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ABSTRACT  

Off-site construction is a shift toward a more efficient building process in terms of minimizing cost and 
decreasing duration of projects. However, since off-site construction consists of two separate phases, a 
comprehensive cost-time trade-off is essential. It gives control for the overall process where the direct and 
indirect effect of work performed on an individual task can be measured and evaluated with respect to the 
final project performance factors. The research presented in this paper develops a simulation model to 
study the dynamic relationship between off-site manufacturing and cost-time trade-off . A multi-objective 
analysis for two main indirect costs and inventory cost of the manufactured building components are 
proposed in order to provide a decision support system tool to clarify any ambiguity in the dynamic 
relationship between the project’s two stages, and assist the manager to improve project planning and 
control.  

1 INTRODUCTION 

Planning and control draw different features of supply and demand together to ensure that the project’s 
tasks run effectively and efficiently and deliver products and services as intended by the management 
team. In construction, planning and control cover many aspects, such as inventory management, supply 
chain management, enterprise resource planning (ERP), and material requirements planning (MRP) 
(Slack et al. 2010). The management team makes plans concerning what they aim to do, what resources 
they need in order to achieve their goals, and what intentions they desire to accomplish (Slack et al. 
2010). Planning does not guarantee tasks will be done by the scheduled time and within the targeted 
budget. For instance, suppliers may not always deliver on time, or resources might not be available at the 
required time. Therefore, the control phase seeks to deal with changes that may occur when the scheduled 
tasks do not meet certain objectives, such as the projected timeline, product quality, targeted budget, or 
safe working conditions.  

Additional cost can be incurred when a project’s duration is shortened due to expediting some of its 
activities, such as by increasing crew size above the normal level, allowing overtime, or using 
unconventional construction methods (Sonmez and Bettemir 2012). Therefore, it is important to provide 
an optimal schedule based on defined sets of time-cost trade-off. Managers seek to solve trade-off 
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problems by scheduling activities in such a way as to obtain an agreeable balance between cost, time, and 
quality, considering multiple objectives. Solving trade-off problems is a difficult task among the 
conflicting objectives in project scheduling. However, a customized, dynamic, and self-adaptive version 
of a multi-objective model can assist in solving the scheduling problems (Tavana et al. 2013). Normally, 
the intended multi-objectives consider minimizing the total project cost, project duration, and 
environmental impact (Xu et al. 2012). In projects, each task depends on its precedence relationship and 
resource availability. Therefore, resource allocation and leveling affects the project’s time and associated 
cost (Ghoddousi et al. 2012).  

Simulation analysis has been used in construction management and decision support systems, and it is 
considered a significant factor in project planning and control; as described by AbouRizk et al. (2011), 
“construction simulation, a fast-growing field, is the science of developing and experimenting with 
computer-based representations of construction systems to understand their underlying behavior.” 
Simulation can be used as a decision making tool for analyzing different supply chain scenarios based on 
defining multiple objectives and input parameters (Longo and Mirabelli 2007). For supply chain and 
construction projects, discrete-event simulation (DES) and system dynamics (SD) are common modeling 
tools which aid decision support systems (DSS) (Tako and Robinson 2011; Alzraiee et al. 2012). Using 
simulation provides solutions to resolve issues at the strategic, tactical, and operational levels (Tako and 
Robinson 2011). Normally, a simulation-based approach integrates a DES model with database and 
spreadsheet applications to afford an appropriate and easy-to-use tool for meeting management objectives 
(Mohamed et al. 2007). 

Integration of planning and scheduling throughout the supply chain remains a major challenge despite 
long-standing and ongoing research efforts (Samaranyake et al. 2014). On the other hand, trade-off 
between project time and cost is essential to decrease both project duration and cost and to maintain 
operations in today’s competitive environment (Ghoddousi et al. 2012). Consequently, developing a 
model to support the integration velocity diagram (VC) and time-cost trade-off is important and relevant 
to planning and scheduling. This paper thus establishes a unique simulation model based on VC, and 
time-cost trade-off to ensure that the planned objectives will be achieved, as discussed further through a 
case study. 

2 METHODOLGY 

The objective of the proposed research is to develop a DSS to help managers understand the relationship 
between the off-site and on-site stages of a project and determine the lead time required to start the off-
site manufacturing process; this serves to minimize the indirect cost associated with the managerial and 
overhead cost and inventory cost, according to a desired outcome or required conditions.  
 A company’s policy in regards to project prioritization accounts for the desired conditions. Market 
conditions, project location, client demand, and the global economic status play key roles in shaping the 
company policy, which in turn defines the sequence of project initiation and completion. Consequently, it 
provides guidelines by which to assess project cost throughout a project’s construction life cycle. 
Required conditions are related to uncontrolled incidents that entail a change in the overall plan: resource 
availability for a specific task, weather conditions, contracting arrangements (which could be defined as a 
preferable contracting arrangement if a continuous workflow is guaranteed to a sub-contractor), and 
delays. The cost-time trade-off guidelines are defined by both the desired and required conditions. Once 
the guidelines are defined, a comprehensive cost-time trade off analysis is performed to specify project 
cost versus time. 
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Figure 1: Proposed methodology. 

The proposed simulation model captures the overall off-site construction process, which produces 
project cost and time using Velocity Diagram (VD) as output. It provides the managerial and overhead 
cost and inventory cost as well. Cost-time trade-off analysis is related to the lead time the off-site stage 
starts compared to the starting point of the on-site stage. Physical constraints related to the logical 
sequence of on-site activities are applied. Figure 1 illustrates the overall proposed methodology.  

For the purpose of simplifying the simulation model, a three-level work breakdown structure (WBS) 
is proposed for the on-site activities, project level, task level, and sub-task level. Two levels of cost-time 
trade-off are proposed: project level, and tasks level. The scenario generation is based on time and work 
fixed-increment. At the project level, the off-site stage start date and end date define the project duration, 
and time-fixed-increment scenarios are generated at 10% of the overall duration, 20%, 30%, etc. The 
physical constraints are respected in regards to not allowing an on-site task to start until the off-site 
needed resources are available. On the task level, the quantity of work generated in each off-site task is 
measured, and work-fixed-increment scenarios are generated. These scenarios are represented time-wise, 
similar to at the project level, through the translation of work quantity performed into time according to 
the chosen duration distribution for each task in the simulation model. 

The simulation model focuses on modeling and analyzing multi-storey residential projects, built 
utilizing the off-site manufacturing process. Off-site construction comprises two main stages, (1) off-site 
manufacturing and (2) on-site installation. During the manufacturing stage, the superstructure of the 
project is being prefabricated. For this stage, inputs include architectural layouts, structural design, shop 
drawings (design wise), and material availability, material grade and quality, in-factory labor (in-factory 
productivity wise), production plan, and on-site project plan (plan wise), as illustrated in Figure 1. The 
on-site installation stage in the illustrated project is divided into eleven tasks. 

2.1 Architecture of the Simulation Model 

Simphony.NET 4.0 is used to build the simulation model. Given that the main purpose of this model is to 
emulate the physical process followed in the construction industry to deliver a project, it is important to 
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develop a generic model that adapts to the different cases of off-site construction. In order to achieve this, 
the model does not consider detailed activities, but combines different tasks into one representative task 
that captures the time needed to deliver a certain physical component of the building. That being said, 
tasks appearing in the model are directly related to finishing major project phases in the real-life project.  

The simulation model consists of 5 sub-models. Three of these sub-models simulate physical 
activities, while the others are for monitoring and controlling purposes. Figure 2 shows the sub-models. 

Figure 2: The simulation sub-model models. 

The sub-models are outlined below. 
  Off-site manufacturing sub-model: in this sub-model, the manufacturing process is 

simulated. It emulates the work to be performed at the plant where building components are 
manufactured. Since each manufacturer has their own unique floor layout, it is important to 
generalize this layout so that the model can serve different production line arrangement 
scenarios. Therefore, the production line is simplified into three stations: assembly, framing, 
and sheathing. Each of these stations is an abstraction of a group of physical stations. This 
gives the model the flexibility to capture the production flow of a wide range of 
manufacturing facilities while maintaining its accuracy. This sub-model is concerned with 
activities’ durations; it captures the time needed to perform the tasks. Therefore, any further 
optimization using the results of the sub-model should be based on this time information. 
Figure 3 shows the off-site manufacturing sub-model layout. 

 
For each of the stations, duration is estimated according to the component type (i.e., wall panels). 

This duration satisfies the following: ݊݅ݐܽݎݑܦ ሺ݄ݎݑሻ ൌ ͳܰ ൈ ܲ 

Where:  N is the number of workers working on that station on a specific day. This number can be a 
constant, or follow a random variable from a statistical distribution. 

 P is the hourly productivity of one worker, and it can be either a constant or randomly generated 
from a distribution. 

Productivity is specified as a random number generated throughout a distribution, as researchers 
prefer to consider the random nature of productivity. However, inputting the number of crew members is 
subject to the purpose of the model. If the researcher is interested in optimizing the number of crew 
members needed on a specific station then it would be better to consider using non-probabilistic input 
(i.e., a constant number); otherwise, to better capture the production behavior, probabilistic input is 
recommended. 
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Figure 3: Off-site manufacturing sub-model 
layout. 

Figure 4: On-site manufacturing sub-model layout. 

 
For the scope of this paper, crew size optimization and resource leveling are not considered. 

Therefore, crew size is generated automatically through a distribution.  
  On-site installation sub-model: this sub-model simulates the panel/module installation on site. It 

controls the assembly process, material release from inventory, material shipping, and crane 
operation, as indicated in Figure 4. 

 
In this context, material could be any manufactured component, e.g., panels or modules. This extends 

the capabilities of the model to serve both the off-site and on-site construction methods with the same 
level of efficiency. 

  Site services and concrete work sub-model: before installing the manufactured components, the 
construction site must be prepared. The simulation model considers this technological constraint 
through the sub-model, “Site Services and Concrete work.” This sub-model runs all activities that 
precede component installation. It simulates excavation, formwork and rebar placement, and 
concrete pouring such that the main floor slab is ready for panels or module assembly. All the 
activities except concrete pouring are simulated using DES. Due to the physical nature of 
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concrete pouring, it is simulated using continuous simulation. Figure 5 shows the simulation 
abstraction of site preparation activities. 
 

 

 

Figure 5: Site services and concrete work sub-
model layout. 

Figure 6: The components of continuous 
simulation sub-model layout. 

 Continuous simulation sub-model: as mentioned above, this sub-model controls and monitors 
the running of the other sub-models. Its function can be divided into two separate tasks: 
o Inventory watch, where it tracks the status of manufactured components’ inventories. It 

records the changes in the number of pieces stored in the inventory. It is linked to the off-site 
manufacturing and on-site installation sub-models. While the first provides information about 
components entering inventories, the second sends information pertaining to materials’ 
release. 

o Concrete pouring, which is modeled using two simulation techniques: discrete-event for 
concrete supply to site, and continuous for concrete pouring. The DES is part of the site 
services and concrete work sub-model, while the continuous simulation for concrete pouring 
is controlled and monitored in this sub-model. 

 Activities sub-model: this sub-model links the abstracted activities with scheduled tasks. It 
captures task duration from all the other sub-models and feeds it to the schedule in order to 
generate different outputs to be used later for assessment purposes. It generates two main graphs: 
a Velocity Diagram to assess time performance of the project, and indirect cost changes during 
the project construction cycle. 

  
 As mentioned above, the schedule used in this model is not detailed, as it is meant to be generic and 
applicable to different projects with only minimal changes. Therefore, only the following tasks are 
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considered: parkade excavation, wall foundation, detailed excavation, pads, walls and columns, slab on 
grade (SOG), structural slab, framing main floor, framing second floor, framing third floor, and framing 
fourth floor. However, the model is flexible, permitting the addition of a more detailed breakdown for 
these activities. Figure 7 shows the abstraction of the project schedule. 

 

 

Figure 7: Abstracted activities of the project schedule sub-model layout. 

3 COST-TIME TRADE-OFF 

Off-site construction poses different challenges due to the separated nature of its stages. This requires 
extra planning effort to find a feasible schedule that reduces costs while delivering the project in a timely 
manner. In the context of this study, it should be noted, project cost is the direct cost of material, labor, 
and equipment needed to perform project tasks. Indirect cost accounts for all the expenses related to 
logistics activities (e.g., transportation of fabricated components to site, storage security, etc.). The 
relationship between the project duration and indirect cost is proportional. In off-site construction, 
inventory has a major effect on the total cost; therefore, its influence has to be considered. Thus, time-cost 
trade-off analysis will focus on the effect of indirect cost changes over the project duration for each 
scenario. These indirect costs are managerial and overhead costs and inventory costs measured against 
project duration to develop a selection tool. The purpose of the selection tool is to assist the planning team 
in exploring different execution patterns in order to determine the optimal time-cost trade-off. It is 
important to mention, that this study assesses different scenarios for the combination of off-site/on-site. 
Therefore, it doesn’t aim to optimize the process, but evaluate the consequences of the decision. This 
leads to the fact that there is no optimal balancing state that falls under Pareto optimal condition, as the 
scenarios are always based on the practical configuration rather than ideal cases that could be optimized. 

4 IMPLEMENTATION OF SIMULATION MODEL: CASE STUDY 

For this study a condominium building is used to test the model. The building uses pre-fabricated panels 
for the walls and floor. It requires 3,000 wall panels and 400 floor panels. By observing the production 
process, the research team can identify productivities (crew size distributions are shown in Table 1). 
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Table 1: Productivity and crew size distributions used in the model. 

Station Productivity Distribution Crew size distribution 
Assembly Weibull (2.3996,0.88122,0) Poisson distribution (Ȝ=2.7027) 
Framing Gamma (9.9844,0.0734)) Poisson distribution (Ȝ=3.0984) 

Sheathing Gamma (3.8488,0.1264) Uniform Distribution (2,4) 
 
To include inventory costs, the researchers consider inventory cost as follows: 

 IC୲ ൌ N୲ ൈ SPC୲ 
Where:   ICt is the inventory cost at time, t. 

 Nt is the number of pieces physically existing in the inventory at time, t. 
 SPCt is the cost of storing one piece at time t. This includes all costs related to keeping this piece 

in the inventory, such as inventory rent, power supplies, and security services. 

Indirect cost is assessed as ($85/day) for the entire project construction cycle. 
The following scenarios are fed into the model:  S1: Site preparation work starts concurrently when manufacturing starts. 
 S2: Site preparation work starts after 10% completion of manufacturing. 
 S3: Site preparation work starts after 20% completion of manufacturing. 
 S4: Site preparation work starts after 30% completion of manufacturing. 
 S5: Site preparation work starts after 40% completion of manufacturing. 
 S6: Site preparation work starts after 50% completion of manufacturing. 
 S7: Site preparation work starts after 60% completion of manufacturing. 
 S8: Site preparation work starts after 70% completion of manufacturing. 
 S9: Site preparation work starts after 80% completion of manufacturing. 
 S10: Site preparation work starts after 90% completion of manufacturing. 
 S11: Site preparation work starts after completion of manufacturing. 
 S12: Manufacturing starts after completion of excavation. 

By running the model for each of the mentioned scenarios, the planning team can obtain visual aids 
useful in optimizing the planning process. Figure 8 shows the VD of S6, and Figure 9 shows panel 
inventory repletion during the project construction lifecycle in S9. 
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Figure 8: Velocity Diagram of S6. 

 

Figure 9: Panel inventory changes during project 
construction in S9. 

 

 

Figure 10: Inventory cost of all scenarios. 

4.1 Discussion 

As Figure 10 shows, as the difference between the start time of site preparation and the start time of 
manufacturing becomes larger, the inventory cost becomes larger. This also increases the indirect cost, as 
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it leads to a longer project duration. It is thus important to begin manufacturing of off-site components 
concurrently with parkade and site operations. This will decrease inventory cost and indirect cost and 
provide continuous workflow, with minimal delays caused by delivery of off-site components.  

However, it is important to mention that this analysis is specific to the case study used in this paper, 
which is directly related to the manufacturer’s data and project size. As the conclusion my differ based on 
the project size and manufacturer capability, it is up to the project management team to identify different 
patterns to combine off-site operation with on-site ones, so they can determine which pattern meets the 
project goals in terms of time and cost.  

Moreover, since the model uses stochastic simulation, then it wouldn’t be possible to determine a 
targeted production rate for both off-site, and on-site operation. However, it provide more realistic 
representation of reality, where there are no crisp deterministic values for production rates. Nevertheless, 
with minor adjustments, the model could be utilized to determine targeted production rates based on 
projects goals.  

5 CONCLUSION 

Along with the advantages of off-site construction methods in terms of the time savings and increased 
quality it provides, it also presents challenges to which construction personnel are not accustomed. The 
geographical distance between the plant where building components are being manufactured and the 
assembly location requires a dynamic approach to planning and scheduling. Moreover, the planning team 
must consider the increment in cost associated with planning deficiencies, such as installation delays or 
inventory over-cost. Therefore, this research presents a simulation-based model to assess time-cost trade-
off, in order to help planning teams test different alternatives in a timely manner and at a lower cost. It is 
a generic model that can be used for the two most well-known methods in off-site construction: modular 
and panelized. Additionally, since it captures the main phases of project delivery, it can be adjusted to 
handle a wide range of projects that involve off-site manufactured components, as long as it considers the 
unique nature of work sequences and dependence on the manufacturer’s performance. 
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