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ABSTRACT

Optimization of production systems often involves numerous simulations of computationally expensive

discrete-event models. When derivative-free optimization is sought, one usually resorts to evolutionary and

other population-based meta-heuristics. These algorithms typically demand a large number of objective

function evaluations, which in turn, drastically increases the computational cost of simulations. To counteract

this, meta-models are used to replace expensive simulations with inexpensive approximations. Despite

their widespread use, a thorough evaluation of meta-modeling methods has not been carried out yet to the

authors’ knowledge. In this paper, we analyze 10 different meta-models with respect to their accuracy

and training time as a function of the number of training samples and the problem dimension. For our

experiments, we choose a standard discrete-event model of an unpaced flow line with scalable number of

machines and buffers. The best performing meta-model is then used with an evolutionary algorithm to

perform multi-objective optimization of the production model.

1 INTRODUCTION

Discrete-event simulations are used to assess the performance of stochastic process models in production

systems. The models involve several process variables which together contribute toward a stochastic

response of individual nodes and the system as a whole. The simulation time depends on a number of

factors ranging from the parameters themselves, to the complexity of the workflow and the possible number

of events at each node. In general, the simulation time increases as more nodes are added to the system.

While this may not be a major concern for individual one-off simulations, often the goal is to optimize

the process parameters for maximal performance of the system and since iterative optimization requires

the evaluation of multiple candidate solutions, the simulation times add-up to give a large computational

overhead. Due to the non-linearity and noise associated with simulation models and the lack of gradient

information of the responses, most classical optimization methods are either inapplicable or fail to locate

the optimum solution reliably, instead converging to a local optimum. Population-based methods, such as

genetic algorithms, differential evolution, particle swarm optimization, etc. are more commonly used in

such situations owing to their global search characteristics and their ability to converge without the use of

function derivatives.

Real-world production system optimization problems involve multiple objectives, like maximization of

throughput, minimization of work-in-process, minimization of cost, minimization of inventory, etc. Many

of these objectives are conflicting, i.e. any attempt to improve the system with respect to one of the

objectives leads to worsening of some other objective. The problem of simultaneously optimizing such
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objectives is known as multi-objective optimization and is mathematically formulated as,

Minimize F(x) = { f1(x), f2(x), . . . , fM(x)}
Subject to x ∈ S

(1)

where fi :Rn →R are M (> 2) conflicting objectives that have to be simultaneously minimized (maximization

of fi can be handled as minimization of − fi) and the variable vector x = {x1,x2, . . . ,xn} belongs to the

non-empty feasible region S ⊂Rn formed by the constraints of the problem and the bounds on the variables.

Due to the conflicting nature of the objectives, there exist multiple optimal solutions to such problems,

each of which is strictly better in at least one of the objectives when compared to all other solutions. This

is referred to as the principle of dominance and the solutions are known as Pareto-optimal solutions. The

goal of multi-objective optimization methods is to obtain as many near Pareto-optimal solutions as possible

(convergence) while also adequately representing the Pareto-optimal front (diversity). Population-based

evolutionary algorithms are especially popular in this regard because they can obtain multiple Pareto-optimal

solutions in a single algorithmic run.

1.1 Meta-modeling in Evolutionary Computation

From the preceding discussion, it is evident that evolutionary algorithms are popular in the field of simulation-

based multi-objective optimization for two main reasons, (i) ability to work without derivatives, and (ii)

ability to obtain multiple Pareto-optimal solutions in a single run. Needless to say, they have also been

extensively used for production system optimization. However, these methods require a relatively large

number of objective function evaluations (simulations), which makes the issue of computational overhead

even worse. An alternative is to use functional approximations of the expensive simulation models that

can be evaluated fairly quickly for the given candidate solutions. These approximation models are known

as meta-models or surrogate models, or simply, surrogates.

Many recent meta-modeling methods have been developed specifically to be used with evolutionary

algorithms. Since evolutionary algorithms fall in the category of comparison-based optimizers, the meta-

models need to only be good enough for establishing the correct fitness ranking among the solutions, rather

than accurately represent the objective function (Runarsson 2004). Jin (2003) provides a comprehensive

survey of the available methods in and also highlights key implementation issues. His updated review (Jin

2011) discusses recent advances in using multiple surrogates and the use of surrogates for dynamic, robust

and constrained optimization. It also emphasizes the fact that most work in surrogate-assisted optimization

is experimental and that no rigorous comparative studies have been reported on the topic. In this paper, we

attempt to address this in the context of a scalable production simulation model. To make the comparison

as thorough as possible, we consider 10 different meta-modeling methods and assess their performance

with respect to function approximation error, solution ranking error and training time.

In the following section, we very briefly describe the 10 meta-modeling methods used in this study.

The experimental methodology for evaluating the static meta-models and the scalable discrete-event model

used in this study are described in Section 3. Section 4 presents the performance of the meta-modeling

methods in terms of accuracy and training time with respect to the number of training samples and size

of the simulation model. The primary purpose is to study the scalability of the meta-models on a standard

discrete-event model that can be found in most text books related to manufacturing systems. Based on the

above results, the best static meta-modeling method is selected and used with a multi-objective optimization

algorithm in Section 4.1. Due to space limitations, results with other meta-models are deferred to a future

study.

2 META-MODELS

A number of meta-modeling methods can be found in the literature (Jin et al. 2001, Li et al. 2010).

Most popular among them are, response surface methods, artificial neural networks, multivariate adaptive
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regression splines, kriging, radial basis functions and support vector regression. However, there are a few

other methods that have not been previously evaluated as meta-models, to the best of our knowledge. Here,

we list 10 meta-models along with a short description of their parameters and the settings used in this

paper. Most parameters are set to their default values. We use n to represent the number of variables and

ns to represent the number of training samples throughout the paper.

2.1 Multivariate Adaptive Regression Splines (MARS)

MARS is a non-parametric regression technique proposed by Friedman (1991) that can automatically model

non-linearities and multi-variable interactions in the training data. The method is non-parametric in the

sense that it does not assume a pre-defined form for the fitting function. Instead, the model is derived from

the data along with the estimates for coefficients. We use a Matlab implementation of MARS known as

ARESLab (Jekabsons 2009), short for Adaptive Regression Splines toolbox for Matlab/Octave. The most

important parameters for ARESLab are as follows:

1. maxFuncs: Maximum number of basis functions to be included in the model in the forward phase.

We use maxFuncs = 21 in this paper.

2. c: GCV cost per basis function. It acts as a smoothing parameter. Simulation studies suggest values

in the range [2,4], with c = 3 being “fairly effective” (Friedman 1991). Larger values will lead to

fewer knots being placed (i.e. final models will be simpler). We use c = 3

3. cubic: When a model with continuous first derivatives is desired, the piecewise linear basis functions

retained after the backward phase are replaced with piecewise cubic splines. The parameter can

either be true or false. We set cubic = true.

4. sel f Interactions: Maximum degree of self interactions for any input variable. We set it to 1.

5. maxInteractions: Maximum degree of interactions between input variables. We set it to 2.

6. threshold: Another stopping criterion for the forward phase. Larger values of the threshold generate

simpler models. We use threshold = 10−4 in this paper.

2.2 Kriging or Gaussian Process Regression (DACE)

Kriging models can be thought of as a combination of a global deterministic model and a local stochastic

model. The former approximates the target function f (x), similar to a regression method, while the

latter allows the kriging model to interpolate the ns training samples by introducing local deviations.

Mathematically, the kriging predictor can be written as,

f̂ (x) = F (βββ ,x)+Z(x), (2)

where F (βββ ,x) can either be a constant term (ordinary kriging), or be equal to zero (simple kriging), or

more generally be a linear combination of several polynomial basis functions (universal kriging).

The kriging methodology has been implemented in Matlab as the DACE (Design and Analysis of

Computer Experiments) toolbox (Lophaven et al. 2002). The parameters to be set by the user are:

1. regr: Three regression models have been implemented, namely regpoly0, regpoly1 and

regpoly2 representing zero, first and second order polynomial choices for F (βββ ,x). We use

regpoly0 when ns < n, regpoly1 when n ≤ ns < (n+1)(n+2)/2 and regpoly2 otherwise.

2. corr: Correlation model. Six correlation models have been implemented, namely correxp,

correxpg, corrgauss, corrlin, corrspherical and corrspline representing expo-

nential, generalized exponential, Gaussian, linear, spherical and cubic spline. The popular Gaussian

correlation model is used in this paper, Rcorrgauss(θθθ ,x
(i),x( j)) = Πn

k=1e−θk(x
(i)
k −x

( j)
k )2

.
3. θθθ 0: Initial value for θθθ . We use θθθ 0 = [2 2 . . . 2]n.

4. θθθ L,θθθU : Lower and upper bounds for θθθ . We use [0.1 0.1 . . . 0.1]n and [20 20 . . . 20]n respectively.
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2.3 k Nearest Neighbors Regression (kNN)

The k nearest neighbors regression method is one of simplest meta-models to implement. Since there is no

model training involved, it is usually among the fastest supervised algorithms. Let Nk(x
(u)) be the set of k

nearest neighbors of an unsampled point x(u). The predicted response is usually the mean of the response

values at the points in Nk(x
(u)). In this paper an inverse distance weighted response is used with k = 10.

It is given by,

f̂ (x(u)) =
∑i∈Nk(x(u))

wi f (x(i))

∑i∈Nk(x(u))
wi

, where wi =
1

||x(u)−x(i)|| . (3)

2.4 Artificial Neural Networks (NN)

A feedforward neural network consists of input, hidden and the output layers with nodes. The number of

nodes in the input and the output layers correspond to the number of variables and responses, while the

number of nodes in the hidden layers are up to the user to choose. Each node in a layer is connected to

all nodes of the next layer with a certain weight. All nodes (except the input nodes) process their input h

(a weighted sum of outputs from the previous layer) using an activation function to generate an output v.

A neural network is trained by first passing all training instances through the network and calculating the

mean squared error. This error is backpropagated through the network to update the weights of the node

connections. We use Matlab’s fitnet function with the sigmoidal activation function, v = (1+ e−h)−1,

and Levenberg-Marquardt optimization for obtaining the weights. A single hidden layer with 10 nodes is

used. A validation set of 20% of training samples is used to terminate the training for generalization.

2.5 Radial Basis Function Network (RBN)

Radial basis function networks are a variation of feedforward neural networks which use a single hidden

layer with the number of neurons typically equal to the number of training samples. The main difference

however, is the choice of the activation function. Radial basis function networks use Gaussian activation

functions centered at points ci.

φi(x) = exp

( ||x− ci||2
2σ2

)

with spread σ =
∑

ns

i, j=1 ||x(i)−x( j)||
n2

s

.

When ci correspond to the ns training samples, the problem of finding optimal weights reduces to the

inversion of a non-singular matrix. We use Matlab’s newrbe function in this paper.

2.6 Polynomial Regression or Response Surface Methodology (RSM)

Response surfaces are probably the oldest, yet one of the most common meta-modeling methods. They

fall under the category of polynomial regression, but mostly use a quadratic model as shown below:

f̂ (x) = β0 +
n

∑
i=1

βixi +
n−1

∑
i=1

n

∑
j=i+1

βi jxix j +
n

∑
i=1

βiix
2
i or Y = Xβββ . (4)

The coefficients are estimated using the ordinary least squares method. First, a model matrix or design matrix

X of size ns× p is formed using the regression terms of the model. For a quadratic model p=(n+1)(n+2)/2.

The ordinary least squares estimation method cannot uniquely estimate the coefficients when ns < p. Since

most experiments in this paper belong to this category, we do not use the RSM meta-model.

2.7 Regularized Regression or Elastic Nets (EN)

The problems with ordinary least squares approach described above can be addressed through regularization.

The idea is to use a regularization or shrinkage parameter λ ≥ 0 to tune model complexity by penalizing
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complex models. Elastic nets (Zou and Hastie 2005) combine L1 and L2 penalty terms through a parameter

α ∈ [0,1]. Instead of minimizing the mean squared error, the elastic net regularized regression minimizes

||Y−Xβββ ||2 +λ

[

(1−α)

2
||βββ ||22 +α||βββ ||1

]

, where ||βββ ||22 =
p

∑
j=1

β 2
j and ||βββ ||1 =

p

∑
j=1

|β j|. (5)

Here, X is the model matrix discussed above. With λ = 0, the above reduces to ordinary least squares

estimation. α = 0 corresponds to ridge regression and α = 1 gives LASSO. We choose α = 0.95.

To the best of our knowledge, elastic nets have not been previously used as meta-models in optimization.

We use the popular GLMNET Matlab toolbox (Friedman et al. 2010) in this paper. The toolbox uses

‘warm starts’ to calculate the regularization path for a sequence of λ values in an extremely efficient way

so that the user can choose one of them. In this paper, we use λmin, which corresponds to the minimum

cross-validation error model. The number of folds (n f olds) for cross-validation and the number of lambda

values to generate nlambda are user-defined parameters. They are set to 10 and 100 respectively. A

quadratic model for f̂ is used throughout this paper.

2.8 Support Vector Regression (SVR)

Support vector machine (SVM) based binary classification aims to find the decision boundary that maximizes

the margin between two classes in the feature space. Training samples that lie on the margin boundaries

are called support vectors, and the classification model is governed only by these training samples. A

similar strategy can be employed in a regression model where only training samples with deviations above

a threshold ε act as the support vectors. This version of SVM based regression is called ε-Support Vector

Regression. We use the popular LibSVM (Chang and Lin 2011) implementation of ε-SVR. The required

algorithmic parameters are ε , penalty C and the kernel function. In this paper, we set them to 0.1, 1 and

RBF kernel with σ = 1/n respectively. SVR performs best when all variables are scaled in [0,1].

2.9 Regression Tree (RT)

Regression tree learning starts with a root node containing all training instances. The algorithm then

searches over all intermediate values of all the variables for a split that maximally reduces the mean squared

error between the predictions and training responses at the current node. The best split is imposed and the

process is repeated recursively. We use Matlab’s classregtree function for growing a regression tree.

We set NVarToSample =all. At any node, the splitting stops if, (i) the number of observations in it is

less than MinParent, or (ii) factor of reduction in mean squared error is below a threshold QEtoler, or (iii)

the number of observations in either of the child nodes is less than MinLea f . These three parameters are

set to 10, 10−6 and 1, respectively. Fully grown regression trees tend to overfit the training data and exhibit

poor predictive performance (low bias high variance). Hence, they are often pruned by either penalizing

the number of nodes in the cost function or limiting the number of levels. We set prune to true.

2.10 Bagged Tree Ensemble and Random Forests (RF)

Bagging is a method of reducing the variance of complex low bias models by using multiple bootstrap samples

(random samples with replacement) as training sets for multiple classifiers or regressors. Bootstrap samples

have the same size as the original training set. In regression, the prediction is obtained by averaging over

all the regressors. Random forests provide an improvement over bagged trees by additionally performing

feature bagging. A random sample of NVarToSample < n variables are considered at each split instead

of considering all n variables. Like the bagged tree ensemble, random forests also use a user-defined

number of unpruned regression trees, ntrees. Feature bagging further de-correlates the trees. We use

Matlab’s TreeBagger function in this paper with ntrees = 100, NVarToSample = ⌊n/3⌋, MinLea f = 5

and prune =false.
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Figure 1: A simple model representing an unpaced flow line with 6 workstations and 5 buffers.

2.11 Boosted Tree Ensemble (BOOST)

While bagging uses multiple independent complex low-bias models and reduces variance, boosting uses

multiple nested weak high-variance models and iteratively reduces bias. Each weak model regresses

the residuals (difference between the actual function values and the predicted aggregate responses) from

previous learners. The process is known as least squares boosting. Typically, the weak models are shallow

regression trees. We use Matlab’s fitensemble function with LSBoost option and ntrees = 100. The

learning rate η is set to the default value of 1.

3 EXPERIMENTAL METHODOLOGY

The simple stochastic simulation model considered in the experiments of this paper represents an unpaced

flow line, consisting of s workstations with s−1 inter-station buffers (Dallery and Gershwin 1992). For

the sake of simplicity, we consider the number of machines in each workstation as one, so that the terms

‘workstation’ and ‘machine’ are interchangeable in the following discussions. The productivity of each

machine i is governed by its availability (αi), processing time (βi) and repair time (γi). In the initial state,

the workloads of all the workstations are perfectly balanced, each having a processing time of β orig = 80

seconds per job. All machines have an availability of αorig = 90% and repair time of γorig = 300 seconds.

The processing times are assumed to be constant, which is realistic for automated machining processes.

The times to failure of the workstations are modeled with exponential distributions and the randomness of

the repair times γi is modeled using Erlang distributions. As an example, Figure 1 shows the model with

s = 6 workstations/machines.

In a complex flow line with unbalanced workloads, the detection of bottlenecks is essential for a

subsequent improvement of the production rate or throughput. The location of bottlenecks depends on

many factors, including the job flow logic, variability and disturbance of the machines and the buffer

allocations. Even for a simple, straight flow line with balanced workloads as described above, detecting

which workstation(s) to improve in order to increase the overall throughput of the line to a certain level

is not a trivial task. The concept of treating this throughput improvement problem as a multi-objective

optimization problem of identifying the optimal (minimal) number of steps changes to maximize the

throughput was first proposed in (Pehrsson 2013) and later further elaborated in (Ng et al. 2014). In

such an optimization formulation, the system throughput (T H) is the primary objective for improvement,

so that f1(x) = max{T H(x)}. The total number of changes, i.e. improvement actions, can be defined as

the secondary objective function, f2(x). We consider three discrete, multi-level improvement variables

{αi,βi,γi} that can each be either set to their original value or to an improved value. The available

improvement actions for availability, processing times and repair times and their corresponding step-sizes

are:
α = {90,92,94,96,98} ∆α = 2

β = {60,65,70,75,80} ∆β = 5

γ = {180,210,240,270,300} ∆γ = 30

(6)

The second objective, f2(x), can then be written as a summation of improvements (Ng et al. 2014):

f2(x) = min

{

s

∑
i=1

α̂i +
s

∑
i=1

β̂i +
s

∑
i=1

γ̂i

}

, where α̂i =
αi −αorig

∆α
, β̂i =

β orig −βi

∆β
, and γ̂i =

γorig − γi

∆γ
.
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Additionally, in order to simultaneously solve the lean buffer problem (Enginarlar et al. 2005), we optimize

the capacity of inter-station buffer spaces, Bi = {1,2, . . . ,10} ∀ i ∈ {1, . . . ,s−1}, by adding a third objective

of minimizing the total number of buffers, i.e. f3(x) = min{∑
s−1
i=1 Bi}. It is to be noted that the worst

objective values for f2(x) and f3(x) are 12s and 10(s−1) respectively.

In the experiments considered in this paper, the models developed using FACTS Analyzer 2.0 (Ng

et al. 2011) are used to solve the above described three-objective optimization problem. Note that the

only objective function that requires simulation is f1(x) = max{T H(x)}. All meta-models described in the

previous section are evaluated with respect to their prediction accuracy and training times on this objective.

The number of work stations s is scaled as s = {5,10,15,20}. The variables in the scalable model are the

3s improvement variables (αi,βi,γi) and (s−1) buffer variables (Bi). Thus, the problem dimensions scale

as (4s−1), i.e. n = {19,39,59,79}. For each problem dimension, all meta-models are run with different

number of training samples, ns = {50,100,200,300,400,500} Each of these runs is replicated 10 times by

first generating ns+nt latin hypercube samples, where nt of the samples are set aside for testing the trained

meta-models. Matlab’s lhsdesign function is used to generate samples in a unit cube. Each dimension

is then normalized to the corresponding variable range and the values rounded to the nearest discrete step

as shown in (6).

3.1 Performance Metrics

The number of test samples is set to nt = 100 for all experiments in order to allow a fair comparison in

terms of the following metrics:

1. Normalized Root Mean Squared Error (NRMS): The throughput response decreases as s increases

when all other variables remain unchanged. To be able to compare the deviations of the meta-models

across different problem sizes, a normalized RMS value is used which is given by,

NRMS =
1√
nt

√

∑
nt

i=1( f (x(i))− f̂ (x(i)))2

( fmax − fmin)
, where

fmax = max( f (x(1)), f (x(2)), . . . , f (x(ns+nt)))

fmin = min( f (x(1)), f (x(2)), . . . , f (x(ns+nt)))

2. Rank Error (RE): As discussed in Section 1.1, evolutionary algorithms only require the ranking

among pairs of solutions and not their actual function values. We therefore use the rank error

defined in (Joachims 2005) and given by,

RE =
SwappedPairs

nt
2

, where SwappedPairs=
∣

∣

∣
{(i, j) : ( f (x(i))− f (x( j)))× ( f̂ (x(i))− f̂ (x( j)))< 0}

∣

∣

∣
.

3. Training Time (T T ): When a dynamic meta-model that is updated frequently is used with EAs,

the training time becomes crucial. It is measured in seconds.

4 RESULTS AND DISCUSSION

The best overall meta-model can be obtained through statistical analysis of the three metrics. To improve

interpretability and overcome space limitations, we demonstrate the procedure on the normalized root mean

squared error (NRMS) metric. Table 1 shows the median percentage NRMS values of the 10 runs performed

for each of the 6 training sample sizes on all 4 problem sizes. The same data can be visualized in Figure 2,

which reveals the expected trend that increasing the number of training samples improves the accuracy of

the meta-model, while scaling the number of variables (n = 4s−1) increases the error for the same number

of training samples.

Though the best values are shown in bold in Table 1, the median values are only a representative of the

actual distributions of NRMS. Thus, a performance ranking among the meta-models cannot be established

by simply sorting median values. A more rigorous statistical treatment is required. We adopt the multiple

comparison test procedure described by Sachs (2012).
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Table 1: Median NRMS values from 10 runs for 4×6 experiments on each meta-model.

s ns MARS DACE kNN NN RT SVR RBN EN RF BOOST

5

50 11.573 9.255 9.835 11.863 13.165 9.458 9.114 8.779 9.161 10.429

100 12.807 10.168 13.952 14.477 15.344 12.842 11.971 9.998 12.337 11.953

200 9.539 8.464 11.395 10.248 10.741 10.095 8.494 7.051 8.902 8.869

300 9.211 8.933 11.774 9.870 10.704 9.916 7.860 6.939 8.884 8.580

400 8.852 6.788 10.596 9.240 9.574 8.990 7.495 6.019 7.678 7.681

500 8.321 5.741 9.915 7.898 8.650 8.084 6.367 5.332 7.225 7.431

10

50 18.586 20.239 13.518 15.814 18.340 12.915 12.717 13.567 13.166 16.646

100 16.199 10.977 12.707 14.918 15.905 12.287 11.271 11.418 12.547 13.789

200 15.068 10.196 13.497 14.791 17.023 11.816 11.568 10.349 12.406 11.732

300 11.946 9.267 12.223 11.799 15.414 10.285 9.700 9.103 11.046 9.463

400 11.424 8.738 11.627 10.562 15.019 9.196 9.623 8.474 10.291 9.393

500 10.408 8.353 10.449 9.828 13.351 8.415 8.121 7.770 9.546 8.330

15

50 17.574 12.023 11.819 21.027 15.411 11.596 12.714 11.752 11.556 15.613

100 15.753 14.099 11.967 16.323 17.116 11.959 11.196 12.103 12.041 14.976

200 14.683 10.272 11.915 14.466 17.287 10.919 10.561 10.218 11.767 12.621

300 14.380 10.368 13.123 13.612 17.666 11.310 10.903 10.481 12.475 12.331

400 13.123 9.677 11.938 11.889 16.270 10.394 10.267 9.871 11.186 10.847

500 12.965 9.304 11.584 11.864 15.948 9.917 9.847 9.573 11.038 10.747

20

50 24.927 16.809 16.912 27.942 21.649 16.753 19.173 16.728 16.827 22.629

100 17.428 22.927 14.094 18.932 18.633 13.083 13.299 13.471 13.246 17.672

200 15.972 13.367 14.022 15.992 17.084 13.041 12.191 12.752 13.593 15.154

300 14.188 10.945 12.563 14.219 16.957 11.511 10.356 10.926 12.326 13.091

400 13.943 10.269 12.727 13.244 18.071 11.448 11.251 10.566 12.367 11.986

500 12.175 9.272 11.151 12.180 14.912 9.580 9.332 9.230 10.430 9.796

Table 2: Meta-models that are statistically indistinguishable from the best median meta-model in Table 1.

{s,ns} 50 100 200 300 400 500

5 DACE, kNN,

SVR, RBN,

EN, RF,

BOOST

DACE, RBN,

EN, RF,

BOOST

DACE, RBN,

EN, RF,

BOOST

DACE, RBN,

EN, RF,

BOOST

DACE, RBN,

EN, RF,

BOOST

DACE, RBN,

EN, RF,

BOOST

10 kNN, NN,

SVR, RBN,

EN, RF,

BOOST

DACE, kNN,

SVR, RBN,

EN, RF,

BOOST

DACE, SVR,

RBN, EN, RF,

BOOST

DACE, SVR,

RBN, EN, RF,

BOOST

DACE, NN,

SVR, RBN,

EN, RF,

BOOST

DACE, NN,

SVR, RBN,

EN, BOOST

15 DACE, kNN,

SVR, RBN,

EN, RF

DACE, kNN,

SVR, RBN,

EN, RF,

BOOST

DACE, kNN,

SVR, RBN,

EN, RF,

BOOST

DACE, SVR,
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Figure 2: Median NRMS for all 10 meta-models

across all 24 experiments.
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Figure 3: Semi-logarithmic plot of the median T T

for all 10 meta-models across all 24 experiments.

The Kruskal-Wallis rank-sum test (also known as ‘one-way ANOVA on ranks’) is frequently used to

test the null hypothesis that groups participating in an experiment come from the same population, i.e.

there is no significant difference between them. On applying the Kruskal-Wallis test we find that the

medians shown in Table 1 are significantly different in all 24 experiments. Note that a rejection of the null

hypothesis of this test only concludes that at least two of the groups are statistically different. In order to

find these groups, a post-hoc multiple comparisons test (like Nemenyi test or Dunn test) is performed on

the means of rank-sums at α = 0.05 level of significance. Table 2 shows a summary of the meta-models

that were found to be statistically indistinguishable (according to post-hoc Nemenyi (1963) test) from the

meta-model with the best median NRMS for all 24 experiments shown in Table 1.

The best overall meta-model can now be obtained by counting the number of times each meta-model

appears in Table 2. Figure 4 shows a bar-plot of this count, which we call the performance score. A similar

bar-plot can be obtained for the RE metric as shown in Figure 5. It is clear from these plots that when

using meta-models as a direct approximation of the objective functions, RBN and EN are the best choices.

However, when the meta-model is to be used as a ranking surrogate in an evolutionary algorithm, RBN,

EN, RF and BOOST perform equally well. MARS and RT are the worst performing meta-models in terms

of both NRMS and RE. NN is only slightly better than them with respect to RE.

The median training times are best visualized as shown in Figure 3. Note that for all meta-models the

training time is most affected by the sample size ns and less so by the number of variables n = 4s−1. All

methods except DACE, SVR and RBN scale approximately linearly with sample size. DACE, SVR and

RBN have a computational complexity of O(n3
s ). The Kruskal-Wallis test followed by post-hoc tests show

that the fastest meta-models are kNN, RT, SVR and RBN, all of which have statistically indistinguishable

training times across all experiments.

4.1 Meta-model Assisted NSGA-II

Based on the analysis for static meta-models in the previous section, we choose to use EN as the meta-

model assisting the popular NSGA-II optimization algorithm for solving the simulation problem described

in Section 3. According to Jin (2003), there are two main aspects to the successful use of meta-models

for replacing function evaluations in evolutionary methods. Firstly, to ensure that a good global function

approximation of the original objective function is achieved, the meta-model should be used together

with exact function evaluations. This is known as model management. In evolutionary algorithms, model

management is achieved via evolution control. Secondly, the quality of the meta-model should be improved

as much as possible with the available data. This is achieved through an appropriate data sampling

procedure. It is important to have an active data sampling method because the region of interest on the

fitness landscape changes with the movement of population of the evolutionary algorithm.
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Figure 4: Bar-plot showing the performance score of

the meta-models across 24 experiments with respect

to NRMS.
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Figure 5: Bar-plot showing the performance score of

the meta-models across 24 experiments with respect

to RE.

NSGA-II (Deb et al. 2002) starts with a randomly initialized population of solutions that undergo

selection, crossover and mutation, iteratively over several generations. In each generation, the new population

is obtained using non-dominated sorting, which uses the principle of dominance, and crowding distance

on the combined parent-child solution set. The meta-model assisted NSGA-II (EN-NSGA-II) framework

used in this paper performs evolution control through controlled generations, i.e. generations in which all

individuals of the population are exactly evaluated. For all other generations, the individuals are evaluated

using the meta-model. The controlled generations are evenly spaced and the spacing between them is

governed by a user-defined parameter ncg. A fixed evolution control is used, meaning that this parameter

remains unchanged during the optimization process. After every controlled generation, the meta-model is

updated/recreated using ns of the available exact function evaluations. This is the most common form of

meta-model assisted evolutionary optimization framework.

The parameters associated with meta-model assisted NSGA-II can be classified into three types; those

concerning (i) the meta-model, (ii) the meta-modeling framework, and (iii) NSGA-II itself. The parameters

of EN are the same as before. The evolution control parameter ncg is set to different values in the set

{2,5,10}. Controlled generations correspond to multiples of ncg. For example, ncg = 2 means that every

alternate generation is evaluated through exact simulations. The data-sampling parameter is set to ns = FE,

which indicates that all exact function evaluations FE available at any given time are used to construct or

update the meta-model. The following parameters are used for NSGA-II: (i) Population size pop = 20, (ii)

Maximum function evaluations MaxFE = 200, (iii) Crossover probability pc = 0.9, Mutation probability

pm = 0.1, and (iv) Crossover distribution index ηc = 20, Mutation distribution index ηm = 20.

The performance of multi-objective optimization algorithms is usually measured using a metric called

the hypervolume (Zitzler et al. 2003). It defines the volume of the region bounded by the obtained

non-dominated front and a user-defined reference point. The reference point r is generally chosen to be the

worst point or nadir point in the objective space. The further away the non-dominated front is from this

point, the better is the optimization algorithm that generated the front. A large hypervolume value not only

means better convergence to the true Pareto-optimal front, but also a good diversity among the solutions.

Thus, algorithms that can consistently generate non-dominated fronts with larger hypervolume values are

said to be better performing. Table 3, on the left, shows the median hypervolume values obtained using

NSGA-II (without meta-model) for different problem dimensions of the simulation model in Section 3 and

the corresponding reference points (r1,r2,r3). On the right, Table 3 shows the median hypervolume values
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Table 3: Median hypervolume values from 10 runs of NSGA-II and EN-NSGA-II.

s r1 r2 r3 NSGA-II
EN-NSGA-II

ncg = 2 ncg = 5 ncg = 10

5 30 60 40 23666.267 25781.788 26176.278 27622.797

10 26 120 90 84221.428 94979.512 106348.852 106757.651

15 25 180 140 186816.956 220789.390 243580.048 247754.880

20 24 240 190 314789.374 372899.851 414676.387 402450.201

obtained from 10 independent runs of EN-NSGA-II for all 4 problem dimensions. The hypervolume values

are calculated for ncg = {2,5,10} with the same reference points. The best hypervolume values are shown

in bold. It is evident that meta-modeling improves the performance of NSGA-II. However, more interesting

is the effect that ncg has on this improvement. By increasing ncg, the user makes a gamble of trusting the

meta-model for longer number of generations. This pays-off for s = 5,10 and 15, as seen by the increase

in hypervolume values with ncg. However, for s = 20, it is observed that the hypervolume value drops

at ncg = 10. In the absence of newly sampled exact function evaluations, the population of EN-NSGA-II

is misled by increasingly inaccurate function values from the meta-model, which causes this decrease in

the hypervolume. This indicates that higher the dimensionality of the training data, less trustworthy is the

elastic net meta-model on samples from a moving population. A similar behavior is expected of the other

9 meta-model assisted NSGA-II algorithms and will be pursued in a future study. An adaptive evolution

control can be used to compensate for this effect and will also be explored in the future.

5 CONCLUSIONS

To our knowledge, this paper is the first attempt in studying the scalability of several meta-modeling methods

in simulation-based optimization. In addition to popular meta-models like kriging and neural networks, we

have also studied some lesser used methods like boosting, and a regularized regression technique called

elastic net that has surprisingly never been studied previously as a meta-model to be used with optimization.

The present paper bases its conclusions on rigorous statistical analysis. First, latin hypercube samples

were generated for different problem sizes of a scalable discrete-event simulation model of an unpaced

flow line. The meta-models were assessed with respect to their mean squared errors, ranking errors and

training times. These metrics were analyzed across a series of experiments involving different number of

variables and sample sizes. The most interesting finding is that elastic nets significantly outperform all

other methods except radial basis function networks and in general give the best median performance.

A generic meta-model assisted NSGA-II framework is used to evaluate elastic net during optimization.

The interface uses two parameters that define the evolution control and the training samples. It is observed

that the elastic net meta-model based NSGA-II (EN-NSGA-II) performs statistically better than NSGA-II

even with a very small budget size of 200 evaluations. This shows that elastic net is capable of learning

the throughput landscape of typical discrete-event simulation models even when the models are scaled in

the number of workstations. The fidelity of the meta-model is found to be dependent on both problem size

and the evolution control parameter. The effects of an adaptive evolution control and the data sampling

parameter on other variants of meta-model assisted multi-objective algorithms remain to be seen.
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