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ABSTRACT

Combat modeling is a key area of military science and related research. Here, we propose a moment

matching scheme with a modified stochastic Lanchester-type model. An experiment shows that the proposed

scheme makes approximations more rapidly while maintaining a high level of accuracy compare to the

Markovian model.

1 Introduction

Combat modeling, as first proposed by Lanchester (1916), is a fundamental area in military research. The

Lanchester equation describes a homogeneous battle simply and clearly. However, since it does not consider

randomness, it has limited expressiveness of battles. Therefore, many researchers have studied the stochastic

Lanchester-type combat model. Amacher and Mandallaz (1986) attempted to represent stochasticity using

a random kill rate parameter which contained brownian motion. The most commonly used model is the

Markov model by Taylor, but this model is hard to expand into inhomogeneously armed case because of

the curse of dimensionality, and inevitably the computation cost gets higher.

In the present paper, we suggest a difference equation modeled from the Markov model and propose

a moment matching scheme which can be widely use for any stochastic Lanchester-type model.

2 Stochastic Formulation

Taylor (1980) developed a stochastic type of combat model with a Markov model. In this article, we

propose a new but familiar model which is modeled after the Chapman-Kolmogorov equation, a common

approach to express stochasticity. The modified difference equation considered here is shown below.

Bt+∆t −Bt =−1aRt ∆t

Rt+∆t −Rt =−1bBt ∆t (1)

Here, 1p is a Bernoulli random variable with a probability p, and a and b are positive constants.

The main reason behind the use of a stochastic model is to determine not only the average behavior,

i.e. the mean of each side, but also the covariance structure. This involves much more information than

that used in a deterministic model. From (1), we compute first and second moments to obtain the mean and

covariance. We denote the moment vector Mt = (E[Bt ],E[Rt ],E[B
2
t ],E[R

2
t ],E[BtRt ]). The moment vector

at time t +∆t, Mt+∆t can be calculated by Mt . Therefore, (1) can be rewritten in the following form with

the appropriate value of V , which is derived from (1).

Mt+∆t = (1+V ∆t)Mt +o(∆t2) (2)
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As ∆t → 0, o(∆t2) becomes 0 and the following holds.

Mt = expm(V )M0 (3)

where expm is an exponential operator for the matrix. The moments at time t can be evaluated by the

initial moments, and the mean and covariance at time t can easily be computed by this moment vector.

The difference equation (1) represents a homogeneously armed case, and it is simple to expand this

into an inhomogeneously armed case. The mean and covariance in this case as well can be calculated by

the moment vector in (3) with a suitable value of V .

Bi,t+∆t = Bi,t −1
∑

N
k=1 akiRk,t ∆t ∀i = 1...M

R j,t+∆t = R j,t −1
∑

M
l=1 bl jBl,t ∆t ∀ j = 1...N (4)

3 Experiments

In this analysis, we conduct a crude Monte Carlo simulation for the model and compare the results to an

approximation of the moments. In (1), Bt and Rt can be expressed as the sum of a bivariate Bernoulli

trial with different probabilities; therefore, we can roughly approximate (Bt ,Rt) as a bivariate Gaussian

distribution with first and second moments. The accuracy levels and the computation times of the three

models for homogeneously armed case and two models for inhomogeneously armed case are compared in

Table 1. Taylor’s model is used as a benchmark for Model 1,2,3, and Model 4 used as a benchmark for

Model 5 because Taylor’s model is valid only for homogeneously armed case. The accuracy is represented

by the degree of Kullback-Leibler divergence from the benchmark.

Table 1: Kullback-Leibler divergence of five models from each benchmarks. Model 1 is (1) with a crude

Monte Carlo(Rep:106), Model 2 is (1) with a moment matching scheme, and Model 3 is the model from

Amacher and Mandallaz (1986) for homogeneously armed case. Model 4 is a crude Monte Carlo(Rep:106)

and Model 5 is (4) with a moment matching scheme for inhomogeneously armed case.

Armed type Homogeneously (1vs1) Inhomogeneously (2vs2)

Time Model 1 Model 2 Model 3 Model 4 Model 5

1 0.000327 0.021887 0.046485 - 0.012664

2 0.000576 0.013663 0.02981 - 0.007065

3 0.000879 0.01022 0.017843 - 0.005565

Computation time(s) 373s ≤ 0.1s 3338s 0.9s

The intent of this paper is to show a rapid approximation scheme using moments while maintaining a

fairly high level of accuracy. Although the accuracy is reduced somewhat, the computation time is fairly

short, and this difference in the computation time grows exponentially when the model is expanded to the

inhomgeneously armed type. Further more, we can use the moment matching scheme suggested in (3)

for any other Lanchester-type model with the proper matrix V . This can be used to evaluate and optimize

complex problems in the military field like resource allocation problem with inhomogeneously armed case.
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