if ∆ is very small and the number of replications for each alternative is relatively small, the

PCS should be close to 1/3.

If N2 = N3 = N is kept fixed, then as N1 → ∞, X̄1 → 2∆ a.s.,

E

[

X̄1 − X̄2
√

1/N

]

= ∆
√

N, E

[

X̄1 − X̄3
√

1/N

]

= 2∆
√

N,

and

var

(

X̄1 − X̄2
√

1/N

)

= var

(

X̄1 − X̄3
√

1/N

)

= 1, cov

(

X̄1 − X̄2
√

1/N
,
X̄1 − X̄3
√

1/N

)

= 0 .
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With N1 going to ∞, the randomness of X̄1 disappears, so that the correlation of the pairs of the differences

goes to zero. In other words, if the observation for the best alternative is deterministic, the differences

(X̄1 − X̄i), i = 1, ..,k, are independent. Then,

lim
∆→0

PCS = lim
∆→0

P

(

X̄1 − X̄2
√

1/N
> 0,

X̄1 − X̄3
√

1/N
> 0

)

= lim
∆→0

P

(

X̄2 −∆
√

1/N
< ∆

√
N

)

P

(

X̄3
√

1/N
< 2∆

√
N

)

= 1/4 .

Therefore, if ∆ is very small and the number of replications N for alternative 2 and 3 is relatively small,

the PCS should be close to 1/4. Thus, when N1 increases to ∞, the PCS decreases from approximately

1/3 to approximately 1/4.

4 THEORETICAL ANALYSIS

We introduce the following additional notation:

σ2
i : variance of ith alternative, i = 1, ..,k;

φ : density of standard normal distribution;

Φ: cumulative distribution function (CDF) of standard normal distribution;

vi
.
=

σ2
i

Ni

, i = 1, ..,k;

mi
.
=

µ1 −µi√
v1 + vi

, i = 2, ..,k;

ci j
.
=

v1√
v1 + vi

√
v1 + v j

, i, j = 2, ..,k, i 6= j;

m̃
(i)
j

.
= (m j −mici j)/

√

1− c2
i j, j 6= i, i = 2, ..,k;

Yi
.
=

X̄1 − X̄i√
v1 + vi

−mi, i = 2, ..,k .

Assume Xi j ∼N(µi,σ
2
i ), i.i.d. for j = 1, ...,Ni, and mutually independent for i= 1, ..,k, so X̄i ∼N(µi,vi)

and mutually independent for i = 1, ..,k, and Y
.
= (Y2, · · · ,Yk)∼ N(0,Σ), where

Σ =











1 c23 · · · c2k

c23 1 · · · c3k

...
...

. . .
...

c2k c3k · · · 1











.

The independent normal distribution assumption is common, often justified by the central limit theorem,

e.g., by using batching. The PCS can be rewritten as

PCS = P(Y2 >−m2, · · · ,Yk >−mk) .

The apparent paradox in the counterexample can be explained by considering the sensitivity of the

PCS with respect to the number of replications.

Theorem 1 (Peng et al. 2015b)
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(i) For k = 2, d
dN1

PCS > 0 and d
dN2

PCS > 0;

(ii) For k ≥ 3, d
dNi

PCS > 0, i = 2, ..,k, and

d

dN1

PCS ≥ ∑
i=2,..,k

dmi

dN1

φ(−mi)∏
j 6=i

Φ(m̃
(i)
j )

+2 ∑
2≤i< j≤k

dci j

dN1

1

2π
√

1− c2
i j

exp

(

−
m2

i +m2
j

2(1+ arcsin(ci j))

)

.

Remark. The proof of the theorem can be found in Peng et al. (2015b). The lower bound leads to

a sufficient condition for d
dN1

PCS ≥ 0 or necessary condition for d
dN1

PCS ≤ 0. An additional allocated

replication affects two parts of the PCS: the mean vector of the joint distribution of (Y2, ..,Yk) and the

correlation of the joint normally distributed random variable. For the second through k-th alternatives,

both contributions to the PCS are positive, whereas for the first alternative, the first contribution is positive

but the second is negative. In the following sections, we will see that in the CVs-DISMAL scenario, the

second contribution dominates.

4.1 Analysis for Three Alternatives

For k = 3, denote σ 2
3 = σ 2, N3 = N, and

p1
.
= σ1/σ , p2

.
= σ2/σ ; w1

.
= N1/N, w2

.
= N2/N;

ζ1
.
= p2

1/w1, ζ2
.
= p2

2/w2;

r
.
= σ/(µ1 −µ2), r

′ .
= σ/(µ1 −µ3), τ

.
= r/r

′
;

α
.
= r/

√
N, α

′ .
= r

′
/
√

N .

The parameter α (or α
′
) is the CV of the difference between X̄1 and X̄2 (X̄1 and X̄3). For k = 3, whether

or not allocating the replication to the best alternative leads to a decrease in the PCS is determined by a

one-dimensional parameter.

For calculation of the lower bound given in (1), we need to specify

m2 =
µ1 −µ2√

v1 + v2

=
1

α
√

ζ1 +ζ2

, m3 =
µ1 −µ3√

v1 + v3

=
τ

α
√

ζ1 +1
,

and

c23 =
v1√

v1 + v2

√
v1 + v3

=
ζ1

√

ζ1 +ζ2

√

ζ1 +1
,

m̃
(2)
3 =

(

m2 −
m1v1√

v1 + v2

√
v1 + v3

)

/

√

1− v2
1

(v1 + v2)(v1 + v3)

=

(

τ

α
√

ζ1 +1
− ζ1

α(ζ1 +ζ2)
√

ζ1 +1

)

/

√

1− ζ 2
1

(ζ1 +ζ2)(ζ1 +1)
,

m̃
(3)
2 =

(

m1 −
m2v1√

v1 + v2

√
v1 + v3

)

/

√

1− v2
1

(v1 + v2)(v1 + v3)

=

(

1

α
√

ζ1 +ζ2

− ζ1

α(ζ1 +1)
√

ζ1 +ζ2

)

/

√

1− ζ 2
1

(ζ1 +ζ2)(ζ1 +1)
,
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dm2

dN1

=
ζ1

2αNw1(ζ1 +ζ2)3/2
,

dm3

dN1

=
τζ2

2αNw1(ζ1 +1)3/2

dc23

dN1

=− ζ1

2Nw1

√

ζ1 +ζ2

√

ζ1 +1

(

ζ2

ζ2 +ζ1

+
1

1+ζ1

)

.

The lower bound given in (1) can be given explicitly by Ψ1(α)/N, where

Ψ1(α)
.
= α

[

a1φ
(a2

α

)

Φ

(a3

α

)

+b1φ

(

b2

α

)

Φ

(

b3

α

)]

− e1φ
(e2

α

)

, (2)

and

a1
.
=

ζ1

2w1(ζ1 +ζ2)3/2
, b1

.
=

τζ2

2w1(ζ1 +1)3/2
;

a2
.
=

1
√

ζ1 +ζ2

, b2
.
=

τ
√

ζ1 +1
;

a3
.
=

(τ −1)ζ1 + τζ2
√

(ζ1 +ζ2)(ζ1 +ζ2 +ζ1ζ2)
, b3

.
=

(1− τ)ζ1 +1
√

(ζ1 +1)(ζ1 +ζ2 +ζ1ζ2)
;

e1
.
=

ζ1

w1

√

2π(ζ1 +ζ2 +ζ1ζ2)

(

ζ2

ζ2 +ζ1

+
1

1+ζ1

)

,

e2
.
=

√

√

√

√

(

1

ζ1 +ζ2

+
τ2

ζ1 +1

)

/

(

1+ arcsin

(

ζ1
√

ζ1 +ζ2

√

ζ1 +1

))

.

(3)

It is easy to see a1,a2,b1,b2,e1,e2 > 0. We have the following conclusion for the determining the sign of

the lower bound given in (1) based on Ψ1 in (2).

Theorem 2 (Peng et al. 2015b)

(i) There exist M1 > ε1 > 0 such that for α ∈ [0,ε1], Ψ1(α)> 0, and for α ∈ [M1,∞), Ψ1(α)< 0;

(ii) there exist M2 > ε2 > 0 such that for α
′ ∈ [0,ε2], Ψ2(α

′
) > 0, and for α

′ ∈ [M2,∞), Ψ2(α
′
) < 0,

where Ψ2 can be defined similarly as Ψ1 in (2).

Remark. The proof of the theorem can be found in Peng et al. (2015b). This theorem tells us that for k = 3

when α (or α
′
) is large enough, i.e., the CVs-DISMAL scenario, the necessary condition for d

dN1
PCS < 0

is satisfied; on the other hand, if α (or α
′
) is small enough, the sufficient condition for d

dN1
PCS > 0 is

satisfied.

We provide a graphical illustration on the effect of one additional replication allocated to the first

alternative for the counterexample provided in Section 2. The parameters in (3) for this example are given

by τ = 1 and

a1 = b1 =
1

4
√

2
; a2 = b2 =

1√
2

; a3 = b3 =
1√
6

;

e1 =
1√
6π

, e2 =

√

1/
(

1+
π

6

)

.

For these values, the lower bound given in (1) changes sign at α∗ ≈ 1/0.94.

Figure 1 shows the two effects of one additional replication allocated to the best alternative: first, it

moves the center of the density further towards the first quadrant (shadowed area); second, it changes the

3683



Peng, Chen, Fu, and Hu

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Y
1
+m

1

Y
2+

m
2

The Effect of One Replication Allocated to the Best Design (in Small Scale)

f
1
= f

2

f
1
> f

2 f
1
(0.14,0.14)=0.18

f
2
(0.16,0.16)=0.17

f
2
=0.15

f
1
=0.15

f
2
=0.13

f
1
=0.13

−8 −6 −4 −2 0 2 4 6 8
−8

−6

−4

−2

0

2

4

6

8

Y
1
+m

1

Y
2+

m
2

The Effect of One Replication Allocated to the Best Design (in Lage Scale)

 

 

f
1
< f

2

f
1
< f

2

f
1
 > f

2

f
1
< f

2

f
1
< f

2

f
2
=10−4

f
1
=10−4

f
1
 > f

2

f
2
=10−8

f
1
=10−8

f
1
 > f

2

f
1
 > f

2

Figure 1: ∆ = 0.2. The ellipses with dotted (blue) lines are the contours of the density (i.e., f1) of

(Y1+m1,Y2+m2) with N1 = N2 = N3 = 1; the ellipses with solid (red) lines are the contours of the density

(i.e., f2) of (Y1 +m1,Y2 +m2) with N1 = 2 and N2 = N3 = 1.
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shape of the elliptic contours of the density of

(Y1 +m1,Y2 +m2) =

(

X̄1 − X̄2

σ
√

1/N1 +1/N2

,
X̄1 − X̄3

σ
√

1/N1 +1/N3

)

,

which is governed uniquely by the correlation c23 since the variances are normalized to be 1. The dotted (blue)

line ellipses are the contours of the density f1 = f
(

x1,x2; 0.2/
√

2,0.2/
√

2,1/2
)

, where f is defined by (1),

and the solid (red) line ellipses are are the contours of the density f2 = f
(

x1,x2; 0.2/
√

3/2,0.2/
√

3/2,1/3
)

.

The PCS is the integral of the density over the first quadrant. From the figure, it is easy to see that

moving the center of the density towards the first quadrant would increase the PCS if the shape of the density

is kept fixed. However, by analyzing the contours of the density with Y1 +m1 and Y2 +m2 coordinates

shown in the graph at the top of Figure 1, we know f1 > f2 inside the ellipse given by the contour f2 = 0.13.

This means the density flattens in the center with the additional replication allocated to the first design.

Also, by analyzing the contours of the density with Y1 +m1 and Y2 +m2 coordinates shown in the graph

at the bottom of Figure 1, we know f2 > f1 in the second and fourth quadrants, while f1 > f2 on a large

proportion of the first and third quadrants. Summarizing, f1 is greater than f2 on the area near the center

of both densities where the density is highly concentrated because of the exponentially decreasing rate of

normal distribution, and on a large proportion of the first quadrant where the PCS is integrated. The decline

of the PCS can be explained by the decrease of the induced correlation between Y1 +m1 and Y2 +m2.

5 NUMERICAL EXPERIMENTS

We test the following sampling allocation policies: OCBA (Chen et al. 2000) implemented sequentially

by the “most starving” rule, which allocates the next sample to the alternative whose current fraction is

most below the recommended fraction (Chen and Lee 2011); sequential EVI with 0-1 loss function (Chick

et al. 2010); knowledge gradient (KG) with uninformative prior (Frazier et al. 2008); PTV, for which the

number of allocated replications to each alternative is proportional to its sample variance, implemented

sequentially by the “most starving” rule; equal allocation (EA) sequentially from the first to the last

alternative in a cyclical manner. In a two-stage sampling procedure, the parameters are estimated using

a fraction of the simulation budget in the first stage. In the following experiments, each alternative has

n0 = 10 first-stage replications; in the second stage, for a given allocation policy, we allocate additional

replications sequentially and report the PCS as a function of the number of additional replications. For

each example, we run 106 independent macro experiments, so the PCS is accurate to about three decimal

points with 90% confidence.

5.1 Example 1

There are three alternatives with least favorable configuration of true mean, µ1 = 0.001, µ2 = µ3 = 0, and

variances σ 2
1 = 2, σ2

2 = σ2
3 = 1. This example falls into CVs-DISMAL scenario, and the best alternative

has the largest variance. From Figure 2, we can see that for OCBA, EVI and PTV, the PCSs are decreasing

with the number of additional replications from 1 through 10. After that, the PCSs for KG and PTV

continue to decrease, whereas the PCS for OCBA and EVI tilt but the slope is almost flat. The trajectories

of OCBA and EVI are indistinguishable in this example. From the trajectory of EA, we can see that each

time a replication is allocated to the first (best) alternative, the PCS decreases, and when a replication is

allocated to the second or third alternative, the PCS increases.
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Figure 2: Three alternatives with true means µ1 = 0.001, µ2 = µ3 = 0, and variances σ2
1 = 2, σ2

2 = σ2
3 = 1.

10 initial replications are allocated to each alternative to estimate the parameters.

5.2 Example 2

There are ten alternatives with linear structure of true mean, µi = 10−2−10−3× i, i = 1, ..,10, and variances

σ2
i = 2, σ2

i+5 = 1, i = 1, ..,5. This example falls into CVs-DISMAL scenario, and the best alternative has

the largest variance. From Figure 3, we can see that for OCBA, EVI and PTV, the PCSs are decreasing with

the number of additional replications from 1 through 20. After that, the PCSs for KG and PTV continue to

decrease, whereas the PCS for OCBA and EVI tilt upward slowly. Again for EA, each time a replication

is allocated to the first (best) alternative, the PCS decreases, and when a replication is allocated to any of

the other alternatives, the PCS increases.

5.3 Example 3

There are ten alternatives with least favorable configuration of true means µ1 = 0.001, µi = 0, i = 2, ..,10,

and variances σ 2
i = 2, σ2

i+5 = 1, i = 1, ..,5. This example also falls into CVs-DISMAL scenario, and the

best alternative is among the alternatives that have relatively large variances. The conclusions from the

numerical results shown in Figure 4 are similar to those in the previous example.

6 CONCLUSION

In this paper, we investigate and characterize scenarios where the PCS increases with the number of

replications allocated to alternatives other than the best. For the best alternative, we provide a necessary

condition for the PCS to be decreasing, and the condition can be determined by one factor for the special

case of three alternatives. This necessary condition is generally satisfied in the CVs-DISMAL scenario.

Numerical experiments confirm that in the CVs-DISMAL scenario, the PCS usually decreases with a

replication allocated to the best alternative; furthermore, the PCS of some well-known existing sampling
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Figure 3: Ten alternatives with true means µi = 10−2 − 10−3 × i, i = 1, ..,10, and variances σ2
i = 2,

σ2
i+5 = 1, i = 1, ..,5. 10 initial replications are allocated to each alternative to estimate the parameters.
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Figure 4: Ten alternatives with true means µ1 = 0.001, µi = 0, i = 2, ..,10, and variances σ2
i = 2, σ2

i+5 = 1,

i = 1, ..,5. 10 initial replications are allocated to each alternative to estimate the parameters.
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allocation policies, such as OCBA, EVI, KG and PTV, actually decrease in this scenario. More details can

be found in Peng et al. (2015b).
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