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ABSTRACT

We consider the multi-objective simulation optimization problem on finite sets, where we seek the Pareto set

corresponding to systems evaluated on multiple performance measures, using only Monte Carlo simulation

observations from each system. We ask how a given simulation budget should be allocated across the

systems, and a Pareto surface retrieved, so that the estimated Pareto set minimally deviates from the true

Pareto set according to a rigorously defined metric. To answer this question, we suggest scalarization,

where the performance measures associated with each system are projected using a carefully considered

set of weights, and the Pareto set is estimated as the union of systems that dominate across the weight set.

We show that the optimal simulation budget allocation under such scalarization is the solution to a bi-level

optimization problem, for which the outer problem is concave, but some inner problems are non-convex.

We comment on the development of tractable approximations for use when the number of systems is large.

1 INTRODUCTION

Decision-makers increasingly are using Monte Carlo simulation to model complex stochastic systems in

a variety of domains (Powers, Sanchez, and Lucas 2012) — from traffic networks (Osorio and Bierlaire

2013), to airline scheduling (Lee, Lee, and Tan 2007), to plant breeding experiments (Hunter and McClosky

2015). In these settings, the simulation model can be viewed as a function that produces only estimates

f(x, ξ) of some underlying function E[f(x, ξ)] at design points x, where ξ represents the randomness in

the model. For example, in a Monte Carlo simulation of a traffic network, if x is a decision vector that

characterizes the type of road network to be built, the decision-maker can only observe an estimate f(x, ξ)
of the expected sojourn time of cars in the traffic network.

Often, decision-makers want to do more than observe estimates of the underlying function at some

pre-determined set of design points; they want to optimize — that is, they wish to find a point in the design

space D that produces the minimum or maximum value of the objective function E[f(x, ξ)]. For example,

in the traffic network example, a decision-maker may wish to find the set of stoplight timings that minimize

the network-wide expected sojourn time of cars in the network. A popular problem formulation in such

contexts is the simulation optimization (SO) problem,

Find: argmin
x∈D

E[f(x, ξ))],
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where one seeks the location of the minimum of the function E[f(x, ξ)] over points x in a known design

space D, where the objective and constraint functions are observed as output from a Monte Carlo simulation.

To date, most of the algorithms developed to solve SO problems have considered a single performance

measure, posed as the objective. For overviews of this literature, see Fu (1994), Kim and Nelson (2006),

Henderson and Nelson (2006), Pasupathy and Ghosh (2013). However, decision-makers often consider

more than one performance measure, such as the total expected sojourn time of cars in the traffic network

and the total expected fuel consumption by vehicles in the traffic network. When one performance measure

can be posed as the objective and the rest as stochastic constraints, recent work provides methods to find

the best feasible system (see, e.g., Andradóttir and Kim 2010, Park and Kim 2011, Luo and Lim 2013,

Nagaraj and Pasupathy 2014, Pasupathy et al. 2014, Hu and Andradóttir 2014). When multiple stochastic

objectives are considered simultaneously, very little work has been done to efficiently identify the Pareto

set, the image of which is illustrated in Figure 1(a), which is the set containing all non-dominated points,

that is, points for which no other point in the design space D is preferable on all objectives. (The question

of identifying the Pareto set is a problem of recognized importance in the deterministic multi-objective

context, with well-developed literature, e.g., see Miettinen 1999, Marler and Arora 2004).
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y3

Pareto

Dominated

(a) The Pareto set, P , is the set of non-dominated systems; the

corresponding objective values of the systems in the Pareto set

are shown.
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2δ1

2δ2

2δ3

(b) The δ-Pareto set, P(δ), is the set of

systems that are within δ > 0 of the true

Pareto systems in the objective space.

Figure 1: Consider the multi-objective SO problem on finite sets with minimization for all objectives. Also

consider the multi-objective SO problem with an indifference zone δ > 0, which allows us to specify

the smallest difference worth detecting between systems. In three dimensions, the graph in (a) shows

the objective values corresponding to the Pareto set P , and the graph in (b) shows the objective values

corresponding to the δ-Pareto set P(δ). The Pareto set P and δ-Pareto set P(δ) are discussed in §1.1.

Formally, we define the multi-objective SO problem as

Find: argmin
x∈D

(E[f1(x, ξ))], E[f2(x, ξ))], . . . , E[fd(x, ξ))]),

where the solution to this problem is the Pareto set. Table 1 categorizes the existing work on the multi-

objective SO problem based on the nature of the feasibility set D, and whether the method is specific to two

objectives or can handle greater than two objectives. We note here that all papers cited in Table 1 provide

some form of minimum guarantee on the returned solution or on the efficiency of the method; see, e.g., Lee

et al. (2009), Andradóttir (2015) and the references therein for work on the multi-objective SO problem
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that does not provide such guarantees. The work in this paper lies in the top-right corner of Table 1; that is,

we consider unordered, finite sets with a small number of objectives, and derive the simulation sampling

allocation that maximizes the rate of decay of the probability of misclassifying systems in D as Pareto

or non-Pareto. (See Hunter and Feldman 2015 for methods analogous to those in this paper but that are

specific to the bi-objective case.)

Table 1: The table contains references of example papers containing algorithms to solve multi-objective

SO problems that provide a guarantee on the returned solutions. The papers are characterized by the nature

of the feasibility set D and the number of objectives considered.

Feasibility Set D, Bi-Objective Only Multi-Objective

solution Global or Local (d = 2) (d ≥ 2)

Unordered, Finite (Global) Hunter and McClosky (2015), Hunter

and Feldman (2015)

Butler et al. (2001), MOCBA (Lee

et al. 2010, Teng et al. 2010),

this work

Integer-ordered, Local Li et al. (2015)

Continuous, Local Ryu et al. (2009), Kim and Ryu

(2011b), Kim and Ryu (2011a)

Integer-ordered, Global Huang and Zabinsky (2014)

Continuous, Global Huang and Zabinsky (2014)

The methods we develop can be viewed as a direct competitor to Multi-objective Optimal Computing

Budget Allocation (MOCBA) (Lee et al. 2010, Teng et al. 2010), a heuristic sampling framework for

solving multi-objective SO problems on finite sets that was developed along the lines of the popular OCBA

method (Chen et al. 2000, Chen and Lee 2010). While our methods differ from MOCBA in several

ways, one of the most notable differences is that our optimal allocation framework explicitly accounts for

correlation among the objectives, while MOCBA does not. However, we acknowledge that the methods we

outline in this paper are not nearly as fast or easy to implement as MOCBA; therefore we emphasize that

we view this work as the first step in deriving Sampling Criteria for Optimization using Rate Estimators

(SCORE) allocations for the multi-objective SO case (Pasupathy et al. 2014). SCORE allocations are

easily-computed sampling allocations that are optimal in a certain rigorous sense, as the sampling budget

and the number of systems tend to infinity, under mild conditions. While we consider the multi-objective

SCORE allocations to be future research, this paper provides the crucial first steps by characterizing the

asymptotically optimal sampling allocation as the sampling budget tends to infinity.

1.1 Problem Formulation

Consider an optimization problem in the presence of multiple performance measures, in which each

performance measure is posed as an objective. When the known feasible set D of the problem is finite, we

refer to the points in the set D as “systems,” consistent with the ranking and selection (R&S) literature (Kim

and Nelson 2006). Let 1, . . . , r denote the elements of the set D. Let the unknown performance of system ℓ
on objective k be yℓk; without loss of generality, let yℓk ∈ IR+ for all systems ℓ = 1, . . . , r and objectives

k = 1, . . . , d, where IR+ is the set of positive real numbers. Thus each system has unknown objective

values y1,y2, . . . ,yr, where we let yℓ = (yℓ1, . . . , yℓd). Consider the vector optimization problem

Problem P: Find arg min
ℓ∈{1,...,r}

(yℓ1, . . . , yℓd) ,

where the yℓ’s are expectations, and an estimate of each yℓ is observed through Monte Carlo simulation.

Due to conflicting objectives, often there is no single best system. Thus the solution to Problem P

is the set of non-dominated systems, that is, the set of systems for which no system is preferable on all

objectives. System i dominates system j, written as i � j, if yik ≤ yjk for all objectives k ∈ {1, . . . , d}
and yik∗ < yjk∗ for at least one objective k∗. System i strictly dominates system j, written as i ≺ j, if
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yik < yjk for all objectives k ∈ {1, . . . , d}. The set of non-dominated (Pareto) systems

P := {systems i ∈ {1, . . . , r} : 6 ∃ system j ∈ {1, . . . , r} such that j � i}

is the solution to Problem P.

Our broad objective is to estimate the set P efficiently, by expending a given simulation budget across

the various systems in a manner that would in some rigorous and reasonable sense be optimal. Suppose

α = (α1, . . . , αr) is a vector denoting the proportion of the total sampling budget n given to each system,

so that
∑r

ℓ=1 αℓ = 1 and αℓ ≥ 0 for all ℓ ∈ {1, . . . , r}. We say that a misclassification event occurs if,

after the sampling budget n has been expended and the Pareto set estimator constructed, a system that is

truly Pareto is falsely estimated as non-Pareto, or a system that is truly non-Pareto is falsely estimated as

Pareto. Then we ask, what vector of proportions α∗ maximizes the rate of decay of the probability that a

misclassification event occurs?

Furthermore, since the optimal allocation vector α∗ resulting from the previous formulation may

allocate a large portion of the sampling budget to distinguish between two systems that are very close

on one or more objectives, we also define the notion of a δ-Pareto set through the use of an indifference

zone — the minimum difference worth detecting between systems on each objective. Specifically, for

δ ∈ IRd
+, we define the δ-Pareto set P (δ) := ∪i∈P Ni (δ) , where the system neighborhood Ni (δ) :={

ℓ : |yℓk − yik| ≤ δk for all k ∈ {1, . . . , d}
}

effectively places a d-dimensional box around each Pareto

system i (see Figure 1(b)). In the indifference zone setting, our goal of solving Problem P remains the same,

but we are indifferent to the misclassification of systems that are within the indifference zone. We thus

update our optimal allocation question to: what vector of proportions α∗(δ) maximizes the rate of decay

of the probability that a system not in P (δ) is falsely estimated as Pareto, or that a Pareto system i ∈ P
is falsely excluded by some system outside its neighborhood, Ni(δ)?

We note here that one could consider objective functions of α formulated using quantities other than

the probability of a misclassification event, such as the expected number of misclassifications, or some

loss function that is linear in the estimated objective values. Hunter and McClosky (2015) prove that

maximizing the rate of decay of the probability of a misclassification event is equivalent to maximizing

the rate of decay of the expected number of misclassifications in two objectives. A similar equivalence

result holds for loss functions in the stochastically constrained SO context; see Pujowidianto, Lee, and

Chen (2013). We expect that these results also hold for multi-objective SO with d > 2 objectives.

1.2 Assumptions

We require the following assumptions for our results to hold. First, we make a standard assumption in

optimal allocation literature — that no two Pareto systems have identical objective values.

Assumption 1 No two Pareto systems have identical objective values on any objective; that is, we assume

that there exists ǫ > 0 such that min
{
|yik − yℓk| : i, ℓ ∈ P and k ∈ {1, . . . , d}

}
> ǫ.

Further, without loss of generality, we assume that all true objective values are positive, that is, yℓk > 0
for all ℓ = 1, . . . , r, k = 1, . . . , d.

To estimate the unknown objective vectors yℓ, we assume we obtain replicates of the random variables

Yℓ = (Yℓ1, . . . , Yℓd) from each system, where each system is simulated independently of the others.

Assumption 2 The systems are simulated independently of each other, that is, the random vectors Yℓ are

mutually independent for all ℓ ∈ {1, . . . , r}.

We note here that, unlike MOCBA, we do explicitly account for dependence between the objectives in our

methods; that is, we account for possible dependence between the random variables Yℓ1, . . . , Yℓd.

We also require the following two assumptions, which are standard in literature using large deviation

theory and are included here only for completeness. Similar versions of these assumptions are required in

Glynn and Juneja (2004), Glynn and Juneja (2006), Hunter and Pasupathy (2013), Pasupathy et al. (2014).

We refer the reader to Dembo and Zeitouni (1998) for further explanation. We first define notation.
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For every system ℓ, with n copies of Yℓ, we construct an estimator of yℓ as Ȳℓ = (n)−1
∑n

i=1 Yℓi.

With nαℓ copies of Yℓ, we likewise construct an estimator of yℓ as Ŷℓ = (nαℓ)
−1

∑nαℓ

i=1 Yℓi, where we

assume αℓ > 0 and ignore that nαℓ is not necessarily an integer. Let the kth component of these vectors be

Ȳℓk = n−1
∑n

i=1 Yℓki and Ŷℓk = (nαℓ)
−1

∑nαℓ

i=1 Yℓki, respectively. Let the cumulant generating function of

Ȳℓ be Λ
(n)
ℓ (θ) := logE

[
exp(〈θ, Ȳℓ〉)

]
, where θ ∈ IRd and 〈·, ·〉 denotes the dot product. Let the effective

domain of a function f (·) be denoted by Df = {x : f (x) < ∞} and its interior by D◦
f . Let ∇f (x) be

the gradient of f with respect to x.

Assumption 3 The following hold for each ℓ ∈ {1, . . . , r} and k ∈ {1, . . . , d}:

(1) the limit Λℓ (θ) = limn→∞
1
nΛ

(n)
ℓ (nθ) exists as an extended real number for all θ ∈ IRd;

(2) the origin belongs to the interior of DΛℓ
, that is, 0 ∈ D◦

Λℓ
;

(3) Λℓ (θ) is strictly convex and C∞ on D◦
Λℓ

;

(4) Λℓ (θ) is steep, that is for any sequence {θ (n)} ∈ DΛℓ
converging to a boundary point of DΛℓ

,

then limn→∞ |∇Λℓ (θ (n))| = ∞.

Under Assumption 3, the large deviations principle (LDP) holds for the estimator Ȳℓ and with strictly

convex rate function Iℓ (xℓ) = sup
θ∈IRd{〈θ,xℓ〉 −Λℓ (θ)}, where xℓ = (xℓ1, . . . , xℓd) ∈ IRd (Dembo and

Zeitouni 1998, p. 44). Let F◦
ℓ := int{∇Λℓ(θ) : θ ∈ D◦

Λℓ
}. Then under Assumption 3, we also have that

Iℓ (xℓ) is strictly convex and C∞ for xℓ ∈ F◦
ℓ for all ℓ ∈ {1, . . . , r}.

The following assumption ensures that each system can be estimated as dominating any other system.

Assumption 4 The closure of the convex hull of all points yℓ ∈ IRd is a subset of the intersection of the

interiors of the effective domains of the rate functions Iℓ (xℓ) for all ℓ ∈ {1, . . . , r}, that is, Fc
d ⊂ ∩r

ℓ=1F
◦
ℓ .

2 SCALARIZATION IN MULTI-OBJECTIVE OPTIMIZATION

A common approach to solving deterministic multi-objective optimization problems is to use a scalarization

function to convert the multi-objective problem into a parameterized series of single-objective problems.

In this section, we introduce ideas that we use to determine the optimal allocation in the stochastic context.

We consider the single-objective scalarized optimization problem, which is

Problem SPf (w) : argminℓ∈{1,...,r} f (w,yℓ) ,

where f is some scalarizing function, and w is a weight in some weight set W ⊂ IRd
+. (Note that for the

scalarizations considered in this paper, if system i is the solution to Problem SPf (w), then it is also the

solution to SPf (cw) for c > 0. This implies that the weights can be standardized. For the rest of the

paper, we assume that the weights are not standardized.)

The motivation behind scalarization methods is that, for appropriate choices of f , if system i is optimal

for Problem SPf (wi) for some weight wi, then system i is a Pareto system. Thus different systems in

the Pareto set can be retrieved by varying the weights w in some weight set W and solving each resulting

Problem SPf (w). The converse, that if system i is a Pareto system then there exists a scalarized Problem

SPf (wi) for which it is optimal, depends on the choice of scalarization function and the shape of the

Pareto front. For more details, see Eichfelder (2008). Linear scalarization, which is a weighted sum, and

Chebyshev scalarization, which is a weighted max function, are among the commonly used scalarization

functions. In the next two sections, we discuss the details of linear and Chebyshev scalarizations.

2.1 Linear Scalarization

Given a weight w and a vector yℓ, linear scalarization forms a single objective by taking a weighted sum

across the d individual objective values yℓk for k = 1, . . . , d. That is, fLinear (w,yℓ) =
∑d

k=1wkyℓk. For a

Pareto system i with objective vector yi, consider the question of which weight wi will retrieve yi as the

solution to Problem SPfLinear
(wi). To find a weight wi, if possible, construct a “supporting” hyperplane to
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the Pareto front that passes through yi. Then, assuming a supporting hyperplane exists, set wi equal to the

normal vector of the supporting hyperplane that passes through yi to retrieve system i as the solution to

Problem SPfLinear
(wi). (See Bertsekas et al. (2003), Proposition 2.4.1). If no such supporting hyperplane

exists, then no weight wi will retrieve system i. Therefore it only makes sense to use linear scalarization

when all Pareto points have supporting hyperplanes; and in this sense, the Pareto front is “convex.” Weight

vectors that retrieve the Pareto front are shown in Figure 2(a). To find a function f and weights w ∈ W
that will retrieve the entire Pareto front, we turn to Chebyshev scalarization, which we discuss in the next

section. Many of the results we pursue under Chebyshev scalarization hold under linear scalarization and

require less computational effort, should one know in advance that the Pareto front is “convex.”

2.2 Chebyshev Scalarization

To retrieve the entire Pareto set, including the Pareto systems that do not lie on the “convex hull” of the

Pareto front, we use Chebyshev scalarization. When all objective vectors are positive, which we assume,

the Chebyshev scalarization is a weighted max function, that is, fChebyshev (w,yℓ) = maxk∈{1,...,d}wkyℓk.
Lightner and Director (1981) show that, under the Chebyshev scalarization, the weight vector wi =

(y−1
i1 , . . . , y−1

id )will retrieve system i as the solution to ProblemSPfChebyshev
(wi) for all i ∈ P (see Figure 2(b)).

Thus, if the values yℓ were known for all ℓ ∈ {1, . . . , r}, we could retrieve the Pareto set by solving

Problem SPfChebyshev
(wi) for wi = (y−1

i1 , . . . , y−1
id ) for all i ∈ P . That is,

P = ∪
i∈P

{arg min
ℓ∈{1,...,r}

max
k∈{1,...,d}

wikyℓk : wi = (y−1
i1 , . . . , y−1

id )}. (1)

Since in our context, we do not know the values of yℓ, for all ℓ ∈ {1, . . . , r}, we cannot use these weights

to retrieve the Pareto set. We discuss retrieving the Pareto set with unknown objectives in the next section.

y1

y2

w1

w2

w3

w4
w5

(a) Linear scalarization: there exists a Pareto

system that cannot be retrieved by any weight.

y1

y2

1
w1 1

w2

(b) Chebyshev scalarization: there exist

weights that can retrieve every Pareto system.

Figure 2: The weights w ∈ W that retrieve each Pareto system are shown for linear scalarization in (a)

and for Chebyshev scalarization in (b).

2.3 Chebyshev Scalarization with Unknown Objectives

Since we do not know the objective vector values yℓ for all ℓ ∈ {1, . . . , r} in our context, and our original

goal in Problem P is accurate estimation of yℓ for all ℓ ∈ {1, . . . , r}, it is intuitive that we might also

estimate the weights wi = (y−1
i1 , . . . , y−1

id ) for all i ∈ P in equation (1). However, doing so would not only

complicate our probabilistic analysis, but may also introduce undesirable correlation between the chosen

weights and the systems that, by chance, have already been estimated as Pareto. Therefore we instead use

a fixed weight set.
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Let W(i) be the set of weights for which system i is the solution to Problem SPfChebyshev
(w), that is,

W(i) = {w : i = arg min
ℓ∈{1,...,r}

max
k∈{1,...,d}

wkyℓk and w ∈ W},

and recall that under Assumption 1, there is a separation of magnitude at least ǫ > 0 between the Pareto

systems on all objectives. The following Theorem 1 essentially states that, because W(i) has a nonempty

interior if and only if i ∈ P , then we can find a finite weight set W that retrieves P when we solve

Problem SPfChebyshev
(w) for every w ∈ W .

Theorem 1 Under Assumption 1, the following hold:

(i) the set of weights for which system i is optimal for Problem SPfChebyshev
(w), W (i), has non-empty

interior if and only if i ∈ P;

(ii) there exists a fixed and finite weight set W such that solving Problem SPfChebyshev
(w) for every

w ∈ W retrieves the Pareto set P .

We do not go into the details of selecting the weight set W in our context, except to note that one

can generate a set of weights using the standard technique of discretizing the surface of the d-dimensional

unit sphere Sd+, see, e.g. Ghosh and Chakraborty (2014). As a result of Theorem 1, for fine-enough

discretization, the weight set W will retrieve the Pareto set P .

3 MISCLASSIFICATION EVENT FORMULATION

Recall that our problem context is Problem P, and our broad solution context involves two steps: first,

sample from each of the systems to obtain objective vector estimates; and second, construct the estimated

Pareto set as the set of systems that are estimated as non-dominated. Thus we consider P̂ as

P̂ := {systems i ∈ {1, . . . , r} : 6 ∃ system j ∈ {1, . . . , r} such that j�̂i},

where system j is estimated as dominating system i, denoted j�̂i, if the estimated objective values are

such that Ŷjk ≤ Ŷik for all k = 1, . . . , d, and Ŷjk < Ŷik for at least one objective k ∈ {1, . . . , d}. A

misclassification (MC) error occurs when the estimated Pareto set is not equal to the true Pareto set, that

is, when P̂ 6= P . In this section, we formulate the MC event naı̈vely, which is difficult to analyze. We

then reformulate the MC event using scalarization, which yields a tractable form for deriving the large

deviations rate function for the rate of decay of the probability of an MC event in §4.

3.1 Naı̈ve Formulation of the Misclassification Event

A misclassification (MC) event can occur in one of two ways. First, a truly Pareto system may be falsely

excluded from the estimated Pareto set by being estimated as dominated by another system, be it Pareto

or non-Pareto. We call this event misclassification by exclusion, or MCE, since a truly Pareto system

was excluded from P̂ . The second type of misclassification event occurs when a non-Pareto system is

falsely included in the estimated Pareto set by being estimated as non-dominated. We call this event

misclassification by inclusion, or MCI, since a truly non-Pareto system was included in P̂ . That is,

MCE := ∪
i∈P

∪
ℓ∈{1,...,r}

∩
k∈{1,...,d}

Ŷℓk ≤ Ŷik and MCI := ∪
j 6∈P

∩
ℓ∈{1,...,r}

∪
k∈{1,...,d}

Ŷjk ≤ Ŷℓk.

Then an intuitive way of writing the MC event is MC := MCE ∪ MCI, such that the probability of an MC

event is P{MC} = P{MCE ∪ MCI}.

Now consider formulating the MC event under the IZ formulation. Whereas before we counted all

false inclusions and false exclusions as MC events, under the IZ we only count an exclusion if the falsely

excluded Pareto system is excluded by a system outside its IZ neighborhood, Ni(δ) for i ∈ P , and we

only count an inclusion if the falsely included system lives outside the IZ Pareto front P(δ).
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Under this formulation, we may also write the MCE and MCI events as a function of the IZ δ. Updating

the statements above to incorporate the IZ, we have

MCE (δ) := ∪
i∈P

∪
ℓ6∈Ni(δ)

∩
k∈{1,...,d}

Ŷℓk ≤ Ŷik
︸ ︷︷ ︸
i ∈ P estimated as dominated
by a system outside its IZ

and MCI (δ) := ∪
j 6∈P(δ)

∩
ℓ∈{1,...,r}

∪
k∈{1,...,d}

Ŷjk ≤ Ŷℓk
︸ ︷︷ ︸
at least one j outside all of the IZ’s

estimated as non-dominated

,

such that we can define a new MC event that depends on the IZ δ, MC(δ) := MCE (δ)∪MCI (δ). Since

the MC and MC(δ) events are equivalent when δ = (0, . . . , 0), henceforth, we only consider the more

general formulation of MC(δ).
Since the rate of decay of the MC(δ) event will correspond to the minimum of the corresponding rates

of decay for MCE(δ) and MCI(δ), each of these terms can be analyzed separately. However, while the

MCE(δ) event is easy to analyze, the MCI(δ) event is difficult to analyze due to dependence. To obtain

an equivalent event that is easier to analyze, we reformulate the MCI(δ) event using scalarization.

3.2 Reformulation of the MC Event

Recall that we have a two-step solution context for Problem P: first, sample from each of the systems to

obtain objective vector estimates; and second, construct the estimated Pareto set P̂ as the set of systems

that are estimated as non-dominated. Using the Chebyshev scalarization, we consider a different procedure

to solve Problem P: first, sample from each of the systems to obtain objective vector estimates, and second,

construct the estimated Pareto set P̂ by solving Problem SPfChebyshev
(w) for all weight vectors w ∈ W ,

where W is a fixed, finite weight set that we assume is “dense” enough to return the true Pareto set as the

sampling budget n tends to infinity. Then, we return the set P̂Chebyshev, where

P̂Chebyshev := {i ∈ {1, . . . , r} : ∃ w ∈ W such that i = argminℓ∈{1,...,r}maxk∈{1,...,d}wkŶℓk}

is the set of systems that are estimated as the minima of each of the scalarized Problems SPfChebyshev
(w).

Now, under this new procedure, we can reformulate MCI(δ) as

M̃CI(δ) = ∪
j 6∈P(δ)

∪
w∈W

max
k∈{1,...,d}

wkŶjk ≤ min
i∈P(δ)

max
k∈{1,...,d}

wkŶℓk
︸ ︷︷ ︸
j 6∈ P (δ) estimated as dominating all i ∈ P(δ)

for some Chebyshev scalarization weight w

.

Unfortunately, formulating the MCE(δ) event under the Chebyshev scalarization procedure results in

a term that contains dependence and is hence difficult to analyze. For a false exclusion event to occur

under Chebyshev scalarization, the Pareto system i must be beaten by some system ℓ that is outside its IZ

neighborhood, Ni(δ), on all Chebyshev weights w, that is,

M̃CE(δ) = ∪
i∈P

∪
ℓ/∈Ni(δ)

∩
w∈W

max
k∈{1,...,d}

wkŶℓk ≤ max
k∈{1,...,d}

wkŶik
︸ ︷︷ ︸

i ∈ P estimated as dominated by ℓ /∈ Ni(δ)
on all Chebychev scalarization weights w

.

Since M̃CE(δ) under Chebychev scalarization is difficult to analyze, we analyze the MCE(δ) event using its

original naı̈ve formulation. Therefore, we reformulate the MC(δ) event as MC(δ) = MCE(δ) ∪ M̃CI(δ).
Formulating the MC(δ) event this way presents a conundrum: which procedure should we use for

estimating the Pareto set? We propose using the naı̈ve procedure and returning P̂ , while using Chebyshev

scalarization only for allocating samples according to the asymptotically optimal allocation that results

from analyzing rate of decay of the probability of M̃CI(δ). If the weight set W is large enough to retrieve

the Pareto set as n tends to infinity, then for large enough n, P̂ = P̂Chebyshev.
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4 OPTIMAL ALLOCATION WITH CHEBYSHEV SCALARIZATION

We are now ready to analyze the rate of decay of the probability of an MC(δ) event as a function of

α = (α1, . . . , αr), which is the vector representing proportion of the total sampling budget n that is

allocated to each system. We first derive the rate function, then we characterize the optimal allocation as

the solution to a concave problem in the allocation vector α. Due to space constraints, we omit all proofs.

First, the rate of decay of P{MC(δ)} is the minimum of the rates of decay of the probabilities of

MCE(δ) and M̃CI(δ). To analyze the rate of decay of P{MCE(δ)}, we decompose it into the minimum

of rates involving pairs of systems (i, ℓ) where i ∈ P and ℓ /∈ Ni(δ). Define this pairwise rate as

RMCE(i,ℓ) (αi, αℓ) := infxℓ≤xi
αiIi (xi) + αℓIℓ (xℓ) .

To analyze the rate of decay of P{M̃CI(δ)}, we decompose it into the minimum of rates involving a system

and a Chebychev weight (j,w), where j /∈ P (δ) and w ∈ W . Define the pairwise rate as

RMCI(j,w)(αj , α1, . . . , α|P(δ)|) := inf
max

k∈{1,...,d}
wkxjk≤ min

i∈P(δ)
max

k∈{1,...,d}
wkxik

αjIj (xj) +
∑

i∈P(δ)

αiIi (xi) .

Theorem 2 states that the overall rate of decay of the probability of MC(δ) is the minimum of the rates

corresponding to MCE(δ) and M̃CI(δ).

Theorem 2 The rate of decay of P{MC (δ)} is

− lim
n→∞

1

n
logP{MC (δ)} = min{min

i∈P
min

ℓ6∈Ni(δ)
RMCE(i,ℓ) (αi, αℓ) ,

min
j 6∈P(δ)

min
w∈W

RMCI(j,w)

(
αj , α1, . . . , α|P(δ)|

)
}.

Since RMCE(i,ℓ) (αi, αℓ) and RMCI(j,w)

(
αj , α1, . . . , α|P(δ)|

)
are concave functions of (αi, αℓ) and(

αj , α1, . . . , α|P(δ)|

)
respectively for all i ∈ P , ℓ /∈ Ni (δ), j /∈ P (δ), and w ∈ W , the asymptotically

optimal sample allocation can be expressed as the solution to the concave maximization problem

Problem Q: maximize z s.t.

RMCE(i,ℓ) (αi, αℓ) ≥ z for all i ∈ P and ℓ /∈ Ni (δ)

RMCI(j,w)

(
αj , α1, . . . , α|P(δ)|

)
≥ z for all j /∈ P (δ) and w ∈ W

∑r
ℓ=1 αℓ = 1, αℓ ≥ 0 for all ℓ ∈ {1, . . . , r}.

The computational burden in Problem Q arises from computing the values of the constraint functions. For

a given value ofα, computing the value ofRMCE(i,ℓ) (αi, αℓ) involves solving a convex optimization problem.

However computing the value ofRMCI(j,w)

(
αj , α1, . . . , α|P(δ)|

)
requires solving a non-convex optimization

problem, where the non-convexity arises in the feasible set. We term these problems Problem RMCE(i,ℓ) and

Problem RMCI(j,w) respectively. We focus on Problem RMCI(j,w) since it is computationally demanding.

Note that we can write Problem RMCI(j,w) as

minimize
xj ,x1,...,x|P(δ)|

αjIj (xj) +
∑

i∈P(δ) αiIi (xi) s.t. max
k∈{1,...,d}

wkxjk − max
k∈{1,...,d}

wkxik ≤ 0, ∀i ∈ P (δ) .

While the objective function in Problem RMCI(j,w) is strictly convex, the constraint functions are not

convex. We are investigating techniques by which we can decompose Problem RMCI(j,w) into a set of

convex problems. Figure 3 depicts an optimal allocation, that is, a solution to Problem Q, based on such a

decomposition where the objective vectors are independent Gaussian random variables with unit variance.
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Any algorithm that solves Problem Q has to compute the constraints related to the MCE and the

scalarized MCI events at each step. Evaluation of the constraints related to the scalarized MCI event require

solving |[P (δ)]c| × |W| non-convex optimization Problems RMCI(j,w). To evaluate the constraints related

to the MCE event, we would need to solve |P| × |[Ni (δ)]
c| convex optimization Problems RMCE(i,ℓ).

Although these problems can be solved in parallel, efficient solutions to these problems are crucial to

solving Problem Q efficiently.

(a) The MCE event is the driving misclassification event.

The dominated systems are allocated approximately 6%
of the sample.

(b) The MCI event is the driving misclassification

event. Approximately 50% of the sample is allocated

to dominated systems.

Figure 3: The figures show the asymptotically optimal budget allocation obtained by solving Problem Q in the

case where all objectives are independent Gaussian random variables with unit variance. In (a), dominated

systems are located approximately one standard deviation away from their dominating system, while in (b),

Dominated systems are located approximtely 0.1 standard deviations away from their dominating system.

5 CONCLUDING REMARKS

Multi-objective optimization in the simulation context is an important problem with application in a wide

variety of important real-world contexts. Despite such importance, currently, little is known on how to solve

such problems efficiently. We believe, following literature in the deterministic context, that scalarization

is a powerful mechanism for increased tractability in identifying optimal budget allocations.

The main challenge in our approach is the computational complexity associated with identifying good

simulation budget allocations, that is, those that ensure that the retrieved Pareto set deviates from the true

Pareto set minimally. Further computational gains through SCORE-type approximations will likely prove

valuable for implementation.
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Hu, L., and S. Andradóttir. 2014. “A Penalty Function Approach for Simulation Optimization with Stochastic

Constraints”. In Proc. of the 2014 Winter Simulation Conference, edited by A. Tolk, S. Y. Diallo, I. O.

Ryzhov, L. Yilmaz, S. Buckley, and J. A. Miller, 3730–3736. Piscataway, NJ: Institute of Electrical

and Electronics Engineers, Inc.

Huang, H., and Z. B. Zabinsky. 2014. “Multiple Objective Probabilistic Branch and Bound for Pareto

Optimal Approximation”. In Proc. of the 2014 Winter Simulation Conference, edited by A. Tolk, S. Y.

Diallo, I. O. Ryzhov, L. Yilmaz, S. Buckley, and J. A. Miller, 3916–3927. Piscataway, NJ: Institute of

Electrical and Electronics Engineers, Inc.

Hunter, S. R., and G. Feldman. 2015. “Optimal Sampling Laws for Bi-Objective Simulation Optimization

on Finite Sets”. In Proceedings of the 2015 Winter Simulation Conference, edited by L. Yilmaz, W. K. V.

Chan, I. Moon, T. M. K. Roeder, C. Macal, and M. D. Rossetti. Piscataway, NJ: Institute of Electrical

and Electronics Engineers, Inc.

Hunter, S. R., and B. McClosky. 2015. “Maximizing Quantitative Traits in the Mating Design Problem via

Simulation-Based Pareto Estimation”. Under 3rd review for IIE Transactions.

Hunter, S. R., and R. Pasupathy. 2013. “Optimal Sampling Laws for Stochastically Constrained Simulation

Optimization on Finite Sets”. INFORMS Journal on Computing 25 (3): 527–542.

Kim, S., and J. Ryu. 2011a. “The Sample Average Approximation Method for Multi-Objective Stochastic

Optimization”. In Proc. of the 2011 Winter Simulation Conference, edited by S. Jain, R. R. Creasey,

J. Himmelspach, K. P. White, and M. Fu, 4026–4037. Piscataway, NJ: Institute of Electrical and

Electronics Engineers, Inc.

Kim, S., and J. Ryu. 2011b. “A Trust-Region Algorithm for Bi-Objective Stochastic Optimization”. Procedia

Computer Science 4:1422–1430.

Kim, S.-H., and B. L. Nelson. 2006. “Selecting the Best System”. In Simulation, edited by S. G. Henderson

and B. L. Nelson, Handbooks in Operations Research and Management Science, Volume 13, 501–534.

Elsevier.

Lee, L. H., E. P. Chew, S. Teng, and D. Goldsman. 2010. “Finding the Non-Dominated Pareto Set for

Multi-Objective Simulation Models”. IIE Transactions 42:656–674.

Lee, L. H., E. P. Chew, S. Teng, and J. Li. 2009. “Application of Evolutionary Algorithms for Solving

Multi-Objective Simulation Optimization Problems”. In Multi-objective memetic algorithms, edited by

C.-K. Goh, Y.-S. Ong, and K.-C. Tan, Studies in Computational Intelligence, 91–110. Springer.

Lee, L. H., C. U. Lee, and Y. P. Tan. 2007. “A Multi-Objective Genetic Algorithm for Robust Scheduling

using Simulation”. European Journal of Operational Research 177:1948–1968.

3620



Feldman, Hunter, and Pasupathy

Li, H., L. H. Lee, E. P. Chew, and P. Lendermann. 2015. “MO-COMPASS: A Fast Convergent Search

Algorithm for Multi-Objective Discrete Optimization via Simulation”. IIE Transactions.

Lightner, M. R., and S. Director. 1981. “Multiple Criterion Optimization for the Design of Electronic

Circuits”. Circuits and Systems, IEEE Transactions on 28 (3): 169–179.

Luo, Y., and E. Lim. 2013. “Simulation-Based Optimization Over Discrete Sets with Noisy Constraints”.

IIE Transactions 45 (7): 699–715.

Marler, R. T., and J. S. Arora. 2004. “Survey of Multi-Objective Optimization Methods for Engineering”.

Structural and Multidisciplinary Optimization 26:369–395.

Miettinen, K. 1999. Nonlinear Multiobjective Optimization. Boston: Kluwer Academic Publishers.

Nagaraj, K., and R. Pasupathy. 2014. “Stochastically Constrained Simulation Optimization on Integer-

Ordered Spaces: The cgR-SPLINE Algorithm”. Submitted. http://www.stat.purdue.edu/∼nagaraj5/

papers/OPRE cgR-SPLINE.pdf.

Osorio, C., and M. Bierlaire. 2013. “A Simulation-Based Optimization Framework for Urban Transportation

Problems”. Operations Research 61 (6): 1333–1345.

Park, C., and S.-H. Kim. 2011. “Handling Stochastic Constraints in Discrete Optimization via Simulation”.

In Proc. of the 2011 Winter Simulation Conference, edited by S. Jain, R. R. Creasey, J. Himmelspach,

K. P. White, and M. Fu, 4217–4226. Piscataway, NJ: Institute of Electrical and Electronics Engineers,

Inc.

Pasupathy, R., and S. Ghosh. 2013. “Simulation Optimization: A Concise Overview and Implementation

Guide”. In TutORials in Operations Research, edited by H. Topaloglu, Chapter 7, 122–150. INFORMS.

Pasupathy, R., S. R. Hunter, N. A. Pujowidianto, L. H. Lee, and C. Chen. 2014. “Stochastically Constrained

Ranking and Selection via SCORE”. ACM Transactions on Modeling and Computer Simulation 25

(1): 1–26.

Powers, M. J., S. M. Sanchez, and T. W. Lucas. 2012. “The Exponential Expansion of Simulation in

Research”. In Proc. of the 2012 Winter Simulation Conference, edited by C. Laroque, J. Himmelspach,

R. Pasupathy, O. Rose, and A. M. Uhrmacher, 1552–1563. Piscataway, NJ: Institute of Electrical and

Electronics Engineers, Inc.

Pujowidianto, N. A., L. H. Lee, and C.-H. Chen. 2013. “Minimizing Opportunity Cost in Selecting the Best

Feasible Design”. In Proc. of the 2013 Winter Simulation Conference, edited by R. Pasupathy, S. Kim,

A. Tolk, R. Hill, and M. E. Kuhl, 898–907. Piscataway, NJ: Institute of Electrical and Electronics

Engineers, Inc.

Ryu, J., S. Kim, and H. Wan. 2009. “Pareto Front Approximation with Adaptive Weighted Sum Method in

Multi-Objective Simulation Optimization”. In Proc. of the 2009 Winter Simulation Conference, edited

by M. D. Rossetti, R. R. Hill, B. Johansson, A. Dunkin, and R. G. Ingalls, 623–633: Institute of

Electrical and Electronics Engineers, Inc.

Teng, S., L. H. Lee, and E. P. Chew. 2010. “Integration of Indifference-Zone with Multi-Objective Computing

Budget Allocation”. European Journal of Operational Research 203 (2): 419–429.

AUTHOR BIOGRAPHIES

GUY FELDMAN is a Ph.D. student in the Department of Statistics at Purdue University. His website is

http://www.stat.purdue.edu/∼gfeldman/.

SUSAN R. HUNTER is an assistant professor in the School of Industrial Engineering at Purdue University.

Her e-mail address is susanhunter@purdue.edu, and her website is http://web.ics.purdue.edu/∼hunter63/.

RAGHU PASUPATHY is an associate professor in the Department of Statistics at Purdue University. His

email address is pasupath@purdue.edu. His website is http://web.ics.purdue.edu/∼pasupath/.

3621

http://www.stat.purdue.edu/~nagaraj5/papers/OPRE_cgR-SPLINE.pdf
http://www.stat.purdue.edu/~nagaraj5/papers/OPRE_cgR-SPLINE.pdf
http://www.stat.purdue.edu/~gfeldman/
mailto://susanhunter@purdue.edu
http://web.ics.purdue.edu/~hunter63/
mailto://pasupath@purdue.edu
http://web.ics.purdue.edu/~pasupath/

