
Proceedings of the 2015 Winter Simulation Conference

L. Yilmaz, W. K. V. Chan, I. Moon, T. M. K. Roeder, C. Macal, and M. D. Rossetti, eds.

EXPECTED IMPROVEMENT IS EQUIVALENT TO OCBA

Ilya O. Ryzhov

Robert H. Smith School of Business

University of Maryland

College Park, MD 20742, USA

ABSTRACT

This paper summarizes new theoretical results on the asymptotic sampling rates of expected improvement

(EI) methods in fully sequential ranking and selection (R&S). These methods have been widely observed

to perform well in practice, and often have asymptotic consistency properties, but rate results are generally

difficult to obtain when observations are subject to stochastic noise. We find that, in one general R&S

problem, variants of EI produce simulation allocations that are virtually identical to the rate-optimal

allocations calculated by the optimal computing budget allocation (OCBA) methodology. This result

provides new insight into the good empirical performance of EI under normality assumptions.

1 INTRODUCTION

We summarize recent results by Ryzhov (2015). This work demonstrates the asymptotic equivalence of

two methodological approaches in a certain version of the ranking and selection (R&S) problem. R&S

is a fundamental problem in simulation, dealing with the efficient use of a limited information budget

to identify the highest-valued element of a finite set of design alternatives (e.g., competing simulation

models). See Kim (2013) or Chen et al. (2015) for an overview. Aside from its immediate applicability,

R&S offers an analytical framework for modeling the exploration/exploitation tradeoff, that is, the value

of experimenting with a seemingly suboptimal design in order to learn new information that may change

the decision-maker’s selection decision.

R&S is a well-established area of research, and a variety of methodological approaches is available;

see, e.g., Chau et al. (2014) and the references cited therein for an overview. In the following, we will focus

on two methodologies, namely the optimal computing budget allocation (OCBA) approach (surveyed in

Chen and Lee 2010), and the expected improvement (EI) approach (surveyed in Powell and Ryzhov 2012),

and establish a new equivalence result between them in one specific (but widely-studied) R&S model. This

result is fairly surprising, since the two methodologies proceed from completely different principles.

The OCBA approach (Chen, Fu, and Shi 2008) can be thought of as calculating an optimal deterministic

simulation allocation. Given M designs and a budget of N simulation runs (where only one design can be

implemented in a single run), we solve a single optimization problem to determine the number Nx of runs

to allocate to each design x = 1, ...,M in a way that optimizes a desired metric. Usually, the metric is the

probability of correct selection (Chen et al. 2000), that is, the probability that the design with the highest

expected performance will also have the highest sample mean after the output of the allocated runs has been

collected and averaged. The approach can also be extended to the metric of expected opportunity cost (He,

Chick, and Chen 2007). When N → ∞, the optimal allocations Nx admit a closed-form expression (Glynn

and Juneja 2004); however, this expression is a function of the true performance values of the alternatives,

which are unknown. In practice, it is estimated iteratively using sample means.

The EI approach (Chick, Branke, and Schmidt 2010) allocates simulations one at a time in an adaptive

manner. One typically adopts a Bayesian view of the unknown values of the designs, and models them

as random variables. The posterior distributions of these quantities can be updated recursively after each
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simulation run. Furthermore, using Bayesian predictive distributions, we can make a probabilistic forecast

of the outcome of the next simulation. We then allocate that simulation to the design which is expected

(on average) to make the greatest improvement in the desired metric (usually expected opportunity cost).

The simulation output is observed, the posterior distributions are updated, and the expected improvement

calculation can be repeated with a new set of posterior parameters. Thus, while this method is adaptive,

in the sense that the allocation decisions are improved over time as new information is collected, it is also

myopic, in the sense that the forecast only looks ahead to the outcome of the next simulation.

To provide context for these methods, consider a standard R&S model where the simulation output is

normally distributed and independent across alternatives. In this setting, both EI and OCBA methods are

asymptotically consistent, in the sense that they learn the exact value of every design as N →∞. Furthermore,

the construction of OCBA naturally characterizes the rate at which each design is sampled; each design

receives a non-zero proportion of the budget, and the relative frequency of simulation is represented by

the sampling ratios Nx

Ny
for x 6= y. By contrast, the sampling rates of EI methods are more difficult to

characterize due to the myopic nature of the allocation decisions, and the fact that the EI calculations

involve complicated functions whose asymptotic behaviour is not immediately evident. As of this writing,

the state of the art in this theory is the work by Bull (2011), which provides convergence rate results for

EI in global optimization (also known as the EGO method; see Jones, Schonlau, and Welch 1998), but

assumes zero variance in the simulation output. The proof technique cannot be easily adapted to handle

stochastic noise.

Ryzhov (2015) derives asymptotic sampling ratios for variants of EI in independent normal R&S.

Surprisingly, these ratios are virtually identical to the theoretically optimal values derived for OCBA in

Glynn and Juneja (2004) and Chen and Lee (2010), with some minor variations depending on the precise

version of EI used. Although the two methods optimize different criteria (opportunity cost for EI, probability

of correct selection for OCBA), recent work (Gao and Shi 2014) has observed that these criteria converge to

their limiting values at the same rate, providing intuition for the idea that the same policy may asymptotically

optimize both of them in some cases. Even so, the new results demonstrate that this optimal allocation is

asymptotically obtained by a myopic policy, which to our knowledge is the strongest such result currently

available for EI in problems with noise.

It is worth pointing out that asymptotic convergence to the optimal sampling ratios is not enough to

guarantee an optimal rate of convergence for the algorithm (an issue discussed in Glynn and Juneja 2011).

However, most practical implementations of OCBA would not be able to guarantee this either; rather, they

would use the sample means in place of the true values in the OCBA ratios, and use those estimated ratios

to drive a randomized sequential policy, thus obtaining the optimal ratios asymptotically. Nonetheless, this

convergence is an important regularity property for such algorithms, and in our view provides insight into

the good empirical performance of EI methods that has widely been observed under normality assumptions

(see, e.g., Frazier, Powell, and Dayanik 2008 or Ryzhov, Powell, and Frazier 2012).

This paper provides an informal overview of the result; for full proofs and technical details, please

see Ryzhov (2015). Here, we state the main results and provide intuition. Section 2 lays out the R&S

model and EI algorithms that will be studied. Section 3 describes the analysis. Section 4 gives a numerical

example, and Section 5 concludes.

2 INDEPENDENT NORMAL RANKING AND SELECTION

We consider a version of the ranking and selection problem with independent normal simulation output

with known variance. The model is Bayesian, since EI methods are based on Bayesian arguments, but the

learning mechanism is identical to that used in the frequentist analog of this problem. Although there exist

more powerful learning models that exploit correlations between alternatives (Qu, Ryzhov, and Fu 2012),

the independent normal model continues to be widely studied, e.g. in the literature on indifference-zone

methods (Kim and Nelson 2006); the method of batch means is suggested as a way to render the output

approximately normal (Kim and Nelson 2007).
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Let µx be the true average performance of design x. Since this quantity is unknown, we use the Bayesian

model µx ∼ N

(

θ 0
x ,
(

σ0
x

)2
)

, where the parameters θ 0
x ,σ

0
x are user-specified. The simulation output for

design x is modeled as Yx ∼ N
(

µx,λ
2
x

)

, where λx is presumed known. Let xn ∈ {1, ...,M} be the index of

the design chosen for the (n+1)st simulation, with Y n+1
xn being the output. Denote by F n the sigma-algebra

generated by x0,Y 1
x0 , ...,x

n−1,Y n
xn−1 . It is well-known (DeGroot 1970) that the conditional distribution of µx

given F n is N

(

θ n
x ,(σ

n
x )

2
)

, where the posterior parameters follow the recursive update

θ n+1
x =

{

(σn
x )

−2θ n
x +λ−2

x Y n+1
x

(σn
x )

−2+λ−2
x

xn = x

θ n
x xn 6= x,

(1)

(

σ n+1
x

)2
=







(

(σn
x )

−2 +λ−2
x

)−1

xn = x

(σn
x )

2
xn 6= x.

(2)

To simplify the model, we suppose that σ0
x = ∞, whence (1)-(2) become

θ n
x =

1

Nn
x

n−1

∑
n′=0

1{xn′=x}Y n′+1

xn′ , (σn
x )

2 =
λ 2

x

Nn
x

, (3)

where Nn
x = ∑

n−1
n′=0 1{xn′=x} is the number of times x has been simulated up to time n. This is simply the

usual frequentist mean and its variance.

The Bayesian model also enables us to make probabilistic forecasts about the future. Given F n and

xn = x, the conditional distribution of θ n+1
x is N

(

θ n
x ,(σ̃

n
x )

2
)

where

(σ̃n
x )

2 = (σn
x )

2 −
(

σn+1
x

)2
.

EI methods use this fact to evaluate the potential improvement offered by running one additional simulation

of design x.

Different definitions of “improvement” are possible. For example, the EI criterion of Jones, Schonlau,

and Welch (1998) can be defined in our setting as

νEI,n
x = IE

[

max

{

µx −max
y

θ n
y ,0

}

|F n
,xn = x

]

.

To evaluate the potential of design x, we consider the possibility that its true value µx will be greater than

(improve over) the current estimate maxy θ n
y of the best value. We calculate the expected value of this

improvement (if µx < maxy θ n
y , there is no improvement, so we only integrate over the positive tail). Under

the Bayesian assumptions, the expectation can be calculated in closed form as

νEI,n
x = σ n

x f

(

−
∣

∣θ n
x −maxy θ n

y

∣

∣

σn
x

)

, (4)

where the information valuation function f (z) = zΦ(z)+φ (z) and φ ,Φ are the standard normal pdf and

cdf. The method then chooses the design xn = argmaxx ν
EI,n
x for simulation.

The “knowledge gradient” or KG criterion (Frazier, Powell, and Dayanik 2008) defines the expected

improvement as

νKG,n
x = IE

[

max
y

θ n+1
y −max

y
θ n

y |F n
,xn = x

]

= σ̃ n
x f

(

−
∣

∣θ n
x −maxy6=x θ n

y

∣

∣

σ̃n
x

)

.
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In this case we look ahead only to the outcome of the next measurement. However, the result is quite

similar to (4). Both methods use the information valuation function and compare θ n
x , the current estimated

value of design x, with a reference value (either maxy θ n
y or maxy6=x θ n

y ). The KG policy likewise chooses

design xn = argmaxx ν
KG,n
x for simulation.

It is easy to show that, as n → ∞, we have ν
EI,n
x → 0 and ν

KG,n
x → 0 for the two respective policies.

Consequently, Nn
x → ∞ and θ n

x → µx almost surely under both policies. However, the growth rate of Nn
x is

important to the finite-time performance of the procedures. We will now discuss how these rates can be

characterized.

3 SAMPLING RATIOS FOR EXPECTED IMPROVEMENT METHODS

In the following, we focus on the EI policy (our analysis can later be applied to the KG policy with very

minor changes). To characterize Nn
x , it is necessary to understand the rate at which ν

EI,n
x converges to

zero, which depends on the behaviour of the information valuation function f . The main difficulty in

understanding this behaviour is due to the stochastic nature of the process (θ n) in (4). We eliminate this

difficulty by considering a modification of the EI policy that is purely deterministic.

3.1 Deterministic Modification of the EI Policy

For simplicity, suppose that the true means µx are fixed for all x. Although the derivation of (4) is based on

Bayesian arguments, the computational formula can still be applied in a frequentist setting. (Alternately,

one can replace µx by µx (ω) for a fixed sample path ω in the following discussion.) Define the “modified

EI criterion” as

ν̄EI,n
x = σ n

x f

(

−|µx −maxy µy|
σn

x

)

.

From (3), it follows that

ν̄EI,n
x =

λx√
Nn

x

f
(

−cx

√

Nn
x

)

(5)

where cx =
|µx−maxy µy|

λx
is now a constant (independent of time); we assume that cx 6= cy for x 6= y. Thus,

the decisions xn = argmaxx ν̄
EI,n
x do not depend on the simulation output at all. The continuous function

ν̄x (z) =
λx√

z
f
(

−cx

√
z
)

(6)

can be viewed as an interpolation of (5), where z is a continuous analog of Nn
x . This representation can

provide insight into the behaviour of f .

Proposition 1 (Ryzhov 2015) Let c1,c2 > 0. Then,

lim
z→∞

f (−c1

√
z)

f (−c2

√
z)

=







∞ c1 < c2

1 c1 = c2

0 c1 > c2.

We see that the (modified) information valuation of two designs, given comparable values of z, either

converges at exactly the same rate, or vanishes an order of magnitude faster for one of the designs. This

suggests the following supposition: if the modified EI policy is used to select systems, then f (−cx

√
Nn

x )

and f
(

−cy

√

Nn
y

)

must converge to zero at the same rate for any x 6= y.

The informal intuition behind this idea is as follows. Suppose that Nn
x and Nn

y are comparable in

magnitude for some sufficiently large n. If cx > cy, then f (−cx

√
Nn

x ) must vanish to zero faster than
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Figure 1: Let x,y be two systems with cx > cy. Then, ν̄x decreases faster than ν̄y, and the modified EI

method has to measure y more times in order to reduce the EI quantity by the same amount.

f
(

−cy

√

Nn
y

)

. However, in that case, the modified EI method will consistently prefer design y to design

x, since it always chooses the system with the highest EI quantity. It follows that Nn
y should grow faster

than Nn
x in order for ν̄

EI,n
y to catch up with ν̄

EI,n
x . The policy will adjust the sampling rates as necessary

in order to ensure that the EI quantities vanish at the same rate. Figure 1 gives a visual illustration.

This intuition is formalized in the next result. Under the modified EI method, none of the individual

EI quantities can shrink substantially faster (or slower) than the others.

Proposition 2 (Ryzhov 2015) For x 6= y, limsupn→∞
ν̄

EI,n
x

ν̄
EI,n
y

< ∞.

We then connect this result back to the sampling rates. Recall that, for the modified EI policy, the

constant cx in (5) depends on the distance between µx and the reference value maxy µy. Then, in the special

case of the design x∗ = argmaxx µx (and not for any other design), we always have cx = 0. It follows that

ν̄
EI,n
x∗ = λx∗

Nn
x∗

f (0), and the declining behaviour of this quantity does not depend on f . The design x∗ is the

only design for which this is the case. As a consequence, under the modified EI policy, the sampling rate

is always higher for x∗ than for any other alternative.

Proposition 3 (Ryzhov 2015) For x 6= x∗, limn→∞
Nn

x

n
= 0.

To prove this result, it is sufficient to consider an example with two designs, x and x∗. The convergence

rate of ν̄
EI,n
x∗ does not depend on f , but the rate of ν̄

EI,n
x does. Consequently, ν̄x (z) vanishes faster than

ν̄x∗ (z) for comparable values of z, so we must make substantially more measurements of x∗ in order for

the two EI criteria to decline at the same rate. By contrast, for any two suboptimal designs x,y 6= x∗, this

is never the case.

Proposition 4 (Ryzhov 2015) For x,y 6= x∗, liminfn→∞
Nn

x

Nn
y
> 0.

Thus, any accumulation point of the sequence
(

Nn
x

Nn
y

)

must be strictly positive and finite. In fact, there is

only one accumulation point, i.e., the sampling ratio has a limit. Again, we do not give the proof here, but

we provide the intuition. If cx 6= cy, but the EI criteria for x and y decline at the same rate, the relationship

between Nn
x and Nn

y should satisfy

cx

√

Nn
x ≈ cy

√

Nn
y .
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The theoretical limit of the sampling ratio confirms this intuition.

Theorem 1 (Ryzhov 2015) For x,y 6= x∗, limn→∞
Nn

x

Nn
y
=
(

cy

cx

)2

.

3.2 Deterministic Modification of the KG Policy

The extension of our analysis to the KG policy is straightforward. First, we define a modified KG criterion

ν̄KG,n
x = σ̃ n

x f

(

−
∣

∣µx −maxy6=x µy

∣

∣

σ̃n
x

)

, (7)

by analogy with (5). From here we proceed as before, but with two main differences. First, σ̃ n
x is O

(

1
Nn

x

)

,

whereas σn
x in the EI policy is O

(

1√
Nn

x

)

. Second, the reference value in (7) is now maxy6=x µy, rather than

the maximum over all y as in the EI policy. Consequently, Proposition 3 no longer holds, and the limit of

the sampling ratio, for any two designs x,y, becomes

lim
n→∞

Nn
x

Nn
y

=
cy

cx

,

where

cx =

∣

∣µx −maxy6=x µy

∣

∣

λx

. (8)

Let x′ be the design with the second-highest value. Both x∗ and x′ have the same numerator in (8), so

lim
n→∞

Nn
x∗

Nn
x′
=

λx∗

λx′
. (9)

3.3 Connection to OCBA

We are now able to make a surprising connection between EI and OCBA methods. First, consider the

modified EI policy of Section 3.1. From Theorem 1, we find that, for x,y 6= x∗, we have

Nn
x

Nn
y

→ λ 2
x (µy −µ∗)

2

λ 2
y (µx −µ∗)

2
, (10)

where µ∗ = maxy µy is the value of design x∗. The limit in (10) is identical to the sampling ratio for two

suboptimal designs used by OCBA in independent normal R&S (see Thm. 3.2 of Chen and Lee 2010). The

only difference between the two methods lies in their treatment of x∗: EI asymptotically allocates almost

every simulation to x∗ (Proposition 3), whereas OCBA uses a computational formula for Nn
x∗ in terms of

the other Nn
x . In practice, however, OCBA also tends to assign a much larger portion of the budget to x∗.

The OCBA calculations are based on an approximation of the performance metric (probability of correct

selection). However, Glynn and Juneja (2004) derives the exact optimal allocation for independent normal

R&S. Letting px = limn→∞
Nn

x

n
be the limiting proportion of the budget allocated to design x, the optimal

proportions for x,y 6= x∗ satisfy

(µx −µ∗)
2

(

λ 2
x∗

px∗
+ λ 2

x

px

) =
(µy −µ∗)

2

(

λ 2
x∗

px∗
+

λ 2
y

py

) .

An expression is then derived for px∗ in terms of the other px. However, when px∗ ≫ px for all x 6= x∗, we

again obtain the sampling ratios

p∗x
p∗y

≈ λ 2
x (µy −µ∗)

2

λ 2
y (µx −µ∗)

2
.
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In our case, Proposition 3 means precisely that x∗ receives a much greater proportion of the budget than

any other design, thus explaining the sampling ratios for suboptimal alternatives. Pasupathy et al. (2014)

discusses conditions under which it is optimal to allocate most of the budget to x∗, and finds that this can

happen when the number of systems becomes large.

Next, we discuss the modified KG policy of Section 3.2. The sampling ratios for this policy do not

match the OCBA ratios in general. However, consider a special case with only two designs, x and y. From

(9), we have
Nn

x

Nn
y

→ λx

λy

,

which is precisely the OCBA ratio for independent normal R&S with two designs (see Remark 3.1 in Chen

and Lee 2010). To see the intuition behind this, note that the original form of the KG policy defined in

(5) is provably optimal when there are only two designs (see Thm. 7.2 in Frazier, Powell, and Dayanik

2008). We would therefore expect it to recover the optimal sampling ratio in that special case. This has

also been observed by Chick, Branke, and Schmidt (2010).

To summarize, we have shown connections between the OCBA methodology and two (modified) variants

of expected improvement. The KG version is identical to OCBA when there are only two designs, matching

what we know about the optimality of the KG method in that setting. The EI version asymptotically allocates

most of the budget to the best alternative, and recovers the optimal sampling ratios for all suboptimal

alternatives.

3.4 Returning to the Stochastic Case

It remains to connect these results back to the original forms of the methods, which make calculations

based on the sample means θ n
x rather than the true values. Return to the original form of the EI criterion

in (4), and fix a sample path ω . For convenience, we will continue to view µx as a fixed constant (though

it can be made to explicitly depend on ω). The quantity cx is defined as in (5). Fix ε > 0 and define

νx (z,ε) =
λx√

z
f
(

−(cx + ε)
√

z
)

,

a perturbed version of (6). For sufficiently small ε , we can find some Nω such that

νx (N
n
x (ω) ,ε)≤ νEI,n

x (ω)≤ νx (N
n
x (ω) ,−ε) (11)

for all n ≥ Nω . This follows from the almost sure convergence of θ n
x to µx under the EI policy. Thus, on

the sample path ω , there is a point in time after which the stochastic EI criterion ν
EI,n
x (ω) is bounded

above and below by quantities that do not directly depend on θ n
x (ω), only through Nn

x (ω).

We can then develop similar bounds for the ratio
Nn

x (ω)
Nn

y (ω) for x,y 6= x∗. Recall that x tends to be chosen for

simulation more frequently if its EI criterion declines slower. Suppose that the simulation output behaves

in a way that will cause x to be chosen as frequently as possible. This will happen if ν
EI,n
x (ω) is always

equal to its upper bound in (11), while ν
EI,n
y (ω) for any y 6= x is always equal to its lower bound. Similarly,

x would be chosen as infrequently as possible if ν
EI,n
x (ω) would always equal its lower bound in (11),

while ν
EI,n
y (ω) would always equal its upper bound.

However, in these extreme cases, the EI criteria would decline in the same way as the modified EI

criteria from (5). In the case where x is measured as frequently as possible, we would repeat the analysis

of Section 3.1, but replace cx and cy by cx−ε and cy+ε , respectively. When x is measured as infrequently

as possible, we use cx + ε and cy − ε instead of cx and cy. For large enough n, we obtain the bounds

(

cy − ε

cx + ε

)2

≤ Nn
x (ω)

Nn
y (ω)

≤
(

cy + ε

cx − ε

)2

.

Taking ε → 0 recovers the OCBA ratios.
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Figure 2: Empirical sampling ratios for different alternatives over 105 iterations.

4 NUMERICAL EXAMPLE

We give a numerical example to illustrate our results. Consider a problem with 10 alternatives where

θ 0
x = 0 for every x. The prior variances

(

σ 0
x

)2
and the noise variances λ 2

x are generated independently

from a uniform distribution on the interval [1,2]. At the beginning of the experiment, a single value µx

is generated from the distribution N

(

θ 0
x ,
(

σ0
x

)2
)

for each x. These values are fixed for the remainder of

the experiment; we use them to generate the simulation output, but they are not revealed to the simulation

allocation policy.

We implement the KG policy defined in (5), which uses sample means to calculate expected improvement.

Since KG asymptotically allocates a non-zero proportion of the budget to every alternative (unlike EI), the

convergence of the sampling ratios can be observed more easily in 105 simulations. Figure 2 shows the

empirical convergence of four ratios involving various combinations of the four highest-valued designs.

In this example, we have simulated only a single sample path to illustrate that convergence to the

theoretical limiting ratios holds almost surely. However, the speed with which this occurs is highly problem-

dependent. Table 1 gives the number of simulations allocated to each design in the numerical example.

The four best designs were 10, 7, 9, and 1. Together, these four designs received over 85% of the budget.

For some pairs of alternatives (such as 2 and 7), the limiting ratios are quite large, and it may take longer

for the corresponding empirical ratios to converge.
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Table 1: Number of simulations allocated to each design in the numerical example.

x Nx x Nx

1 5391 6 2716

2 1425 7 38792

3 2435 8 1845

4 3254 9 13053

5 2943 10 28146

5 CONCLUSION

We have presented new theoretical results demonstrating a connection between expected improvement and

OCBA methods. One well-known variant of EI asymptotically achieves the OCBA sampling ratios for all

suboptimal alternatives, while a second variant does the same in the special case with only two designs.

We believe that these results provide insight into the good practical performance of EI methods under

normality assumptions, since the theoretical OCBA ratios optimize the rate of convergence in R&S.

However, some caveats are in order. First, the rate of convergence is optimized when the exact OCBA

ratios are used, but this is not guaranteed if those ratios are only achieved asymptotically. Second, it is

likely that the normality assumptions play a key role in the equivalence, since EI-type methods may not

even be consistent in non-normal settings (Ding and Ryzhov 2015). Nonetheless, normality assumptions

remain widely used in the literature and in practice, and it may be possible to obtain similar results for other

learning problems where such assumptions are made. One avenue for future research may be to consider,

e.g., subset selection problems, where OCBA methods are computationally tractable (Chen et al. 2008).
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