
Proceedings of the 2015 Winter Simulation Conference

L. Yilmaz, W. K. V. Chan, I. Moon, T. M. K. Roeder, C. Macal, and M. D. Rossetti, eds.

TIME WARP STATE RESTORATION VIA DELTA ENCODING

Justin M. LaPre, Elsa J. Gonsiorowski, Christopher D. Carothers

Department of Computer Science

Rensselaer Polytechnic Institute

Troy, NY 12180, USA

John Jenkins, Philip Carns, and Robert Ross

Mathematics and Computer Science Division

Argonne National Laboratory

Argonne, IL 60439, USA

ABSTRACT

Optimistic simulation yields impressive performance gains for many models. State saving is a quick way

to provide the rollback mechanism required for this approach, but it has some drawbacks: it may not

handle models with massive states or be able to support memory-constrained systems. This work presents a

novel approach to state saving by storing only the relative changes caused by an event. Compressing these

deltas allows retaining a greater number of noncommitted events and allows Time Warp to further exploit

parallelism in a window less constrained by memory limitations. By compressing the data, we realize

greater returns in performance and avoid memory limitations on event / state sizes. Compression ratios

over 200 are observed; and, despite chosen pathological conditions, state restoration is fast and efficient.

Runtimes are often faster using delta encoding than are their conservative counterparts, without the need

for complex reverse code or large memory consumption.

1 INTRODUCTION

Parallel discrete event simulation (PDES) relies on a global synchronization algorithm across the set of

nodes executing the simulation. Traditional synchronization algorithms are conservative in terms of event

processing: no event is processed without a guarantee of local serializability. That is, before processing

an event at time t, each node ensures that it has received and processed all events with a timestamp less

than t. This is maintained through the use of lookahead: a predetermined minimum length of time delay

for each event. After a period of global communication all nodes are synchronized to a global virtual time

(GVT). Each node can then process any events with a timestamp less than GV T + lookahead. For some

models, lookahead can be difficult to compute (see Section 5.6 of Fujimoto 1999).

In contrast to conservative simulation, less rigid synchronization algorithms exist. These are referred

to as optimistic synchronization algorithms. The most well-known is Time Warp (Jefferson 1985). Issues

surrounding high-performance Time Warp PDES have been largely solved. Various state-saving approaches

have been investigated (Lin et al. 1993; Rönngren et al. 1996) as well as novel methods of state

reconstruction (Vulov et al. 2011; LaPre et al. 2014). While much progress has been made, some

models still prove difficult to insert into a Time Warp context. For example, erratic and unpredictable state

modifications given a large state space remain difficult to model effectively: too many possibilities must

be accounted for in order to return the state to its prior values while using reverse computation.

3025978-1-4673-9743-8/15/$31.00 ©2015 IEEE

LaPre, Gonsiorowski, Carothers, Jenkins, Carns, and Ross

While state saving can overcome this particular problem, the memory footprint required for Time

Warp to truly shine may be prohibitive. For example, the IBM Blue Gene/Q A2 processor has only 16

gigabytes of memory per node while supporting up to 64 hardware threads. This can constrain certain

configurations to 256 megabytes of memory for the statically linked binary, simulator data structures, and

optimistic memory (e.g., state copies). A 1-megabyte state could have at most 256 copies given a combined

binary and simulator state size of 0 (which is not possible). Clearly, large state sizes can severely limit the

discovery of any inherent parallelism in the model.

Tools such as git (Chacon 2009) seem to overcome similar issues through the use of technologies

related to diff (Hunt and McIlroy 1976). Such tools compute deltas to store differences from one version

to another. Storing these deltas may require similar amounts of space as state saving (the fact that two

revisions are identical must be retained after all). Given the discrete nature of PDES, we can exploit

the likelihood that state differences between events should be small. Small diff sizes imply a largely

unchanged state (and therefore deltas containing many zeroes), which compresses well.

When selecting a compression algorithm, should precedence be given to size or speed? As already

stated, the size of the diff should be small. Clearly this answer should imply that a fast algorithm is

favorable over one that is space efficient. Given this conclusion, LZ4 was chosen because it is an extremely

fast compression algorithm (Collet 2014a). It is used in the ZFS filesystem for block-based, on-the-fly

compression (Kiselkov 2013) as well as the squashfs filesystem under Linux (Torvalds 2014).

LZ4 (Collet 2014b) is a fast compression algorithm requiring a small amount of space overhead for

compression. While LZ4 compression speeds are typical of LZO (which is faster than gzip), decompression

speeds can be faster than LZO (Larabel 2013).

The contribution of this paper is that it provides a stop-gap solution for models that contain events

that are not well suited for using reverse computation or consume significant amounts of memory, making

copy-state approaches infeasible. For example, some model events may require a complex nesting of

while-loops that cannot be easily or efficiently reversed (LaPre, Gonsiorowski, and Carothers 2014). Delta

encoding solves this issue by computing state change deltas only after an event has completed execution.

Additionally, the delta encoding approach provides the benefits of incremental state saving but without

requiring the specific identification of which state elements change. Moreover, because delta encoding is

done on a per-event basis, reverse computation and delta encoding can be mixed thereby enabling modelers

to take advantage of reverse computation in events for which it is well suited (e.g., constructive assignments

and simple loop constructs).

The remainder of this paper is organized as follows. Section 2 describes the ROSS Time Warp engine

and LZ4 compression scheme. Section 3 describes our approach to realizing state-delta compression within

the ROSS kernel. In Section 4 we evaluate our parallel performance results. Related work is reviewed in

Section 5. In Section 6 we present our conclusions and briefly discuss future work.

2 BACKGROUND

In this section we discuss Rensselaer’s Optimistic Simulation System (ROSS), briefly discuss the problem

of delta encoding, and then discuss data compression techniques.

2.1 ROSS

The simulator chosen for this study is ROSS (Carothers, Bauer, and Pearce 2002). ROSS is capable of

both conservative and optimistic execution modes. It is written primarily in the C language and is built on

top of an MPI (Gropp, Lusk, and Thakur 1999) layer, allowing it to leverage some built-in MPI primitives

such as all-reduce. Its focus is on both speed and efficiency: Barnes et al. (2013) demonstrated event rates

over half a trillion events per second. While ROSS is capable of (and, in fact, largely derives its speed

from) reverse computation, this work is focused on models for which a reverse event handler would be

difficult to implement.

3026

https://github.com/carothersc/ROSS/wiki

LaPre, Gonsiorowski, Carothers, Jenkins, Carns, and Ross

Logical processes (LPs) process events in time-stamp order. Inter-LP communication is possible by

sending a message to another LP. While global (in-order) ordering is maintained during conservative

simulation, this may severely limit the amount of parallelism achieved by optimistic simulation. Out-of-

order execution may reveal nondependencies (not to be confused with antidependencies, Hennessy and

Patterson 1996) that the modeler was unaware of or was unable to anticipate.

LPs are only allowed to share state (or otherwise interact with one another) through time-stamped

messages. This allows for a well-defined entry-point to alter an LP via state modification. By restricting the

access of state variables to messages only, order is enforced within the API and leaves the ROSS runtime

free to schedule events effectively.

2.2 Delta Encoding

The problem of finding similarities in data is not new. One well-known approach is the longest common

subsequence (LCS) problem. Typically used on two strings of data, the problem seeks to find the longest

sequence common to both input strings. It can be solved through dynamic programming as longer solutions

are built upon earlier and shorter subsolutions.

The diff program (Hunt and McIlroy 1976) is a tool based on LCS for discovering changes to data,

in this case files. The output of the diff program consists of lines that differ between two “versions” of

the same file. Building upon diff is the Revision Control System (RCS) (Tichy 1982), which specializes

in tracking changes to source code files. RCS stores multiple revisions of files efficiently by saving the

differences relative to a fixed point in the file’s history as opposed to keeping a separate and complete copy

for every unique revision.

2.3 Data Compression

To reduce the size of the LP state-deltas, we turn to various data compression techniques. Typically, data

exhibits some degree of redundancy. Eliminating these redundancies will necessarily reduce the size of

the data. When data redundancy is high (e.g., there exist many zeroes in it), these compression schemes

can yield impressive size reductions. Compression schemes fall into two camps: lossy and lossless. Lossy

(de)compression may not recreate the data 100% accurately, but the results are suitable for some uses; for

example, the MP3 audio coding format discards extreme high and low frequencies, which the human ear

is likely unable to perceive. Conversely, lossless (de)compression will not lose any data whatsoever. For

obvious reasons, we opt for lossless compression. While many zeroes are expected between inter-event

state values, in general little else is known about the composition of the state data or the resulting deltas.

This situation is to be expected because ROSS is simply a simulation engine: it has no further information

pertaining to the model specifics. Therefore, a universal coding scheme is required.

LZ77 (Ziv and Lempel 1977) is a compression scheme that is both lossless and universal. It performs

compression through the use of a variable-sized “sliding window” within which it matches substrings.

Matches are encoded by a tuple of values: the length of the match, the offset indicating its location within

the window, and the next symbol following this matching. Given these encodings, it is simple, efficient,

and fast to recreate the original data.

While LZ77 provided the conceptual foundation for many data compressors that followed, many tweaks

and optimizations were applied; and the LZ77 family of encoders has greatly improved since its inception.

LZ4 (Collet 2014b) is one such derivative with an emphasis placed on simplicity and speed. Simplicity

aside, its speed may be attributed to several design choices including early exiting upon detection of

incompressible data and sacrificing high compression ratios in favor of improved execution time. Emphasis

was placed on speed of compression since the state delta will require compression after each event is executed.

Furthermore, decompression speed is approximately 3-4× faster than the corresponding compression time.

Although any lossless compression format could be used in delta encoding, we chose to use LZ4 by default

because it offers a good tradeoff between speed and compression ratio for general-purpose compression.

3027

LaPre, Gonsiorowski, Carothers, Jenkins, Carns, and Ross

3 APPROACH AND IMPLEMENTATION

Our approach is straightforward. We use ROSS in an optimistic (Time Warp, Jefferson 1985) mode. To

have minimal changes to the ROSS kernel, we require that delta encoding functions be called explicitly

by the model from within forward and reverse event handlers. In the forward event handler, we require

a call to tw_snapshot() before any state is changed, as well as a call to tw_snapshot_delta()

before exiting the function. In the reverse event handler, a call to tw_snapshot_restore() returns

the state to its previous values.

i n t t w s n a p s h o t d e l t a (t w l p ∗ lp , s i z e t s t a t e s z) {
i n t i , r e t s i z e = 0 ;

char ∗ c u r s t a t e = lp−>c u r s t a t e ;

char ∗ s n a p s h o t = lp−>pe−>d e l t a b u f f e r [0] ;

f o r (i = 0 ; i < s t a t e s z ; i ++)

s n a p s h o t [i] = c u r s t a t e [i] − s n a p s h o t [i] ;

r e t s i z e = LZ4 compress (s n a p s h o t , lp−>pe−>d e l t a b u f f e r [1] , s t a t e s z) ;

i f (r e t s i z e < 0)

a b o r t () ;

lp−>pe−>c u r e v e n t −>d e l t a b u d d y = b u d d y a l l o c (r e t s i z e) ;

a s s e r t (lp−>pe−>c u r e v e n t −>d e l t a b u d d y) ;

lp−>pe−>c u r e v e n t −>d e l t a s i z e = r e t s i z e ;

memcpy (lp−>pe−>c u r e v e n t −>d e l t a b u d d y , lp−>pe−>d e l t a b u f f e r [1] , r e t s i z e) ;

re turn r e t s i z e ;

}

Listing 1: tw_snapshot_delta() implementation. This function has been simplified to save space.

In order to realize these minimal changes to the ROSS API, the ROSS core required the addition of

certain flags to indicate whether delta encoding was to be used for the current execution. Additionally,

the ROSS random number generation (RNG) code (based on the CLCG4 implementation, L’Ecuyer and

Andres 1997) required adding a counter to the generator itself; this enables the “undoing” of RNG calls

to ensure determinism. Because of the (potentially) varying number of unique RNG streams for a given

ROSS model, however, automatically reversing all RNG operations is not currently possible and requires

manual intervention.

In addition to these changes, the ROSS runtime requires a memory allocation in which to store the

compressed delta. Unfortunately, the ROSS API does not support runtime memory allocation. To overcome

this problem, we implemented a buddy system allocator (Knowlton 1965).

A classical buddy system allocation scheme starts with one large block of memory (which is allocated

during system initialization). When a memory request of size m is made, the size of the request is rounded

up to m′, the nearest power of 2 such that m′ ≥ m. (The remaining memory, sizeof(m′)-sizeof(m),

is referred to as internal fragmentation and is one of the main drawbacks to using a buddy system allocator.)

That request is then passed on to the buddy system, which will repeatedly halve the memory blocks until

the size of the block and the size of the request are equal. The memory block is then returned to fill the

original request. Metadata regarding individual blocks (e.g., block size, current usage) are stored within

the blocks themselves. The size of the initial buddy block can be set at runtime.

We also had to decide where to store our allocations at a logical location within the simulation. We

chose to store the pointer to the allocated memory within each event, although no allocation takes place

until tw_snapshot_delta() is called from within the forward event handler. By delaying allocation

until this point, we allow for varying-sized allocations as well as eliminating the need for sending deltas

3028

LaPre, Gonsiorowski, Carothers, Jenkins, Carns, and Ross

with their events. While events may travel to different processors, memory allocations should be considered

local and stationary. In the event that ROSS supports LP migration, this decision may need to be revisited.

void r c (p h o l d s t a t e ∗ s , t w b f ∗ bf , p h o l d m e s s a g e ∗ m, t w l p ∗ l p) {
long c o u n t = m−>r n g c o u n t ;

whi le (count −−) {
t w r a n d r e v e r s e u n i f (lp−>rng) ;

}
t w s n a p s h o t r e s t o r e (lp , lp−>t y p e . s t a t e s z , lp−>pe−>c u r e v e n t −>d e l t a b u d d y ,

lp−>pe−>c u r e v e n t −>d e l t a s i z e) ;

}

Listing 2: Reverse event handler used for this study.

Given these additions to ROSS, we are now able to describe the behavior and functionality of the delta

encoding API. ROSS will proceed to execute events on all LPs in timestamp order. At the beginning of the

(forward) event handler, tw_snapshot() should be called. This will effectively memcpy() the LP state

data into a preallocated snapshot buffer. Immediately before exiting this event handler, tw_snapshot_-

delta() must be called. Within tw_snapshot_delta(), we derive the delta by subtracting the

snapshot buffer from the current state. See Listing 1 for the implementation of our tw_snapshot_-

delta() function. Following that, we compress our snapshot with LZ4_compress() which returns

the resulting compressed data size. With that piece of data in hand, we can request a suitably-sized block

of memory from the buddy allocator and perform a memcpy() to copy the data into the memory block

and store it in the current event.

Should an event be committed, we simply reclaim the delta buffer. If an event gets rolled back, we

must undo our RNG calls and restore our state to its previous values. The RNG calls can be reversed

with a simple while loop by taking advantage of new ROSS RNG counter functionality requested by the

ROSS community. Our state can be restored by calling tw_snapshot_restore(), which behaves as

follows. The compressed delta information is uncompressed, and the resulting delta is reverse-applied to

the current event state. The memory block containing the delta information is deallocated to the buddy

allocator, which may or may not be able to coalesce adjoining free blocks into a larger block. See Listing 2

for a condensed version of the actual code used with comments removed for brevity.

We note that the code in Listing 2 will be largely the same regardless of the specific model. The delta

encoding API is data-agnostic and will restore the state to their previous values regardless of the type or

size of the data. In fact, the only modifications to Listing 2 would be using multiple RNG streams, since

each would need to be fully reversed in order to maintain determinism.

One notable exception, however, is pointers to data. To see why, one must observe that a pointer can

remain the same while changing the data at the pointed-to location. Pointers to data within the LP state

will of course be handled properly, although C has no mechanism to enforce such invariants. LP state

with pointers is not currently supported for the following reasons: state data should almost always be local

as sharing data will typically introduce other issues, and one often can retain the same functionality with

equivalent code that does not use pointers.

4 PERFORMANCE STUDY

The target for this performance study is a modified version of the synthetic PHOLD (Fujimoto 1990)

benchmark herein referred to as BPHOLD. The BPHOLD model sends messages to other LPs remote

percent of the time, where remote is a variable specified at runtime. Additionally, we added an array of

4,090 long int data (amounting to 32,720 bytes) to the LP state. During each event, we uniformly

choose a random number between 1 and 1,022 (one-quarter of the state size) and change that many values

in the state to randomly generated long int values. To avoid bias, we randomly shuffle the positions

3029

LaPre, Gonsiorowski, Carothers, Jenkins, Carns, and Ross

Table 1: Event rates (events / second) for the various configurations.

Cores 512 2,048 8,192

Conservative 8,700.3 28,262.4 92,574.1

Delta-Encoding Optimistic 241,197.0 947,506.9 3,637,916.3

of each value we replace. The goal of these modifications is to mimic a model having a large amount of

state and that would be difficult to reverse by using reverse computation.

We also evaluate a model implementation of the Optimized Link State Routing (OLSR) protocol as

described in LaPre et al. (2012). Link state routing protocols such as OLSR contain a (often sizeable)

global “map” of the network in each node (when referring to OLSR objects the term “node” is often used;

in our model, an OLSR node is represented by 1 LP). Changes in the map are typically localized and small

due to events such as node discovery. Nodes exchange periodic HELLO messages to discover each other

and construct a 1-hop and 2-hop neighbor set. Multipoint relay (MPR) nodes are chosen to retransmit any

messages overheard from any node within its 1-hop neighbor set. Coupled with topology control (TC)

messages which disseminate connectivity information, a network topology can be established and routes

can be calculated. We simulate 262,144 OLSR LPs each of which consists of 22,672 bytes of various

repositories for neighbor, MPR, and topology tuples to name a few; inter-node messages have the capacity

to change one or more of these. For a more detailed discussion of OLSR or its simulation model, interested

readers are referred to RFC 3626 (Clausen and Jacquet 2003) or LaPre et al. (2012).

4.1 Experimental Setup

Our target platform for this work was the IBM Blue Gene/Q at the Rensselaer Polytechnic Institute Center for

Computational Innovations. Each node of the Blue Gene/Q contains 18 cores: 16 for task-level computation,

1 for OS functionality, and 1 fail-over core in the event that another core stops functioning properly. Each

core has 4 hardware threads capable of running their own MPI context. Thus, each node can run 16×4 = 64

independent MPI ranks. Because of memory constraints of the model under consideration, however, we

run only 16 ranks per node. The cores operate at 1.6 GHz, and each node has 16 gigabytes of memory and

32 megabytes of L2 cache. These nodes are connected by a 5-D torus network capable of 2 GB/s (Chen

et al. 2011).

4.2 Performance Results

4.2.1 BPHOLD

These results were collected with the following flags: --start-events=16 --extramem=2048

--report-interval=0.10 --clock-rate=1600000000.0 --lookahead=0.0001

--gvt-interval=512 --batch=8 --nlp=16 --remote=1.0 --end=128. In this study, we

always use 100% remote events. We use conservative mode compared with delta encoding in optimistic

mode. For this study, we added the --buddy_size option and set it to 26. This allocates 226
= 64

megabytes per processor for our buddy allocator.

Figure 1 shows the effective compression ratio compared with the percentage of state data that was

changed. We say “effective” here because we do not actually compress the state but rather only the resulting

delta relative to a given event. Figure 1 also shows that as the amount of state changed increases, so too

does the resulting size, necessarily driving the compression ratio down.

When the percentage of the state changed is close to zero, LZ4 compresses the deltas at compression

ratios over 200. As more state data is changed, however, the compression ratio decays quickly. Changing

3% of the state yields a compression ratio of 20, and changing 6.5% yields a compression ratio of 10. This

trend continues to lessen and at 25% of state change, we arrive at a compression ratio of 3.

3030

LaPre, Gonsiorowski, Carothers, Jenkins, Carns, and Ross

 2

 4

 8

 16

 32

 64

 128

 256

 0 5 10 15 20 25

D
e
lt
a
 c

o
m

p
re

s
s
io

n
 r

a
ti
o

Percent of state changed

Compression ratio achieved compared to amount of state changed

 64

 128

 256

 512

 1024

 2048

 4096

512 2048 8192

R
u
n
n
in

g
 t
im

e
 (

s
e
c
o
n
d
s
)

Cores used

Run time comparison for delta encoding and conservative

Delta encoding
Conservative

Figure 1: Compression ratios for an increasing

amount of state changed. For a small amount of

state change, we see compression ratios of over 200.

As we approach 25% change the compression ratio

approaches 3. This plot contains 1,022 points.

Figure 2: Running times for delta-encoding opti-

mistic mode and conservative modes vs. the number

of cores used. All models were run with 100% re-

mote messages. Delta-encoded optimistic runs were

on average ≈35× faster than conservative runs.

Running times for 512, 2,048, and 8,192 cores are shown in Figure 2 for both conservative and optimistic

mode using delta encoding. Table 1 contains the event rates for the corresponding configurations. Optimistic

mode using delta encoding for all three core counts is on average 35× faster than the corresponding

conservative runs (at this particular value of lookahead).

These increased runtimes can be attributed to the time spent in computing GVT (Jefferson 1985). GVT

represents the smallest unprocessed event timestamp in the system. In ROSS, calculating GVT requires

periodically callingMPI_Allreduce(), a blocking function. As Figure 3 shows, the time spent computing

GVT for conservative runs dwarf their optimistic counterparts. As Fujimoto stated, “. . . conservative

algorithms rely on lookahead to achieve good performance.” (Fujimoto 1999) The comparatively small

lookahead values contribute to an overall lower-performing simulation.

While no reverse event handler exists for the complex BPHOLD model, a comparison of delta encoding

to reverse computation is still warranted. See Figure 4 for the results from an unmodified PHOLD model.

Carothers and Perumalla (2010) demonstrate that small lookahead values can cripple simulator performance

but recover quickly with modest increases; Figure 4 exhibits the same trend. The optimistic approach

with reverse computation always outperforms the other two approaches for the given lookahead values.

Delta encoding maintains runtimes within a constant factor while conservative synchronization runtimes

are inversely proportional to the lookahead.

Another important result supported by Figure 4 is that conservative synchronization continues to enjoy

improved performance as lookahead increases. For lookahead value of 0.01, conservative is approaching

delta encoding performance and at 0.1 the conservative approach overtakes the delta-encoding runtime.

These observations clearly show that delta encoding is not universally appropriate. For models with relatively

large lookahead values, conservative performance is near optimal, and an optimistic approach may not be

fruitful.

4.2.2 OLSR

These results were collected with the following flags: --report-interval=0.10

--clock-rate=1600000000.0 --lookahead=0.0001 --gvt-interval=16 --batch=16

--buddy_size=26 --end=128. Delta encoding is compared against both conservative and optimistic

mode using copy state saving (CSS). In this particular experiment, the size of the model consumed too

3031

LaPre, Gonsiorowski, Carothers, Jenkins, Carns, and Ross

 4

 8

 16

 32

 64

 128

 256

 512

 1024

 2048

 4096

512 2048 8192

T
o
ta

l
G

V
T

 t
im

e
 (

s
e
c
o
n
d
s
)

Cores used

Total time spent in GVT

Delta encoding
Conservative

 1

 2

 4

 8

 16

 32

 64

 128

 256

 512

 1024

0.0001 0.001 0.01 0.1

R
u
n
n
in

g
 t
im

e
 (

s
e
c
o
n
d
s
)

Lookahead Value

Unmodified PHOLD Run time comparison for varying lookahead values

Delta encoding
Conservative

Optimistic w/ RC

Figure 3: Total time spent calculating GVT vs. the

number of cores used. GVT calculations negatively

impact conservative simulations with low lookahead

values; increasing the core count only exacerbates

this trend.

Figure 4: Running time for all configurations vs.

lookahead. The lookahead value can drastically

affect the runtimes of the BPHOLD runs. This

data was collected by using 512 cores and options

identical to the previous results (aside from changing

the lookahead).

much memory when running in optimistic mode and the core usage had to be reduced to one quarter of

the available cores per node, or 4 out of 16. It is worth noting that the delta encoding implementation was

able to utilize all 16 cores and likely would have continued to scale further to take advantage of either 2

or 4 hardware threads per core.

Whereas the BPHOLD results demonstrated the weak scaling properties of delta encoding, the OLSR

results show its utility within the domain of strong scaling. 262,144 OLSR LPs were distributed over 128,

512, and 2,048 cores. The resulting performance is shown in Figure 5. At 128 cores, conservative runtimes

outperform delta encoding: ≈ 430 seconds were spent on LZ4 operations (ROSS reports the maximum

across all cores). However, at 512 and 2,048 cores the runtime penalty for LZ4 compression is disbursed

across a greater number of cores resulting in 110 and 28 seconds, respectively. These reduced penalties

allow delta encoding to outperform conservative runtimes within an optimistic framework.

Figure 6 shows the memory consumption of a single core in the simulation for various componenets

of the simulator while running under delta encoding or optimistic mode with CSS. Note that identical

amounts of memory were consumed for LP state in both cases. Additionally, no buddy system memory

exists in the CSS case. However, as the CSS LP copy is stored within the ROSS events themselves, each

event will grow substantially (in this case, from 2,248 to 24,920 bytes).

5 RELATED WORK

Jefferson’s Time Warp (Jefferson 1985) is a complex system requiring careful tuning of several parameters

to achieve speedup. Early Time Warp implementations required checkpointing (state saving), which,

when performed blindly, is a potentially expensive operation. Lin et al. (1993) proposed an approach

for determining how frequently checkpointing is required. Bauer and Sporrer (1993) chose a contrasting

approach, namely minimizing the memory required for checkpointing data by storing overwritten values

in a predetermined location. Steinman (1993) uses a similar approach and additionally uses C++ operator

overloading for simple values and a “rollback queue” for operations that are not easily reversed. The

implementations of the latter two papers are typically referred to as incremental state saving. Rönngren

et al. (1996) developed a largely transparent approach requiring modifying the state declarations requiring

restoration functionality. West and Panesar (1996) automatically modified the binary itself to instrument

3032

LaPre, Gonsiorowski, Carothers, Jenkins, Carns, and Ross

 1

 4

 16

 64

 256

 1024

 4096

128 518 2048

R
u
n
n
in

g
 t
im

e
 (

s
e
c
o
n
d
s
)

Cores used

OLSR run time comparison for delta encoding,
 conservative, and optimistic with state saving

Delta encoding
Conservative

Optimistic w/ state saving

2
13

2
14

2
15

2
16

2
17

2
18

2
19

2
20

2
21

2
22

Delta Encoding State Saving

M
e
m

o
ry

 u
s
e
d
 (

K
B

)

OLSR model memory consumption for
delta encoding and state saving

LP State
Event Memory
Buddy System

Figure 5: Strong scaling running times for delta

encoding, conservative, and optimistic (with CSS)

modes vs. the number of cores used.

Figure 6: OLSR memory consumption of a single

core for delta encoding vs. optimistic with CSS plot-

ted on a log scale. The sum of memory consumed

for delta encoding is ≈ 1
8

the memory consumed for

CSS.

and state save values before they are overwritten. Pellegrini and Quaglia (2014) developed an OS-level

memory tracking scheme that allows the developer to write code in a sequential manner regardless of the

PDES environment.

Carothers, Perumalla, and Fujimoto (1999) and Perumalla (1999) proposed reverse computation as well

as automatic reversal of event handlers. Building off those earlier results, Vulov et al. (2011) developed

Backstroke, a framework capable of parsing C++ and emitting reverse event handlers. LaPre, Gonsiorowski,

and Carothers (2014) developed LORAIN, a tool capable of automatically generating reverse event handlers

in a language-agnostic fashion by targeting the LLVM (Lattner and Adve 2004) compiler framework.

Hunt and McIlroy (1976) describe the diff program that computes the difference between two files

using an algorithm to solve the longest common subsequence. Tichy (1982) builds on diff to construct

the Revision Control System (RCS), which is useful for tracking changes in text files. Descendants of

RCS such as the Concurrent Versions System (CVS) (Grune 1986) and Subversion (Collins-Sussman,

Fitzpatrick, and Pilato 2004) continue to be used today. Hunt, Vo, and Tichy (1998) compared the various

algorithms for delta encoding and benchmarked them in various ways.

Huffman et al. (1952) developed Huffman coding, a method of finding shortest prefix codes based on

character frequencies. Ziv and Lempel (1977) created LZ77, a lossless compression scheme that examining

smaller fixed-size “windows” of data and exploiting similarity between data. Both LZO and LZ4 are closely

related to LZ77, although subtle implementation differences have allowed them to surpass LZ77 in various

ways. LZO (Oberhumer 2015) placed an emphasis on speed, while LZ4 (Collet 2011, Collet 2014b) aimed

for simplicity in its format and code base. A much lower emphasis was placed on compression ratio,

allowing for quick yet sub-optimal compression. DEFLATE (Deutsch 1996) combines LZ77 followed

by a Huffman coding pass, ultimately yielding a smaller size than either approach alone but at greater

computational cost.

6 CONCLUSIONS AND FUTURE WORK

We have presented an initial framework for state saving using delta encoding and compression. It performs

well in situations dealing with massive states where reverse computation may not be practical. Furthermore,

this approach is both transparent and universal. Model developers are freed from the worry of having to

3033

LaPre, Gonsiorowski, Carothers, Jenkins, Carns, and Ross

change their forward event handlers in any way; and, for many models, the template reverse event handler

provided should suffice.

Delta encoding refines incremental state saving by evaluating changes to the LP state as a whole and

saving only the changed information. A change in any individual element is treated as a change in the

whole of the state, negating the need to detect fine-grained changes. While hinted at earlier in the paper,

this work provides not only a simple path toward optimistic simulation but also a reasonable fix for systems

with limited memory.

We have demonstrated that delta encoding is a viable substitute for both state saving and reverse

computation. However, a hybrid solution may yield even better results. Reverse computation coupled with

delta encoding for complex and unpredictable state modifications is a topic worthy of investigation. Pairing

delta encoding with an automated solution, such as Backstroke (Vulov et al. 2011) or LORAIN (LaPre,

Gonsiorowski, and Carothers 2014) removes the need for overly complicated model development.

ACKNOWLEDGMENTS

This material was based upon research partially supported by the U.S. Department of Energy, Office of

Science, under Contracts DE-SC0004875 and DE-AC02-06CH11357.

REFERENCES

Barnes, Jr., P. D., C. D. Carothers, D. R. Jefferson, and J. M. LaPre. 2013. “Warp Speed: Executing Time

Warp On 1,966,080 Cores”. In Proceedings of the 2013 ACM SIGSIM Conference on Principles of

Advanced Discrete Simulation, SIGSIM-PADS ’13, 327–336. New York, NY, USA: ACM.

Bauer, H., and C. Sporrer. 1993, Mar. “Reducing Rollback Overhead In Time-warp Based Distributed

Simulation With Optimized Incremental State Saving”. In Simulation Symposium, 1993. Proceedings.,

26th Annual, 12–20.

Carothers, C. D., D. Bauer, and S. Pearce. 2002. “ROSS: A High-Performance, Low-Memory, Modular

Time Warp System”. Journal of Parallel and Distributed Computing 62 (11): 1648 – 1669.

Carothers, C. D., and K. S. Perumalla. 2010. “On Deciding Between Conservative And Optimistic Approaches

On Massively Parallel Platforms”. In Winter Simulation Conference’10, 678–687.

Carothers, C. D., K. S. Perumalla, and R. M. Fujimoto. 1999, July. “Efficient Optimistic Parallel Simulations

Using Reverse Computation”. ACM Trans. Model. Comput. Simul. 9 (3): 224–253.

Chacon, S. 2009. Pro Git. 1st ed. Berkely, CA, USA: Apress.

Chen, D., N. A. Eisley, P. Heidelberger, R. M. Senger, Y. Sugawara, S. Kumar, V. Salapura, D. L. Satterfield,

B. Steinmacher-Burow, and J. J. Parker. 2011. “The IBM Blue Gene/Q Interconnection Network And

Message Unit”. In Proceedings of 2011 International Conference for High Performance Computing,

Networking, Storage and Analysis, SC ’11, 26:1–26:10. New York, NY, USA: ACM.

Clausen, T. H., and P. Jacquet. 2003. “Optimized Link State Routing Protocol (OLSR)”. Technical report.

Collet, Yann 2011. “LZ4 Explained”. http://fastcompression.blogspot.in/2011/05/lz4-explained.html. Ac-

cessed: 2015-03-03.

Collet, Yann 2014a. “LZ4 - Extremely Fast Compression Algorithm”. https://github.com/Cyan4973/lz4.

Accessed: 2015-03-03.

Collet, Yann 2014b. “LZ4 (latest version)”. http://fastcompression.blogspot.com/p/lz4.html. Accessed: 2015-

03-03.

Collins-Sussman, B., B. Fitzpatrick, and M. Pilato. 2004. Version Control With Subversion. O’Reilly Media,

Inc.

Deutsch, P. 1996, May. “DEFLATE Compressed Data Format Specification Version 1.3”. RFC 1951

(Informational).

Fujimoto, R. M. 1990, October. “Parallel Discrete Event Simulation”. Commun. ACM 33 (10): 30–53.

3034

http://fastcompression.blogspot.in/2011/05/lz4-explained.html
https://github.com/Cyan4973/lz4
http://fastcompression.blogspot.com/p/lz4.html

LaPre, Gonsiorowski, Carothers, Jenkins, Carns, and Ross

Fujimoto, R. M. 1999. Parallel And Distributed Simulation Systems. 1st ed. New York, NY, USA: John

Wiley & Sons, Inc.

Gropp, W., E. Lusk, and R. Thakur. 1999. Using MPI-2: Advanced Features Of The Message-passing

Interface. Cambridge, MA, USA: MIT Press.

Grune, D. 1986. “Concurrent Versions System, A Method For Independent Cooperation”. Technical report,

IR 113, Vrije Universiteit.

Hennessy, J. L., and D. A. Patterson. 1996. Computer Architecture (2nd Ed.): A Quantitative Approach.

San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.

Huffman, D. A. et al. 1952. “A Method For The Construction Of Minimum Redundancy Codes”. proc.

IRE 40 (9): 1098–1101.

Hunt, J. J., K.-P. Vo, and W. F. Tichy. 1998, April. “Delta Algorithms: An Empirical Analysis”. ACM

Trans. Softw. Eng. Methodol. 7 (2): 192–214.

Hunt, J. W., and M. D. McIlroy. 1976. “An Algorithm For Differential File Comparison”. Technical report,

Bell Laboratories.

Jefferson, D. R. 1985. “Virtual Time”. ACM Trans. Program. Lang. Syst. 7 (3): 404–425.

Kiselkov, Sašo 2013. “LZ4 Compression”. http://wiki.illumos.org/display/illumos/LZ4+Compression. Ac-

cessed: 2015-03-03.

Knowlton, K. C. 1965, October. “A Fast Storage Allocator”. Commun. ACM 8 (10): 623–624.

LaPre, J. M., C. D. Carothers, K. D. Renard, and D. R. Shires. 2012, October. “Ultra Large-Scale

Wireless Network Models Using Massively Parallel Discrete-Event Simulation”. Autumn Simulation

Multi-Conference (AutumnSim’12):Digital distribution only (no page numbers).

LaPre, J. M., E. J. Gonsiorowski, and C. D. Carothers. 2014. “LORAIN: A Step Closer To The PDES

‘Holy Grail”’. In Proceedings of the 2Nd ACM SIGSIM/PADS Conference on Principles of Advanced

Discrete Simulation, SIGSIM-PADS ’14, 3–14. New York, NY, USA: ACM.

Larabel, Michael 2013. “Support For Compressing The Linux Kernel With LZ4”. http://www.phoronix.

com/scan.php?page=news item&px=MTI4NjM.

Lattner, C., and V. Adve. 2004. “LLVM: A Compilation Framework For Lifelong Program Analysis &

Transformation”. In Proceedings of the International Symposium on Code Generation and Optimization:

Feedback-directed and Runtime Optimization, CGO ’04, 75–86. Washington, DC, USA: IEEE Computer

Society.

L’Ecuyer, P., and T. H. Andres. 1997. “A Random Number Generator Based On The Combination Of Four

LCGs”. Mathematics and Computers in Simulation 44 (1): 99 – 107.

Lin, Y.-B., B. R. Preiss, W. M. Loucks, and E. D. Lazowska. 1993. “Selecting The Checkpoint Interval In

Time Warp Simulation”. In Proceedings of the Seventh Workshop on Parallel and Distributed Simulation,

PADS ’93, 3–10. New York, NY, USA: ACM.

Oberhumer, MFXJ 2015. “oberhumer.com: LZO Real-Time Data Compression Library”. http://www.

oberhumer.com/opensource/lzo/. Accessed: 2015-03-03.

Pellegrini, A., and F. Quaglia. 2014. “Transparent Multi-Core Speculative Parallelization Of DES Models

With Event And Cross-state Dependencies”. In Proceedings of the 2Nd ACM SIGSIM/PADS Conference

on Principles of Advanced Discrete Simulation, SIGSIM-PADS ’14, 105–116. New York, NY, USA:

ACM.

Perumalla, K. S. 1999. Techniques For Efficient Parallel Simulation And Their Application To Large-Scale

Telecommunication Network Models. Ph. D. thesis, Georgia Institute of Technology.

Rönngren, R., M. Liljenstam, R. Ayani, and J. Montagnat. 1996. “Transparent Incremental State Saving

In Time Warp Parallel Discrete Event Simulation”. In Proceedings of the Tenth Workshop on Parallel

and Distributed Simulation, PADS ’96, 70–77. Washington, DC, USA: IEEE Computer Society.

Steinman, J. S. 1993. “Incremental State Saving In SPEEDES Using C++”. In Proceedings of the 25th

Conference on Winter Simulation, WSC ’93, 687–696. New York, NY, USA: ACM.

3035

http://wiki.illumos.org/display/illumos/LZ4+Compression
http://www.phoronix.com/scan.php?page=news_item&px=MTI4NjM
http://www.phoronix.com/scan.php?page=news_item&px=MTI4NjM
http://www.oberhumer.com/opensource/lzo/
http://www.oberhumer.com/opensource/lzo/

LaPre, Gonsiorowski, Carothers, Jenkins, Carns, and Ross

Tichy, W. F. 1982. “Design, Implementation, And Evaluation Of A Revision Control System”. In Proceedings

of the 6th International Conference on Software Engineering, ICSE ’82, 58–67. Los Alamitos, CA,

USA: IEEE Computer Society Press.

Torvalds, Linus 2014. “torvalds/linux”. https://github.com/torvalds/linux/commit/

7a02d089695a1217992434f03a78aa32bad85b5c. Accessed: 2015-03-03.

Vulov, G., C. Hou, R. Vuduc, R. Fujimoto, D. Quinlan, and D. Jefferson. 2011. “The Backstroke Framework

For Source Level Reverse Computation Applied To Parallel Discrete Event Simulation”. In Proceedings

of the Winter Simulation Conference, WSC ’11, 2965–2979: Winter Simulation Conference.

West, D., and K. Panesar. 1996. “Automatic Incremental State Saving”. In Proceedings of the Tenth Workshop

on Parallel and Distributed Simulation, PADS ’96, 78–85. Washington, DC, USA: IEEE Computer

Society.

Ziv, J., and A. Lempel. 1977. “A Universal Algorithm For Sequential Data Compression”. IEEE TRANS-

ACTIONS ON INFORMATION THEORY 23 (3): 337–343.

AUTHOR BIOGRAPHIES

JUSTIN M LAPRE is a Ph.D. candidate in computer science at Rensselaer Polytechnic Institute. His

research interests include parallel discrete event simulation, compilers, and static analysis. Justin enjoys

writing code and reading about better ways to build systems using modern practices in software engineering.

His email address is laprej@cs.rpi.edu.

ELSA J GONSIOROWSKI is a computer scientist at Rensselaer Polytechnic Institutes Center for Com-

putational Innovations, as well as a part-time Ph.D. candidate. Her research interests include massively

parallel discrete-event simulations of gate-level circuit models. Her email address is gonsie@cs.rpi.edu.

CHRISTOPHER D CAROTHERS is a faculty member in the Computer Science Department at Rensselaer

Polytechnic Institute. He received the Ph.D., M.S., and B.S. from Georgia Institute of Technology in 1997,

1996, and 1991, respectively. Prior to joining RPI, he was a research scientist at the Georgia Institute

of Technology. He is an NSF CAREER Award winner as well as Best Paper award winner at the PADS

workshop for 1999, 2003, and 2009. His email address is chrisc@cs.rpi.edu.

JOHN JENKINS is a postdoctoral appointee at Argonne National Laboratory. He received his Ph.D. in

computer science from North Carolina State University in 2013. His research interests include parallel I/O,

parallel/distributed storage and analysis systems, and parallel discrete event simulation. His email address

is jenkins@mcs.anl.gov.

PHILIP CARNS is a principal software development specialist in the Mathematics and Computer Science

division of Argonne National Laboratory and a fellow of the Northwestern-Argonne Institute of Science and

Engineering. He received his Ph.D. from Clemson University in 2005. He has served as the lead developer

on notable projects such as PVFS, Darshan, and BMI. His current research interests include development,

measurement, and simulation of large-scale storage systems. His email address is carns@mcs.anl.gov.

ROBERT ROSS is a senior computer scientist at Argonne National Laboratory and a senior fellow at the

Computation Institute of the University of Chicago and the Northwestern-Argonne Institute for Science

and Engineering at Northwestern University. He received his Ph.D. in computer engineering from Clemson

University in 2000. He then joined the Mathematics and Computer Science Division at Argonne National

Laboratory. He was the lead architect of the PVFS parallel file system. He is a member of the MPICH2

development team awarded the R&D 100 award in 2005, and was a recipient of the 2004 Presidential Early

Career Award for Scientists and Engineers. His email address is rross@mcs.anl.gov.

3036

https://github.com/torvalds/linux/commit/7a02d089695a1217992434f03a78aa32bad85b5c
https://github.com/torvalds/linux/commit/7a02d089695a1217992434f03a78aa32bad85b5c
mailto:laprej@cs.rpi.edu
mailto:gonsie@cs.rpi.edu
mailto:chrisc@cs.rpi.edu
mailto:jenkins@mcs.anl.gov
mailto:carns@mcs.anl.gov
mailto:rross@mcs.anl.gov

