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ABSTRACT

The Stochastic Root-Finding Problem (SRFP) consists of finding the root x∗ of a noisy function. To

discover x∗, an agent sequentially queries an oracle whether the root lies rightward or leftward of a given

measurement location x. The oracle answers truthfully with probability p(x). The Probabilistic Bisection

Algorithm (PBA) pinpoints the root by incorporating the knowledge acquired in oracle replies via Bayesian

updating. A common sampling strategy is to myopically maximize the mutual information criterion, known

as Information Directed Sampling (IDS). We investigate versions of IDS in the setting of a non-parametric

p(x), as well as when p(·) is not known and must be learned in parallel. An application of our approach to

optimal stopping problems, where the goal is to find the root of a timing-value function, is also presented.

1 PROBABILISTIC BISECTION FOR STOCHASTIC ROOT FINDING

Let x∗ be the realized value of a random variable X∗ with density f0 supported over [0,1]. To learn x∗,

points (Xn) are sequentially measured to observe the random sequence (Zn(Xn)) so that Z(x) = g(x)+ε(x);
where ε is a zero-median stochastic noise term and g is monotone on [0,1]. The PBA as in Waeber et al.

(2013) considers Yn(x) = sign(Zn(x)) ∈ {−1,1} as noisy oracle replies which informs whether the root x∗

lies to the left or right of x with probability p(x) of this direction being correct. Let Fn = σ(Xn,Yn(Xn)) be

the σ -algebra generated by the sequence of n sampling points and oracle replies. Based on Fn, the primary

objective is to decide at which site xn+1 to query the oracle next, such that the long-run uncertainty about X∗

is minimized. The latter is quantified through the the posterior density of X∗, fn(u)≡ P[X∗ ∈ du|Fn]. Given

a prior f0 of X∗, Waeber et al. (2013) show that fn can be updated sequentially using Bayesian methods.

Two practically relevant metrics of learning X∗ are the posterior entropy Entr( fn) and its inter-quartile

range IQR( fn). The median or the mean of fn can also be used to obtain a point estimate of X∗.

1.1 Information Directed Sampling

IDS is a myopic policy which queries sites that maximize the conditional mutual information In(x) :=
I(Yn(x);X∗|Xn = x, fn) between X∗ and oracle replies, i.e. xn+1 ∈ argmaxx∈[0,1] In(x). If p(x)≡ p ∈ (1/2,1)
the latter criterion is equivalent to sampling at the median of fn (Jedynak et al. 2012). However, sampling

at the median is not suitable when p(·) depends on x (even when p(·) is known and observable) since

typically p(x)→ 1/2 as x → x∗, causing oracle responses to provide minimal new information about X∗

and, consequently, a poor reduction in the overall uncertainty of X∗. In contrast, we show below that IDS

avoids this difficulty by staying away from regions where p(x)≃ 1/2.

2 ROOT FINDING IN OPTIMAL STOPPING PROBLEMS

Let X ≡ X1:T be a discrete-time real-valued Markov process. Let G = (σ(X1:t)) be the filtration generated

by X and S the collection of all G -stopping times smaller than T < ∞. The Optimal Stopping Problem
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(OSP) consists of maximizing the expected reward hτ(Xτ) over τ ∈S . Define the value function V (t,x) :=
sup

τ≥t,τ∈S E[hτ(Xτ)|Xt = x] for 0 ≤ t ≤ T . We have that V (t,x) = ht(x)+max{T (t,x),0} where T (t,x) :=
E[V (t +1,Xt+1)|Xt = x]−ht(x) is the timing value. Gramacy and Ludkovski (2015) show that solving the

OSP at stage t is equivalent to finding the roots of T (t,x); frequently a priori structure implies a unique

root. Moreover, a simulated path xt:T and corresponding path-wise stopping time τ ≡ τ(t +1,xt:T ) yields

a realization of zt(xt) := hτ(xτ)−ht(xt) = T (t,xt)+ ε(t,xt).
The latter equality offers a stochastic sampler that maps inputs x into random outputs hτ(Xτ)−ht(x)

centered around the true conditional expectation T (t,x). We use PBA to find the root of T (t, ·) and hence

construct a novel algorithm for OSP.

Figure 1 shows an application of PBA in the context of an American Put Option problem where

ht(x)≡ e−rt(K − x)+ and X is a log-normal random walk (classical Black-Scholes model). In the Figure

K = 40, the true root (known as the stopping boundary for the Put) is x∗ ≃ 36.00, and we implemented

the IDS and median-sampling policies, assuming a known, but non-parametric x 7→ p(x) setting and a

uniform prior X∗ ∼ Unif[25,40]. As can be seen, the IDS policy is successful in learning about X∗, with

IQR( fN) = 0.000166 after N = 1,000 oracle calls. In contrast to the IDS policy that keeps p(xn) away

from 1/2 to consistently gain information on X∗, sampling at the median fails to shrink the posterior IQR

as p(xn) rapidly goes to 1/2 after a few iterations.
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Figure 1: Sampling policy comparison: first three panels IDS; last three panels sampling at median( fn).

3 CONCLUSIONS AND ONGOING RESEARCH

As seen above, the IDS policy performs well in shrinking posterior uncertainty about the root location.

However, the basic definition of IDS relies heavily on knowing p(x), i.e. it is too greedy. In the realistic

context of unknown p(·), we propose several extensions of IDS to better handle the exploration aspect,

namely sampling at new locations in order to further learn p(·). To this end, we have designed (i)

randomized policies that enforce exploration by selecting xn+1 non-deterministically and actively (e.g.

sampling randomly at the quantiles of fn, i.e. xn+1 = F−1
n (q) where q ∼ Unif[0,1] and Fn(·) the cdf of

fn), as well as (ii) batched sampling that repeatedly queries a fixed site x M-times to simultaneously learn

p(x) and to update fn. We also observe that typically the mutual information function x 7→ In(x) has two

local maxima on each side of x∗, allowing to approximate its maximization via a simple criterion of the

form xn+1 = argmax{In(F
−1

n (q1)), In(F
−1

n (q2))}, with each quantile F−1
n (qi) chosen (randomly) to straddle

the median of fn. Extensive numerical experiments (work in progress) will be presented to illustrate and

compare these proposals both on synthetic data and for the American Put application above.
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