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ABSTRACT 

In conceptual analysis of higher level manufacturing systems, for instance when the constraint on system 

level is sought, it may not be very practical to use detailed simulation models. Developing detailed 

models on supply chain level or plant wide level may be very time consuming and might also be 

computationally costly to execute, especially if optimization techniques are to be applied. Aggregation 

techniques, simplifying a detailed system into fewer objects, can be an effective method to reduce the 

required computational resources and to shorten the development time. An aggregated model can be used 

to identify the main system constraints, dimensioning inter-line buffers, and focus development activities 

on the critical issues from a system performance perspective. In this paper a novel line aggregation 

technique suitable for manufacturing systems optimization is proposed, analyzed and tested in order to 

establish a proof of concept while demonstrating the potential of the technique. 

1 INTRODUCTION 

For many years production lines have successfully been modeled and simulated using Discrete Event 

Simulation (DES) techniques. When combining DES with optimization technology, and Multi Objective 

Optimization (MOO) in particular, valuable decision support information can be retrieved from the 

models (Pehrsson and Ng 2011). Furthermore, the addition of knowledge extraction techniques has 

proven to produce very useful information for supporting decision-making (Dudas et al. 2013; Ng et al. 

2012). The knowledge extraction process used is mainly derived from the concept of “Innovization”, 

explained as innovation through optimization (Deb and Srinivasan 2006). The application of these 

methods has mostly been conducted on production line level and has generated very successful results. 

Some applications on higher level systems, such as complete factories and supply chains has been done 

using mathematical models and methods (Aslam et al. 2011). But since most of these mathematical 

models are deterministic, like system dynamics models, using them for modeling stochastic systems can 

be misleading (Madan et al. 2005). Until recently, DES that models system stochastic behaviors has not 

been applied to the same extent on higher manufacturing systems level (Pehrsson et al. 2014; Beamon 

1998; Hung et al. 2006). Sometimes, the mathematical methods are considered less accurate and might be 

more difficult to understand than the DES-based methods (Morecroft 2007). The DES models, on the 

other hand, have some significant drawbacks as they tend to be very time consuming, requiring detailed 

modelling when considering analysis and optimization of complete factories, and as they often require 

extensive computing resources and long execution times in such situations. Consequently, DES methods 

are generally considered to be less suited for higher level manufacturing system analysis. One way of 
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coping with the drawbacks and improve the applicability of DES methods on high level manufacturing 

systems would be to use aggregated DES modelling techniques for the replication of production lines. 

This paper proposes and explores a new DES aggregation technique for production lines, where the main 

objectives are to present a generally applicable aggregation technique that can be applied in conceptual 

development of manufacturing systems and takes into account the stochastic behaviors of the aggregated 

systems. The models created by the new aggregation technique should be less computational expensive 

compared to detailed model in order to be suitable for optimizations. As concluded in (Madan et al. 

2005), stochastics should not be neglected regardless of the model fidelity selected.  

Through an application study connected to a real world factory development project, an early proof of 

concept is achieved. In summary the objectives for this paper is to propose a technique for aggregated 

DES production line modeling fulfilling the following objectives: (1) suitable for use in high level 

systems, (2) with few commonly applicable input parameters, (3) suitable for conceptual modeling, 

optimization, and knowledge extraction, and (4) considering variation in output throughput (pace), input 

throughput, lead time and WIP. The remaining part of this paper is organized in three main sections, 

beginning with aggregated modeling principles, including the proposal of the new aggregation technique 

with an analysis of its’ key properties, then an application study is presented, and finally the conclusions 

are summarized together with recommendations for future work. 

2 AGGREGATED MODELING PRINCIPLES 

Manufacturing systems can be studied and analyzed from various levels as pointed out by Rooda and 

Vervoort (2007). They distinguish between the four levels (1) machine level, (2) the workstation level, (3) 

the sub-network level, and (4) the network level. Additionally other levels could be added such as the 

process level describing e.g. the cutting process in machining, and the supply chain level including 

separate factories, transports, and buffers in a complete networked system. An effective way of analyzing 

complex manufacturing systems in various abstraction levels is to use modeling and simulations (Chwif, 

Barretto and Paul 2000). One of the most preferred tools among industrial practitioners for analyzing 

complex systems is DES (Madan et al. 2000). However, DES models do often require long execution 

times when compared to mathematical models which might be a limiting factor when simulation is 

connected to optimization, since inherently such procedures require a large number of simulation runs to 

produce the desired results. The model complexity is depending on the scope and the level of details 

required in a simulation model (Chwif, Barretto, and Paul 2000). The complexity can be reduced through 

aggregation or abstraction of the models whilst preserving the validity of the model in relation to the 

scope of the simulation (Frantz 1995). The opportunities to extend the applicability of DES methods to 

the network level and the supply chain level was investigated and a number of aggregation techniques 

were presented and analyzed by Pehrsson et al. (2014). The paper presented a strong indication that such 

models could produce useful results for supporting decision making on system level. However, one of the 

conclusions made by the authors was that the modeling techniques required further refinement and 

validation. Two of the issues pointed out by the authors were the statistical analysis required to populate 

the model and the difficulty to balance the input cycle time. Hence, the method is not well suited for 

conceptual analysis with generalized data assumptions. Additionally variation on a line´s input side is not 

modeled. 

2.1 A new DES Aggregation technique  

In this section, a new approach for aggregating a complex system into a simplified DES model, based on 

a few standard DES objects, is proposed and described. According to Banks et al., 2010, Discrete-event 

system simulation, using the event scheduling/time advance algorithm, is the modeling of systems in 

which the state variable changes only at a discrete set of points in time. Consequently such models are 

analyzed numerically rather than analytically and deductively. The aggregated models were created and 

tested in the two independent DES software packages FACTS Analyzer (Ng et al. 2011) and Plant 
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Simulation with equal results. The type of data known or estimated during conceptual assumptions was 

discussed with industry partners in the search of suitable input parameters and viable aggregation 

techniques for conceptual modeling of production lines. There was no interest in deriving statistical data 

from existing lines, and preferred type of parameters were processing time, availability, WIP, lead time 

and throughput. The desired output parameters for network level analysis are throughput, WIP, and lead 

time. 

Based on observations from earlier studies and the input from the industry partners a new strategy for 

aggregation of production lines is being proposed in an attempt to address several of the identified issues 

with the previous techniques by: (1) Considering input variation, (2) balancing the line WIP towards an 
expected average, and (3) simplifying the required inputs to more generalized parameters. 

It is not an easy task to simultaneously model the variation in lead time, input variation, and output 

variation. Just adding input variation together with output variation as observed from real world 

production lines was tested and it very soon became apparent that the input variation and output variation 

created statistical interference degrading the throughput of the modeled line. Even though it might be 

possible to correct this through a statistical or mathematical analysis of the interference, a more elegant 

solution was sought. An alternative way of managing the WIP and the lead time would be to control the 

amount of products allowed to enter the line. In the literature, there are control theory based methods for 

the dynamic regulation of WIP in a production line, e.g. (Duffie and Shi 2009). Nevertheless, the 

challenge here is to both control the WIP in the line as well as modeling its stochastics. A new concept 

was introduced to keep the average amount of containers representing the difference between the 

maximum WIP and the average WIP outside the line. That kind of functionality can be realized by the 

addition of a pallet system and a WIP control storage, as shown in Figure 1.  

 

 

Figure 1: Proposed aggregation technique line model in FACTS Analyzer. 

The standard DES objects used in the aggregated DES model are a source providing containers into the 

pallet system, a store in FACTS Analyzer or a parallel proc. in Plant Simulation was used as WIP 

control, an assembly used as line input, a buffer as Line WIP, and a disassembly as line output. By 

delaying pallets through the WIP control storage, the amount of products in the line will be restricted. A 

constant delay time would transfer the variation in the output object more or less instantaneously, be it 

delayed, to the input object. A more natural behavior can be obtained by adding variation to the delay 

time. In this case an exponential variation makes sense since it is a memoryless distribution (Banks et al. 

2010) with a mean value as an input, often used for failure times and repair times in manufacturing 

system analysis (Curry and Feldman 2011). The average delay time can be determined by calculating the 

average throughput (TH) of the system and the desired average amount of containers to be kept outside 

the system. The average delay time can then be used as the mean value in the exponential delay time 

distribution, implemented through the processing time in the WIP control object.  

The delay time can be determined by an expression derived from Little´s Law (Little, 1961) in a 

commonly used variant for manufacturing systems (Hopp and Spearman 2000) shown in Equation (1): 
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CT

WIP
TH        (1) 

 

Where TH=Throughput (arrival rate), WIP=Work In Progress, and CT=the cycle time of the complete 

system, also defined as the expected time spent in the system, or the lead time (LT) through the system. 

The lead time spent in the system is then (2): 

 

TH

WIP
LT        (2) 

 

The average amount of WIP to reside in the WIP container is the difference between the maximum 

amount of WIP in the line and the average amount of WIP in the line (3): 

 

lalmca WIPWIPWIP        (3) 

 

Where caWIP = Average WIP in the WIP control object, lmWIP = Maximum WIP in the line, and 

laWIP = the average WIP in the line. 

  

The average throughput (per second) of the system, when running under ideal conditions, that is the 

line is never starved or blocked, can be determined by the processing time and the availability (4): 

 

la

l
l

la
laTH 

  1
      (4) 

 

Where laTH = Throughput of the line, la = the average processing time of the line, and l = The 

availability of the line. 

 

The mean value for the delay function in the WIP control object is then (5): 

 

l
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      (5) 

 

Where dLT = The lead time (delay) through the WIP control object. 

The line model can be completed by setting the desired processing time, availability, and MTTR in 

the line output object. The line WIP object is simply a buffer object with a capacity representing the 

maximum WIP level that would be observed in a real world system minus 2 in order to compensate for 

the input and output objects. A first in first out (FIFO) buffer is used to represent a FIFO line and a 

storage object can be used to represent a non FIFO line. The processing time of the line WIP object 

represents the minimum lead time through the system after subtraction of the processing times in the line 

input and the line output. The line input object is an assembly operation since the incoming product will 

be assembled to the WIP container through the line WIP buffer and then disassembled at the line output. 

The line input object will use the same processing time as the line output object. 
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One concern with the proposed modeling technique is that the output and input are linked through the 

WIP control delay loop and longer disturbances with low frequency occurring in the beginning of the line 

might not be correctly modeled. This will primarily be an issue when dealing with larger lines that have 

comparably long lead times. In such cases some additional variation can be added through availability and 

MTTR in the line input object as long as statistical interference with the line output variation is avoided. 

Hence, additional input variation can be added as long as the throughput remain unaffected for a line 

running under ideal conditions. A choice has to be made on where to connect the WIP control source 

feeding the model with the right amount of WIP containers. If connected directly to the line input there 

will be no delay time at the start of the simulation and there will be no probability for long delay times 

stopping the line input. Connecting the WIP control source to the WIP control will put delay time 

according to the selected delay function on each container before entering the line. The latter behavior 

was selected in order to have the variation included already from the start of simulations. The influence 

from the selected WIP control source strategy can however be eliminated if taken into account when 

setting the warm up time for a simulation.  

2.2 Required input and how to populate the aggregated model with data 

In contrast to the vast number of inputs required for detailed DES models, the inputs required to describe 

an aggregated DES production line model can be simplified into a few logical parameters with the 

proposed technique, namely: Processing time, Availability, Mean Time To Repair (MTTR), Maximum 
WIP, Average WIP, Minimum lead time. 

The input parameters are introduced into the aggregated model as follows. Processing time is used to 

set the pace of the system when running without disturbances. It is an input to the line output object, the 

line input object and as a part of the calculation of the delay time through the WIP control. The 

availability is used to invoke the right amount of variability in the line output object and it is also used 

when calculating the WIP control delay time. MTTR is an input to the line output object and controls the 

variation pattern in terms of the average length of the disturbances. Maximum WIP is controlling the 

maximum amount of products allowed into the line and is an input to the WIP container source, the WIP 

control capacity, the WIP control delay calculation, and the line WIP capacity where it is reduced by 2 in 

order to compensate for the line input and line output objects WIP capacity of one each. The average WIP 

is input to the WIP control delay time calculation and the minimum lead time is used as the processing 

time in the line WIP object after compensation for the two processing times in the input and output 

objects, serving as the minimum time a product must spend in the line. 

2.3 Analysis of the Aggregated Modeling technique 

The new DES aggregation technique is mainly intended to be used for rapid modeling and optimization of 

higher level conceptual manufacturing systems. The idea is to use a simplified DES model with only a 

few input parameters, i.e. Processing time, Availability, MTTR, Maximum WIP, Average WIP, 

Minimum lead time, that can be estimated during the development of conceptual systems. Data from a 

component production line (CL1) presented and analyzed by Pehrsson et al. (2014) was used to test and 

analyze the new aggregation technique, shown in Figure 1 with such parameters. In these analyses, the 

processing time has been generalized to be constant in order to meet the objectives with few input 

parameters. However, processing time variation is an available option in the modeling environment. The 

main variation in the model is generated in the line output object through the availability and the MTTR 

modeling. The availability is simply the percentage of time when the line is producing at the processing 

time and the MTTR is the average length of the line stops. Behind that data, the mean time to failure, i.e. 

the time from the end of one failure to the start of the next one, uses an exponential distribution and the 

MTTR uses an Erlang distribution with k-value 2. Generally the exponential distribution can be used to 

model the time between independent events and the Erlang distribution to model the sum of several 

exponentially distributed processes (Banks et al. 2010). Furthermore, the WIP control storage object, use 
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the exponential distribution for the processing time. As a result of delaying WIP containers through the 

WIP control, realistic input variation is generated through the transferred output variation in combination 

with the addition of the exponential variation of the WIP control delay time. At the same time the WIP 

and lead time are controlled to replicate the modeled line. 

 In order to investigate if the proposed aggregation technique offers the potential to produce 

reasonably good results when replicating real world production lines, a comparison of two output 

measures, finish times and lead time, was carried out. The finish times are simply the times when each 

work piece is finished in the last operation. The finish times is the collective product of disturbances and 

other delays, e.g. machine failures and setup times, in the production system. The output data generated 

from the previous (Pehrsson et al. 2014) and the new aggregation techniques are compared with the real-

world data for finish times in Figure 2 (left) and the lead time variation is shown in Figure 2 (right). The 

finish times show a fairly close resemblance between the real-world data and the simulation model data. 

Furthermore, the simulation model seems to generally capture the lead-time variation of the real-world 

production line when considering the variation from one day to another. There are, however, a few high 

level spikes and a few short lead-times are not fully captured with the aggregated model. The most 

essential output measures of a model are in general the mean values of WIP, lead time and throughput, 

and they are often used for building deterministic models of larger systems (Aslam, 2013). A comparison 

of the mean values for throughput (TH) in jobs per hour (JPH) and lead-time (LT) in seconds (s), from the  

simulation model and the production line are shown in Table 1. The fourth column in Table 1 shows a 

low result deviation, when comparing the simulation model’s mean value to the mean value of the 

production line. Consequently, the new aggregation strategy is considered being able to capture the main 

behavior of a whole system with only a few DES objects, based on generalized input data that can be 

estimated during conceptual development of manufacturing systems. 

 

              

Figure 2: Left: Histogram of finish times. Right: Lead-time variation comparison. 

Table 1: Mean values comparison. 

Output Aggregated model Real-world production line Result deviation 

TH (JPH) 62.67 62.68 ~ -0.02% 

LT (s) 12662.43 12604.04 ~ +0.46% 

 

2.4 Aggregated modeling conclusions 

The main purpose of the aggregated modelling is to sufficiently replicate the overall behavior of a 

production line in order to perform studies on a larger scale manufacturing system and on average the 
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most important factors can be modeled very accurately. Many of the existing procedures for supply chain 

analysis does not fully take variation into account and just having a fairly good estimation of the 

variability in a production line is considered to be enough. The proposed aggregation method takes 

variability into account from several perspectives. The output variation can be modelled more or less spot 

on with the system being replicated. When it comes to lead time, maybe the most difficult part to 

replicate, the results are fairly close to the real-world production line. Input variation is included as a 

combination of distributed variation from the line output through the WIP control loop and the added 

variation in the WIP control loop. The opportunity to add some more variation in the line input makes 

sure that reasonably accurate estimations can be done. 

3 APPLICATION STUDY 

The new aggregation technique presented in this paper is supposed to enable conceptual analysis of 

manufacturing systems and supply chains with aggregated lines based on a few assumptions about the 

line’s performance expressed in commonly used parameters for manufacturing system development. A 

real world conceptual development project within automotive component production was closely 

monitored in order to make an application study aiming for a proof of concept. The conceptual 

development manager at the company was closely involved during the modelling, providing the 

assumptions about each lines’ performance. The model was built in FACTS Analyzer (Ng et al. 2011), a 

software with the capabilities of handling conceptual models, possibility to create custom objects, 

combined with extensive simulation, optimization, and analysis functionality. In order to protect sensitive 

information from the company some of the data had to be concealed, however the relations in the data 

have been preserved. The conceptual factory analyzed comprises nine machining lines, six assembly 

lines, and a shipping department, as shown in Figure 3.  

 

 

Figure 3: The model used for the application test in FACTS Analyzer. 

Stores between the lines are planned in order to enable future addition of variants, altering of the 

sequence, and to be able to operate various parts of the factory under different shifts. It is especially 

interesting to be able to run the manual work assembly lines during fewer shifts with lower labor cost 

through periods of lower customer demand. The scenario described in this paper assumes that the factory 
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is running two main product types, or variants, with 50% of the produced volume each. The conceptual 

factory was designed to have a throughput of 116 parts per hour with all lines operating simultaneously 

under these conditions. The nine (automated) machining lines are located first in the sequence, feeding 

two semi-automated assembly lines through four stores. Components are transported to the assembly lines 

through automated systems with carriers and conveyors, in this case modeled using buffers. The two 

automated assembly lines subsequently supply the four  assembly lines through a store. After final 

assembly, the finished products pass through a sorting store and continues to a finish goods inventory 

(FGI) waiting to be loaded onto trucks in the shipping department. The customer demand is synchronized 

into the factory in three planning points, of which one is divided into four separate plans connected to the 

stores after the machining lines. The line objects were modeled as custom objects according to the new 

aggregation technique proposed in this paper. 

3.1 Simulation Experiments 

The model was prepared with data from the conceptual development project as seen in Table 2. The 

aggregated lines were individually evaluated in order to verify their respective behavior before 

implementation in the system model. Input variation was added to some of the aggregated models to 

enhance their stochastic properties, through input availability and MTTR.  

Table 2: Application Test Simulation Model Data. 

Line 

Proc 

Time (s) Avb. 

MTTR 

out 

(min) 

WIP 

max 

WIP 

avg 

LeadTime 

min (min) 

Line 

Input 

Avb. 

Line 

Input 

MTTR 

(s) 

A1 49.66 0.8 5 800 500 258.6 0.95 3600 

A2 49.66 0.8 5 800 500 258.6 0.95 3600 

B1 46.55 0.75 5 1600 1000 517.2 0.9375 3600 

B2 46.55 0.75 5 1600 1000 517.2 0.9375 3600 

C1 43.45 0.7 5 480 300 155.2 0.925 3103 

C2 34.70 0.8 5 480 300 108.4 0.95 2169 

D1 65.45 0.8 5 96 60 40.9 100 0 

D2 65.45 0.8 5 96 60 40.9 100 0 

D3 59.38 0.8 5 96 60 37.1 100 0 

BA1 42.99 0.8 5 128 80 35.8 100 0 

BA2 42.99 0.8 5 128 80 35.8 100 0 

FA1 110.40 0.92 2 45 30 30.0 100 0 

FA2 110.40 0.92 2 45 30 30.0 100 0 

FA3 110.40 0.92 2 45 30 30.0 100 0 

FA4 110.40 0.92 2 45 30 30.0 100 0 

 

 

The capacity of all stores was set to 2000 with 50% allocated for each of the two main products. All the 

stores were assumed to have equal processing time, i.e. the minimum time for a product to reside in the 

store, of one hour. An initial simulation was run, without any shifts configured in the time tables, in order 

to verify if the model could be considered valid.  
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The results were a throughput of 115.35 parts per hour, to be compared with the expected 116 parts per 

hour and a lead time from 17.3 hours for the fastest product and 25.6 hours for the slowest product, which 

the company considered  to be reasonable under the stated conditions. 

3.2 Optimization 

A very powerful way of testing the aggregation technique and the model was considered to be the 

application in an optimization study that could provide insights about the resulting characteristics.  

An interesting problem to explore was the available trade-offs between throughput (TP), lead time (LT), 

and lean buffer sum (LB) (Enginarlar, Li, and Meerkov 2005).The same type of study was successfully 

applied when testing a previously presented aggregation technique (Pehrsson et al. 2014). The problem is 

basically formulated through the three objectives maximization of TP, minimization of LT, and 

minimization of LB as shown in Equations 6-8.  

 

min(LT) =1f       (6) 

 )min( =
12  

n

i icapacity
Bufferf       (7) 

max(TP) =3f       (8) 

 

where 
1f = objective function for minimization of lead-time, 

2f  = objective function for minimization of 

the sum of the capacity in Buffer 1 to Buffer n, where, n = the number of buffers to be analyzed, and 
3f = 

objective function for maximization of throughput. 

 

The input parameters (decision variables) were the capacity of the six stores, within the range [2, 

2002], with discrete step of 10. The task is to dimension the stores in order to enable three shifts operation 

in the machining lines, FAline2, and FALine4 and two shifts operation in the remaining assembly lines. 

The capacity will be reduced by the shift restrictions and when running the factory under these conditions, 

TP is expected to drop down to approximately 60 JPH. The optimization was setup with the NSGA-II 

algorithm (Deb 2001) and was executed through 5 000  iterations with 10 replications each. The 

simulation Horizon was 21 days, including 7 days warm up time.  

3.3 Optimization Results 

The optimization results show an expected behavior with opportunities to make trade-offs between the 

three objectives as seen in Figure 4. A certain amount of storage capacity is required for the system to 

deliver high throughput and the required dimensioning of individual storages can be found in the data 

from the optimization. Too little storage capacity will affect the TP and the LT. Analyses using visual 

techniques are well suited for knowledge discovery (Weiss and Indurkhya 1998), and also for exploring 

multi-dimensional data (Simpson and Domnelinger 2009). By plotting each storage capacity, as the 

example shown in Figure 4, and through a parallel coordinate analysis, shown in Figure 5, the exact level 

required for each storage capacity to be determined. In order to reach Throughput around 59 JPH, a lean 

buffer capacity of 3332 units, and a lead time close to 33.5 hours, the capacities of the stores should be 

472 units for AStore, 682 units for BStore, 512 units for CStore, 842 units for DStore, 562 units for 

BAStore, and 362 units for the FGI. 

3.4 Findings from the Application Study 

Through the simulation and optimization experiments, it can be concluded that the production system 

model built with objects based on the proposed new aggregation technique does produce expected results 

and a natural behavior. 
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Figure 4: Left: Optimization Results. Right: CStore Capacity Plot with Proposed Solution (dashed). 

 

Figure 5: Parallel Coordinate Analysis with the objectives and the proposed Store capacities in black. 

The potential opened by the new technique for aggregating line models with DES in order to perform 

optimizations on conceptual higher level manufacturing systems has been demonstrated and a first proof 

of concept has been established. Some very useful insights about the manufacturing system were 

generated through the optimization study. The individual stores in the system can be dimensioned to 

enable the various lines to be operated on different time schedules while simultaneously taking lead time, 

the lean buffer sum, and throughput into consideration. 

4 CONCLUSIONS AND FUTURE WORK 

A novel technique for aggregation of DES production line models has been proposed and a first proof of 

concept has been established. The aggregation technique has successfully been applied on a high level 

manufacturing system. It can be concluded that such aggregated models can be populated with data using 

generalized input parameters. The application study shows that the aggregation technique is suitable for 

conceptual modeling and optimizations. Variation in throughput, lead time and WIP is considered and 

analyses have shown that the resulting behavior of an aggregated line object is adequate for replicating 

real world production lines in conceptual studies. However, future work will be required to further 

validate the modeling technique in terms of variation patterns and subsequently updating the currently 

used distributions if required. Lines with comparably short lead time or long MTTR will probably require 

special attention since there might be a risk of statistical interference with inferior line performance as a 

result. Experiments with lead time dependent, gradually reduced, variation in the WIP control loop could 

be one way of handling such issues. In the application study only two main variants was included. The 

analysis of manufacturing systems with many variants that could truly reflect the potential of the 

proposed technique should be included in future studies. 

 

Cstore Capacity

T
P
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