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ABSTRACT

Many algorithms for continuous simulation optimization have been proposed, but the question of the number

of replications at a specific point is always an issue. In this paper, instead of averaging replications of the

objective function at a specific point (e.g., sample average), we average observed function evaluations from

neighboring points. The Improving Hit-and-Run algorithm is modified to accommodate averaging in a ball

of fixed radius, thus only sampling any point once. The computational results suggest an efficiency with

single observations per sample point that simultaneously improves the estimation of the function value and

samples closer to the optimum as the algorithm progresses.

1 INTRODUCTION

A computer simulation models a system on a computer by taking a set of system design parameters, say

x, along with some random element U and producing an output g that can be viewed as a performance

measure of the system. In that sense, a simulation can be described by a function g : S×Ω → ℜ where S

is the design space and (Ω,A ,P) is the probability space that the random element is defined on. We are

interested in a case when S is a continuous subset of ℜd , which is referred to as a continuous simulation.

Since the performance produced by one simulation run is noisy, we restrict our attention to the expected

performance:

f (x) = E [g(x,U)].

A continuous simulation optimization problem is written as the following mathematical program

min
x∈S⊂ℜd

f (x). (1)

We assume the following.

Assumption 1. S is a compact body of ℜd, i.e., S is bounded and equal to the closure of its interior.

Assumption 2. f (x) is continuous on S.

Even though problem (1) is well defined, f (x) cannot be observed directly. What can be observed is

the noisy output g(x,U) from the simulation. Solving program (1) then becomes a statistical estimation
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problem as well as an optimization problem. Early approaches in continuous simulation optimization relied

on gradient based methods that employed stochastic approximation techniques introduced by Robbins and

Monro (1951) and Kiefer and Wolfowitz (1952). A comprehensive treatment of stochastic approximation

can be found in, for example, Kushner and Yin (2003).

An alternative approach to continuous simulation optimization is a gradient-free stochastic search.

A gradient-free stochastic search samples design points from the design space according to a sequence

of probability distributions and performs function evaluations with respect to those sampled designs.

Traditionally, it solves the noisy problem by resampling the previously sampled design points, that is,

re-evaluating g(x,U) several times at a sampled point x, and taking an average of several of these function

evaluations as an estimate of f (x). See, for example, Yakowitz et al. (2000) and Andradóttir and Prudius

(2010). Pasupathy and Ghosh (2013) provides an excellent concise overview of the simulation optimization

landscape.

In stochastic search for continuous optimization, an exception to a traditional resampling approach is

the work by Baumert and Smith (2002) that evaluates only one function evaluation per sampled design.

They put a ball around each sampled design point. An estimate of the objective function value at a design

point is the average of the function evaluations of all design points within the ball. The noise in the function

evaluation of a design point is effectively cancelled by the noises from the function evaluations of other

designs surrounding it, removing the necessity of repeating several function evaluations at one sample

point. The radius of the ball around each sample design point is controlled to shrink to zero to eliminate

the estimation bias, resulting in the name shrinking ball approach.

When a simulation run is computationally expensive, this stochastic search approach with single

observation per design point can have many advantages. However, constrained by the analysis techniques,

the stochastic search by Baumert and Smith (2002) is based on a non-adaptive pure random search paradigm,

which is notorious for its inefficiency in searching the design space for optimality. Inspired by the work, we

aim at developing an efficient adaptive stochastic search algorithm that performs one function evaluation

per sampled design that can solve program (1).

Andradóttir and Prudius (2010) provide a general framework for gradient-free stochastic search applying

to continuous simulation optimization. However, their framework is still based on a resampling approach.

Nevertheless, looking closely, one will find that Andradóttir and Prudius (2010)’s analysis can also expand

to a non-resampling approach as long as the objective function evaluations are independent when conditional

on the sampled designs. However, such a conditional independence property is too restrictive for an adaptive

algorithm to satisfy because, for an adaptive method, it is essential to employ historical objective function

evaluations in generating subsequent evaluations, resulting in dependence among the function evaluations.

Improving hit-and-run (IHR) is an efficient adaptive stochastic search for deterministic continuous

optimization. IHR is relatively easy to implement. Given a current point, it generates a random direction

vector (uniformly distributed on a unit sphere), and then generates a candidate point (uniformly distributed)

along the line created by the intersection of the direction vector and the feasible region. If the objective

function of the candidate point is better than that of the current point, the candidate point is accepted as

the next point. Otherwise, the current point is used again. For more details and other forms, see Zabinsky

et al. (1993), Zabinsky and Smith (2013). An advantage to IHR is its computational efficiency. Solving

a quadratic program, it has a computational complexity of O(d5/2) (Zabinsky et al. (1993)), and so is

polynomial in dimension, on average.

In this paper, we adapt IHR to solve a continuous simulation optimization problem by incorporating

the shrinking ball approach by Baumert and Smith (2002) to the algorithm. Specifically, we sample the

design points from the design space according to IHR. We then estimate the objective function value of a

design point by putting a ball around it and estimate its function value by taking an average of the function

values of all sampled designed points within the ball. In contrast to Baumert and Smith (2002), instead of

shrinking the ball, we keep the size of the ball fixed, which introduces systematic bias, in order to ensure
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enough design points land in the ball for statistical estimation. We report numerical performance of the

algorithm at different sizes of the ball.

We also contrast IHR for continuous simulation optimization, with its non-adaptive counterpart, namely

hit-and-run (HR). Hit-and-run is a Markov chain Monte Carlo sampler that mimics the non-adaptive pure

random search, whereas IHR is an adaptive algorithm that is analogous to pure adaptive search (see Zabinsky

and Smith (2013) for an overview). The numerical results document the benefit we gain from an adaptive

algorithm.

The paper is organized as follows. In Section 2, we compare IHR for continuous simulation optimization

and its non-adaptive counter part HR. Both the adaptive and non-adaptive versions estimate the objective

function value using the sample points falling in a ball of fixed radius. In Section 3, we apply the two

algorithms to a simulation quadratic program. We then report performance diagnostics of the two algorithms

on the noisy problem and compare them to investigate the impact of ball radius and the adaptive versus

non-adaptive algorithms. In Section 4, we discuss the results and future research.

2 IMPROVING HIT-AND-RUN FOR CONTINUOUS SIMULATION OPTIMIZATION

We now state the algorithms with single point observation in detail as Algorithm 1, and a non-adaptive

counterpart of the algorithm as Algorithm 2. We use the abbreviation IHR for Algorithm 1, although it is

a modification of the original Improving Hit-and-Run by averaging the objective function values over the

points in the ball associated with current and candidate points. Similarly, we use the abbreviation HR for

Algorithm 2, although it is a modification of Hit-and-Run using the averaging over the balls. Algorithm 2

is employed as a benchmark in the performance experiments of Algorithm 1 in Section 3. Both algorithms

are derivative-free, and converge in probability to the global minimum of a deterministic problem under

mild conditions.

Algorithm 1 (Improving Hit-and-Run for Continuous Simulation Optimization (IHR)). The parameter of

the algorithm is a ball radius r.

Step 0: Let n= 1. Let x1 be an interior point in S and evaluate y1 = g(x1,u1), where u1 is an independent

sample identically distributed as U. Also, set S1 = {x1} and T1 = {y1}. Let x∗ = x1.

Step 1: Increase n to n+ 1. Perform a hit-and-run step from x∗ by sampling a direction v from the

uniform distribution on the surface of d-dimensional hypersphere creating a line segment L where

L = {x∗+λv : λ ∈ ℜ}∩S.

Sample xn uniformly distributed on L. Sample un identically distributed as U and independent of

x1,y1, . . . ,xn−1,yn−1,xn. Evaluate the objective function value

yn = g(xn,un).

Step 2: Update Sn = Sn−1∪{xn} and Tn = Tn−1∪{yn}. For each x ∈ Sn, estimate the objective function

value as

f̂n(x) =
∑{k≤n: xk∈B(x,r)} yk

|{k ≤ n : xk ∈ B(x,r)}|

where B(x,r) is a ball of radius r centered at x. Estimate the optimal value as

f̂ ∗n = min
x∈Sn

f̂n(x).

Select x∗n from X∗
n = {x ∈ Sn : f̂n(x) = f̂ ∗n } as an optimal solution estimate.

Step 3: Go to Step 1.
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Algorithm 2 (Hit-and-Run for Continuous Simulation Optimization (HR)). The parameter of the algorithm

is the ball radius r.

Step 0: Let n= 1. Let x1 be an interior point in S and evaluate y1 = g(x1,u1), where u1 is an independent

sample identically distributed as U. Also, set S1 = {x1} and T1 = {y1}.

Step 1: Increase n to n+1. Perform a hit-and-run step from xn−1 by sampling a direction v from the

uniform distribution on the surface of d-dimensional hypersphere creating a line segment L where

L = {xn−1 +λv : λ ∈ ℜ}∩S.

Sample xn uniformly distributed on L. Sample un identically distributed as U and independent of

x1,y1, . . . ,xn−1,yn−1,xn. Evaluate the objective function value

yn = g(xn,un).

Step 2: Update Sn = Sn−1∪{xn} and Tn = Tn−1∪{yn}. For each x ∈ Sn, estimate the objective function

value as

f̂n(x) =
∑{k≤n: xk∈B(x,r)} yk

|{k ≤ n : xk ∈ B(x,r)}|

where B(x,r) is a ball of radius r centered at x. Estimate the optimal value as

f̂ ∗n = min
x∈Sn

f̂n(x).

Select x∗n from X∗
n = {x ∈ Sn : f̂n(x) = f̂ ∗n } as an optimal solution estimate.

Step 3: Go to Step 1.

Observe the difference between IHR and HR. IHR performs the hit-and-run step from x∗ while HR

performs the hit-and-run step from xn−1. Therefore, IHR is an adaptive algorithm while HR is not. The

implementation of the hit-and-run step for both algorithms follows Kiatsupaibul, Smith, and Zabinsky

(2011). In Step 1, the direction vector is uniformly distributed on a unit hypersphere, and then xn is

uniformly distributed on the line segment formed from the direction vector going through xn−1 and the

feasible region. In the numerical experiments, the feasible region is a hypersphere, hence the end points

of the line segment are easily determined. If the feasible region is such that the end points are not easily

determined, the approach in Kiatsupaibul et al. (2011) is to embed the feasible region in a hyperrectangle,

and a uniform random point on the line segment within the feasible region can indirectly be sampled by

performing rejection steps on the line segment within the hyperrectangle. Each time a point is rejected as

being infeasible, the line segment within the hyperrectangle shrinks, until a feasible point is accepted. The

accepted sample is the candidate point xn uniformly distributed on L. For more details on implementation,

see also Zabinsky et al. (1993), Zabinsky and Smith (2013).

3 EXPERIMENTS AND PERFORMANCE DIAGNOSTICS

We apply the two algorithms, parameterized by the radius r = 0.1 and r = 0.01, on the following spherical

program

min E
[

‖x‖2 +(1+‖x‖2)U
]

s.t. ‖x‖ ≤ 1

where x ∈ ℜ10, U ∼ Uniform[−0.1,0.1] and ‖ ·‖ is the Euclidean norm. In each experiment with a fixed r,

we apply the algorithm to solve the problem 30 times. The initial point for each of the 30 replications is

generated according to a uniform distribution on the feasible region. Each time we run the algorithm for

10,000 iterations, and record the following four measurements over the iterations. For n = 1,2, . . . ,10,000,
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• the estimate of the optimal value:

f̂ ∗n = min
x∈Sn

f̂n(x),

• the (true) objective function of a best candidate (optimal solution estimate):

f (x∗n) = ‖x∗n‖ where x∗n ∈ Argmin
x∈Sn

f̂n(x),

• the contributions to the best candidate (the counts of the sample points that contribute to an objective

function estimate of the best candidate):

c∗n = |{k ≤ n : xk ∈ B(x∗n,r)}|

• the average noise of the best candidate:

ê∗n =
∑{k≤n: xk∈B(x∗n,r)}

(1+‖xk‖
2)Uk

c∗n
.

Finally, for r = 0.1 and 0.01 and for IHR and HR, for each of the four measurements we take the

average over the 30 runs at each iteration, and plot them in Figures 1 and 2. Figure 1 shows the four

performance diagnostics containing the average over 30 runs, for IHR and HR when r = 0.1. Figure 2

shows the performance diagnostics when r = 0.01.

4 DISCUSSION

In Panel (a) of Figure 1, when the radius parameters r is 0.1, the estimates of the optimal value from IHR

approach the true value (target) more quickly than those from HR. The optimal value estimates from the

IHR and HR contain some biases, with the estimates from IHR containing negative biases. In Panel (b) of

Figure 1, the objective functions of best candidates from IHR move closer to the optimal value than those

from HR. In both IHR and HR cases, the objective functions of best candidates still contain biases, with

those from HR containing a greater magnitude of bias.

In Figure 1, Panel (c) shows the contributions to the best candidate design. Observe that the contributions

to the best candidate design for IHR are increasing over iteration. Thus the estimation is improving with

iteration, as IHR brings the sampled point closer to the optimum. This suggests a synergy between

exploration and estimation as IHR progresses. The reason is that, from a current design point x, the

hit-and-run step samples the next point from the region close to x with higher probability than the region

far away from x. In IHR, the current design point anchors the best candidate, so the algorithm returns to

the best candidates often. As a result, with the hit-and-run steps, points surrounding the best candidates are

sampled with higher probability and, hence, provide more contributions to the best candidates. In HR, the

current point drifts around the feasible design space and no sampled design points get more refined than

the others. For this reason, in Panel (d) of Figure 1, the average noises of the best candidates from IHR

are smaller than those from HR in terms of absolute value. Consequently, the estimates of the objective

function values from IHR are more precise, even though any single point is only observed once. These

indicate the benefits of an adaptive algorithm over a non-adaptive one in terms of speed, accuracy and

precision, under this single-observation-per-design setting. Note that, in Panel (d), the average noises of

the best candidates are negative, causing negative bias in IHR optimal value estimates in Panel (a). This

is understandable because we are minimizing the objective function. The estimates that contain negative

errors tend to be lower in value and the corresponding sampled designs tend to get selected as the best

candidates.

In Figure 2, when the radius parameters r is 0.01, we observe the same trend between IHR and HR.

However, in Panel (c) of Figure 2, the contributions of the best candidate designs are very low for both
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Figure 1: Performances diagnostics for IHR and HR when r = 0.1. Panels (a) and (b) exhibit the estimate of

the objective function and the true objective function value at the best candidate (optimal solution estimate),

respectively. Panels (c) and (d) show the contributions to the best candidates and the average noises of the

best candidates as functions of objective function evaluations, respectively.

IHR and HR. That means the estimates of the optimal objective value are still noisy and the results are not

very precise. Thus the fixed radius of the ball is an important parameter for future research.

In these experiments, one of the key properties of an efficient algorithm is the capability of an algorithm

to effectively reduce the noise from function evaluations when there is only single observation of the

objective value per sampled design. In Panel (d) of Figure 1, the average noises are decreasing over

iterations. That means noise cancellation is actually in effect. Andradóttir and Prudius (2010) provide a

framework that can prove the convergence to zero of the average noises in this conditional independence

case of HR. However, the noise reduction is in fact observed in the case of IHR, where the function

evaluations play a key role in sampling designs. Therefore, given sampled points x1,x2, . . ., unlike the

case of HR, the noises from IHR are not independent. From the best of our knowledge, there is no exact
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Figure 2: Performances diagnostics for IHR and HR when r = 0.01. Panels (a) and (b) exhibit the estimate

of the objective function and the true objective function value at the best candidate (optimal solution

estimate), respectively. Panels (c) and (d) show the contributions to the best candidates and the average

noises of the best candidates as functions of objective function evaluations, respectively.

framework that this adaptive single-observation-per-design setting of IHR can fit into. Such a framework

is required to fully understand the behavior of IHR shown in Figure 1 and 2.

In all cases, biases are observed both in the objective function value estimates and in the optimal

solution estimates. Under some additional experiments (not exhibited here), we find that those biases are

caused mainly by the size of ball covering each candidate design. To see this, imagine an extreme case

when IHR is applied to a problem with zero noise but with non-zero ball radius. Even when the true optimal

solution (the origin) is sampled as a candidate, its corresponding estimated objective function is still not the

true optimal value but the average of the objective functions of design points within the balls, which will

be greater than the true value, creating some bias of the optimal value estimate. To eliminate the biases,

one might be tempted to shrink the ball as the algorithm progresses. However, as Figure 2 demonstrates,

shrinking the ball too quickly may result in too few points to reduce the noise to zero. Therefore, there
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exists a trade-off between the estimation bias and noise reduction mechanisms. An adaptive algorithm

with single observation per design suggests a new paradigm for simultaneous exploration and refinement

of noisy objective functions.
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