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ABSTRACT

We introduce Simian, a family of open-source Parallel Discrete Event Simulation (PDES) engines written

using Lua and Python. Simian reaps the benefits of interpreted languages—ease of use, fast development

time, enhanced readability and a high degree of portability on different platforms—and, through the optional

use of Just-In-Time (JIT) compilation, achieves high performance comparable with the state-of-the-art PDES

engines implemented using compiled languages such as C or C++. This paper describes the main design

concepts of Simian, and presents a benchmark performance study, comparing four Simian implementations

(written in Python and Lua, with and without using JIT) against a traditionally compiled simulator, MiniSSF,

written in C++. Our experiments show that Simian in Lua with JIT outperforms MiniSSF, sometimes by

a factor of three under high computational workloads.

1 INTRODUCTION

Parallel discrete-event simulation (PDES) allows large-scale simulation to run on parallel computers with

the goal of accelerating simulation execution (Fujimoto 1990). The performance of a parallel simulator

is commonly measured using the event rate, which is the number of executed simulation events per

second accrued collectively on the parallel computers. Petascale computing has become a commodity,

e.g., the top fifty supercomputers in the November 2014’s Top500 list are all ranked as petaflops machines

(http://top500.org/). As exascale is a likely reality by the end of the decade, it is reasonable to assume we

will continue to see considerable growth in the performance of parallel simulators.

Traditional programming languages, such as FORTRAN, C, and C++, are compiled languages: the

programs need to be first compiled into machine instructions before they can be run on the target machine.

Compilation is typically divided into two steps: the compilation step translates each program source file

into an object file which contains the corresponding machine instructions, whereas the linking step builds

a single executable file by combining the object files and resolving the cross references of variables and

functions among separate object files and libraries. In general, programs written in compiled languages are

fast to run since they have already been translated into the native machine code. Moreover, the compilation

step can afford deep program analyses and time-consuming optimizations for most efficient code.

Interpreted languages do not require a compilation step ahead of time. Instead, a separate program

“interprets” the instructions in the source code as a set of predefined actions to be executed directly on the

target machine. In case of Java and Python, for example, the source code is first translated into an intermediate

representation (byte code) and subsequently executed on the Java and Python virtual machine that functions

as the interpreter. Interpreted languages are more portable as the language designers can customize the

interpreters (or the virtual machines) on specific platforms. This would free the users from compatibility

issues, which would otherwise have to be dealt with during the compilation phase of a compiled language.

Interpreted languages also provide high-level language features, such as garbage collection, dynamic typing
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and scoping, with which the users would find it much easier to program. However, the ease of development

usually comes with a penalty in the execution speed. Interpreted languages need to be translated during

run time with program analyses and optimizations. Implementing those advanced language features would

take even more time. As a result, high-performance parallel simulators developed so far all use compiled

languages, predominantly in C or C++.

Recent advances in “just-in-time” (JIT) compilation (also known as dynamic translation) have blurred

the boundary between compiled and interpreted languages. JIT refers to the technique of performing

translation on the fly during program execution (Aycock 2003). Consequently, JIT combines the benefits of

ease-of-use and portability of interpreted languages, and the performance advantages of (statically) compiled

languages. More importantly, since a JIT compiler can access dynamic runtime information (whereas a

standard compiler cannot), it can achieve better optimizations, such as inlining frequently invoked functions

and unrolling nested loops. In this case, a “jitted” program language can even yield better performance.

In this paper, we investigate the use of interpreted languages for parallel discrete-event simulation.

We introduce Simian, a family of open-source, conservatively synchronized, process oriented, parallel

simulators written in two interpreted languages, Python and Lua. The language choices stem from Simian’s

two design goals. The first goal is to lower the barrier for domain modelers to use parallel discrete-event

simulation. One can reduce development time by adopting popular interpreted languages that are easy to

use and highly portable among various computing platforms. Python is a popular scripting language, due in

part to the “batteries included” language design philosophy and a clean syntax, which has resulted in Python

being taught in many disciplines as the first programming language in computer science introductory courses.

The second goal is to achieve good simulation performance on high-performance computing platforms.

Simian should be able to achieve an event rate comparable to the performance of highly-optimized parallel

simulators implemented in C or C++. Although perhaps more of a niche language, often used in the

gaming industry and in embedded systems, as we demonstrate later in this paper, Lua can bring significant

performance benefits resulting from advanced JIT compilation techniques.

We describe four Simian implementations—namely, SimianPie (a Python version), Pypy Simian (a

Python version that allows JIT compilation), Lua Simian (a Lua version), and LuaJIT Simian (a Lua

version that allows JIT compilation). We examined the performance of the Simian implementations by

comparing it against a state-of-the-art PDES engine, called MiniSSF, written in C++ (Rong, Hao, and

Liu 2014). We used the La-PDES benchmark suite (Park, Eidenbenz, Santhi, Settlemyer, and Chapuis

2015), a stylized PDES-application that can reveal various performance aspects of parallel discrete-event

simulators, including the efficiency of the event queue management, the event computational workload, the

spatial and temporal distribution of events, synchronization mechanisms, memory requirements and access

patterns, the buffer management of the communication routines, and so on. La-PDES performs these tests

as different input parameters of a single PDES model that controls the random selection and distribution of

event arrivals, the computational workloads associated with the events, the source and destination entities

and communication delays.

Our main findings can be summarized as follows: (1) JIT compilation achieves approximately an eight-

fold performance improvement over regular interpretation for both Python and Lua; (2) higher computational

load in the model increases the advantage of JIT compilation; (3) Lua outperforms Python by a factor

of eight approximately in both “jitted” and interpreted modes; and perhaps most intriguingly, (4) LuaJIT

outperforms MiniSSF by up to a factor of three under high computational loads and retains its leading

position even under low computational loads by a few percentage points; it is only taken over by MiniSSF

for scenarios with low computational load and higher event counts per simulation epoch, due to MiniSSF’s

advanced synchronization scheme and superior interaction with MPI through multi-threading.

The rest of the paper is organized as follows. We present background and related work in Section 2.

In Section 3, we describe the Simian design in detail, including the important design features, the major

components, as well as its programming interface. We investigate the performance of the Simian imple-
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mentations through a comparative performance study in Section 4. Finally, we present our conclusions in

Section 5.

2 BACKGROUND AND RELATED WORK

Performance is the primary goal of parallel discrete-event simulation. Extended performance studies (for

example, Fujimoto et al. 2003, Perumalla 2007, Bauer Jr. et al. 2009, Barnes et al. 2013) have demonstrated

that PDES can scale out to run extremely large scale models on today’s supercomputers. Almost all advanced

parallel discrete-event simulators are written in compiled languages, predominantly in C or C++. Examples

include GTW (Das et al. 1994), DaSSF (Liu et al. 1999), ROSS (Carothers et al. 2000), µsic (Perumalla

2005), and MiniSSF (Rong et al. 2014). While there are many sequential discrete-event simulators written

in interpreted languages—for example, JiST (Barr, Haas, and van Renesse 2005), SimPy (SimPy 2015),

and Simulua (Carvalho 2008), to name only a few—not as many were specifically designed with parallel

simulation capabilities.

Scalable Simulation Framework (SSF) is a public-domain standard for object-oriented parallel discrete-

event simulation with both C++ and Java bindings (Cowie, Nicol, and Ogielski 1999). SSF has been used

extensively to simulate large-scale computer networks. RePast is a collection of open-source modules for

agent-based simulation (North, Collier, and Vos 2006). RePast has several implementations, in Java, .NET

(C#, C++, Visual Basic), and Python. It includes a scheduler that supports both sequential and parallel

discrete-event simulation. D-MASON (Cordasco, De Chiara, Mancuso, Mazzeo, Scarano, and Spagnuolo

2011) is a parallel version of MASON, which is a discrete-event simulation toolkit written in Java for agent-

based models. D-MASON adopts the master-worker paradigm with a simple conservative synchronization

strategy to allow neighboring worker processes to exchange information. SimX is a Python library designed

specifically for parallel discrete-event simulation (Thulasidasan, Kroc, and Eidenbenz 2014). SimX allows

users to rapidly develop parallel simulation models (particularly, scientific applications) in Python that can

be easily deployed to run on parallel machines. The core of SimX, including event management and parallel

synchronization, is written in C++ to provide the high performance necessary for running large-scale models.

In the same vein, PCSIM (Pecevski, Natschlger, and Schuch 2009) is distributed simulator for large-scale

neural networks. While the core of PCSIM is written in C++, its primary interface is implemented in

Python for ease of use. PrimoGENI (Van Vorst and Liu 2012) is another example. It is a real-time parallel

simulator (for modeling large-scale computer networks) with a C++ core and a user interface written in

Java and Python.

It is reasonable to believe that compiled languages can render significant performance advantage over

interpreted languages. Such has been demonstrated (quite easily) in the past. However, with today’s advanced

compilation techniques, especially Just-In-Time (JIT) compilation, a re-examination of the performance

of some interpreted languages for parallel simulation is warranted. JIT compilation is best thought of

as a form of runtime inlining and unrolling of code (Aycock 2003). While static Ahead-Of-Time (AOT)

compilers can also unroll and inline code (Cooper and Torczon 2003), they quickly hit a point of diminishing

returns for long running loops and large functions with many sub-functions. This is because unlimited

inlining when applied to nested programs, exponentially increases final executable size. In the case of a

JIT compiler, only a section currently running is unrolled and inlined in memory, thereby preventing the

blowup. At the same time, all optimizations that a traditional AOT compiler can perform are possible with

a JIT compiler—in fact, JIT compilers can often optimize better, as during runtime, certain variables can

be treated locally as constants, which may then be optimized away. In practice runtime optimization is

only limited by the compilation overhead, which offsets some of the execution efficiency to be gained by

that transformation. JIT compilers are also better at dealing with dynamic languages such as Python and

Lua, as they can emit runtime specialized code for variables that are dynamically typed. AOT compilers

would typically use boxed structures to hold dynamically typed variables with specific fields indicating the

types. This strategy would typically end up using more memory.
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PyPy and LuaJIT are JIT compilers for the Python and Lua, respectively. In terms of language standards

conformance, both at present are closest to their respective non-jitted counterparts, CPython and standard

Lua interpreters. However, the manner in which PyPy and LuaJIT compilers operate is quite different.

PyPy applies JIT at the interpreter loop, while LuaJIT applies JIT to the application script itself. Also,

LuaJIT implements other advanced features, such as NaN-tagging (Gudeman 1993, Caro 1997), to speed

up calculation that uses dynamically typed variables. Both PyPy and LuaJIT can turn off the JIT compiler

feature, forcing the language to be interpreted on the fly, which is often slower.

3 THE SIMIAN (PARALLEL) DISCRETE EVENT SIMULATION ENGINE

Simian is a parallel discrete event simulation engine implemented in a functionally equivalent fashion in

the two interpreted languages, Python and Lua. The main reason for choosing interpreted languages is

ease of use and, in the case of Python, large application domain audiences. The reason for choosing Lua

is its widely accepted best-in-class performance in just-in-time compilation and its generally minimalist

design. In the following, we describe the design principles in more details. Simian is open-source software

available at http://simian.lanl.gov and on Github at http://github.com/pujyam/simian.

3.1 Design Principles

Simian is a fairly radical, clean-slate re-design of a PDES engine in Python and Lua that nevertheless can

trace its roots to a series of PDES engines developed at LANL: Transims (Nagel and Rickert 2001), EpiSims

(Mniszewski, Valle, Stroud, Riese, and Sydoriak 2008), SimCore (Thulasidasan, Kroc, and Eidenbenz 2012),

and SimX (Thulasidasan, Kroc, and Eidenbenz 2014) are PDES engines that have met changing users

needs in the national security mission of LANL since the mid-nineties. The aggregation of the following

features make Simian unique:

• Simple: Simian has a minimalistic design. For example, its Python implementation consists of

only three source files with less than 550 lines of code (45 KB in total). Such a small size makes

it easy to change the source code and add functionality that a user might need, although we have

found that the functionality provided by Simian is sufficient for most tasks. Some MPI experts view

PDES as a “simple wrapper around three MPI calls”; rather than feel insulted by this view, the

Simian team embraces this as a design philosophy. Code simplicity leads to better maintainability.

• User-friendly: Simian is designed for domain experts with minimal programming requirements.

Simian uses interpreted languages of Python and Lua. Particularly Python enjoys an immense

user base from all walks of (professional) life. The large set of libraries for Python as well as its

script-like approach to input handling and output visualization allow the user to quickly come to

tangible results.

• Pragmatically scalable: Simian has full support for running on computing clusters of any size using

MPI. In practice, genuine large-scale requirements are the exception rather than the rule. Simian

adopts a simple barrier-based synchronization protocol. While adding more advanced features

(such as entity migration, topology-based synchronization strategies, and more sophisticated model

partitioning and load balancing schemes) is possible in the future, excluding them in the base

version is a conscious decision to keep complexity at bay.

• Portable: On most platforms, Simian runs right out of the box. Simian minimizes its dependency

on third-party libraries. The only dependencies are for supporting data communications (MPI) and

user threads (greenlet for Python). Co-routines are a standard feature of Lua.

3.2 Application Programming Interface (API)

The Simian API consists of three modules simian.lua, entity.lua, and process.lua (replacing

lua with py for the Python counterpart). A few additional modules are used for specific functions that

differ between Python and Lua. We describe all modules in the following:
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The Simulation Engine. The Simian simulation engine is defined in thesimian.lua (orsimian.py)

file, which defines the main class Simian. The most important function is called run, which pops events

in chronological order out of the event queue and calls the corresponding event handler functions. Setting

up MPI and performing synchronization with other MPI ranks is also part of the function. This core part

of Simian contains only 60 lines of code in Python.

There also are other functions in the module to create entities and attach services (i.e., event handlers)

to entities. We also provide functions to randomly partition the user models among the MPI ranks. While

we have found such a random scheme to work well in practice for most purposes, one may find it more

useful to overwrite these functions to support more sophisticated partitioning schemes for specific models.

Simian’s main loop is a no-frill call to MPI AllReduce for the barrier synchronization. Message

packing is done in Lua by using luaMessagePack, a third-party open source code (33KB) that is

included in the Simian distribution. In Lua, the interface to MPI is done through Lua’s effective foreign

function interface. In Python, Simian offers two alternatives for MPI and message packing. One solution

is to use the mpi4py package. This is simple but may add a dependency on a non-standard module whose

maintenance we do not control. Alternatively, we can use ctypes as the foreign function interface to MPI

coupled with the messagePack protocol. For the latter, we could use pickling to stay true to our philosophy

of minimizing external dependencies; however, the loss of performance in this case due to larger resultant

MPI payloads outweighs our dependency concerns.

Entities. Simian uses entities as objects that contain event handling functions. Simian entities can be

distributed among the MPI ranks for parallel processing. The entity base class is defined in entity.lua

(or entity.py). The key method of the class is reqService, which schedules a future event at the

entity to be processed by an event handler. If the event is destined for the same entity or one in the same

logical process, Simian inserts the event in the local event queue. Otherwise, a timestamped message is

sent the appropriate LP. The attachService method associates an event handler that processes events

destined to this entity.

The entity class also has several methods that deal with simulation processes. MethodcreateProcess

creates a new process, andstartProcess starts to run the process. There are also methods for suspending,

resuming, and killing processes.

Processes. Simian supports process-based simulation, which is defined in the process class in

process.lua (or process.py). Simian processes are implemented using lightweight co-routines

or user-land threads. In the Python version, this is through the use of the greenlet library; in Lua,

standard language features are used. The arguments passed to the process class constructor include a

unique name of the process and a function that the process needs to run. The process class implements

functions, such as sleep, wake, hibernate, spawn and kill. Putting a process to sleep requires a

simulation time as the argument, which is the amount of time before the process can resume execution.

Waking up a process simply consists of switching to the corresponding co-routine. If a process puts itself

into hibernation mode, it will be blocked until explicitly woken up by another process. The hibernate and

wake methods are normally used for inter-process communication. One can also create new processes or

kill existing ones.

Other modules. In Python, the basic simian, entity, and process modules are the only files in Simian

when run using mpi4py. Simian without mpi4py dependency, needs an object serialization technique, for

which we use the MessagePack protocol (MessagePack 2015). So in this case, we add a message packing

module, and a ctypes module for interface with MPI, equivalents of which also exist in the Lua version.

Additionally, the Lua version includes an implementation of a time-priority event-queue and a simple

hashing function for model partitioning across LPs. In Python, corresponding functionality is achieved

using the language’s standard library. Overall, the Simian code is quite lean. Only 66KB is needed for the

Lua version (half of which is used by the third party message packing), and 20KB for the Python version.
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3.3 Simple Examples

The Simian distribution comes with a set of examples that illustrate the different modeling philosophies

that are possible with Simian. We illustrate the use of Simian with a simple event-based example.

Listing 1: Simian basic example in Python: hello events.py

1 # Filename hello_events.py

2

3 from SimianPie.simian import Simian

4 import random, math

5

6 simName, startTime, endTime, minDelay, useMPI = "HELLO_EVENTS", 0, 10, 0.1, False

7 simianEngine = Simian(simName, startTime, endTime, minDelay, useMPI)

8 count = 4

9

10 class Node(simianEngine.Entity):

11 def __init__(self, baseInfo, *args):

12 super(Node, self).__init__(baseInfo)

13

14 def generate(self, *args):

15 targetId = random.randrange(count)

16 offset = minDelay*(1+9*random.random())

17 self.out.write("Time " + str(self.engine.now) + ": Node " + str(self.num)

18 + " scheduling event in Node " + str(targetId) + " at " + str(offset) + " from

now\n")

19 self.reqService(offset, "generate", None, "Node", targetId)

20

21 for i in xrange(count):

22 simianEngine.addEntity("Node", Node, i)

23 for i in xrange(count):

24 simianEngine.schedService(0, "generate", None, "Node", i)

25

26 simianEngine.run()

27 simianEngine.exit()

This example creates four entities each continuously sending events randomly to other entities (including

itself). The simulation engine is initialized in Line 7. The initialization parameters are largely self-

explanatory: the simulation name is used as file name for output; the start and end time are the simulated

time window; minDelay is the minimum time advance that must be obeyed when sending events to other

entities; and useMPI is a flag indicating whether to enable the MPI machinery. If the flag is not set, Simian

does not require an MPI installation on the system in order to run.

The main part of the simulation starts at Line 21, where we first create count number of Node entities

and at Line 23 where we seed the initial events at time zero, which would call the generate method of

the Node entity with the proper entity index i. The generate method at Line 14 randomly chooses a

target node id and a time offset, and schedules another event calling the reqService method (Line 17).

Output is written to HELLO EVENTS.0.out, where 0 denotes rank. A few lines of the output are:

Time 0.331049487408: Node 1 scheduling event in Node 3 at 0.668142932925 from now

Time 0.597027344393: Node 3 scheduling event in Node 1 at 0.210857033655 from now

This example is kept as minimalistic as possible. Variations on this are certainly possible, including use

of seed value to initialize random number generators, as well as using processes to simulate applications

running on each entity. Our next example illustrates the use of processes.

In the example of Listing 2, we create a single entity (on Line 30). In the init constructor of

the entity, we create and start count processes that have distinct string names. The process is the single

function defined on Line 11. It puts itself to sleep for a random amount of time, and upon waking up resumes
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execution on the next line. Process based simulation is implemented using events and co-routines under

the hood, but the single flow of instructions is a more natural fit for modeling processes. For SimianPie,

this example requires the external greenlet package to be installed because of the use of co-routines.

Listing 2: Simian process based example in Python: hello procs.py

1 # Filename hello_procs.py

2

3 #Initialize Simian

4 simName, startTime, endTime, minDelay, useMPI = "HELLO_PROCS", 0, 1000, 0.01, False

5 simianEngine = Simian(simName, startTime, endTime, minDelay, useMPI)

6

7 count = 10

8 maxSleep = 100

9

10 #Example of a process on an entity

11 def appProcess(this): #Here arg(1) "this" is current process

12 entity = this.entity

13 entity.out.write("Process App started\n")

14 while True:

15 x = random.randrange(0, maxSleep)

16 entity.out.write("Time " + str(entity.engine.now) \

17 + ": Process " + this.name + " is sleeping for " + str(x) + "\n")

18 this.sleep(x)

19 entity.out.write("Time " + str(entity.engine.now) \

20 + ": Waking up Process " + this.name + "\n")

21

22 class Node(simianEngine.Entity):

23 def __init__(self, baseInfo, *args):

24 super(Node, self).__init__(baseInfo)

25 for i in xrange(count):

26 appName = "App" + str(i)

27 self.createProcess(appName, appProcess) #Create "App[i]"

28 self.startProcess(appName) #Start "App[i]" process

29

30 simianEngine.addEntity("Node", Node, 1)

31

32 simianEngine.run()

33 simianEngine.exit()

4 EXPERIMENTS AND RESULTS

We conducted experiments to study the performance of Simian. In this section, we present the performance

results of the different versions of Simian, namely, SimianPie (a Python version), Pypy Simian (a Python

version that allows JIT compilation), Lua Simian (a Lua version), and LuaJIT Simian (a Lua version

that allows JIT compilation). We compare the performance against that of the C++-based MiniSSF

implementation.

We used a variation of the La-PDES benchmark suite (Park, Eidenbenz, Santhi, Settlemyer, and Chapuis

2015), which consists of eight different cases (with sets of parameters) to focus on different aspects of a

discrete-event simulation application. La-PDES is a single file with the eight different cases being defined

as different parameter settings.

In brief, the La-PDES application simulates nent entities, each of which sends an average ment events

to another entity. The events are distributed in time with an exponentially-distributed inter-arrival time

with an additional min delay fixed at 1.0. The simulation ends at tend . Each entity has an array of length

l, which is randomly chosen but remained fixed throughout the simulation run. The array allows us to

3019



Santhi, Eidenbenz and Liu

2 4 6 8 10 12 14 16
MPIRanks

100

101

102

103

104

105

E
v
e
n

t 
ra

te
 (
s−

1
)

Weak Parallel Scaling

nent sent qavg preceive psend invert ment plist opsent opssigma

cache−friendliness initseed time−bins tend mindelay useMPI:
100 100 1 0 0 false 1 0 100000 0 0.5 1 10 1000 1 true

Lua JITOn

MiniSSF

Lua JITOff

PyPy JITOn

PyPy JITOff

Python CTypes

(a) On an 8 core desktop machine

100 101 102 103

MPIRanks

100

101

102

103

104

105

E
v
e
n

t 
ra

te
 (
s−

1
)

Parallel Scaling

nent sent qavg preceive psend invert ment plist opsent opssigma

cache−friendliness initseed time−bins tend mindelay useMPI:
1000 100 1 0 0 false 1 0 100000 0 0.5 1 10 1000 1 true

Lua JITOn

MiniSSF

Lua JITOff

(b) On a mid-range cluster with more than 64×16 cores

Figure 1: Parallel Scaling

mimic memory allocation for each entity. Upon receiving an event, an event handler executes on average

opsent floating point operations by accessing the first k percent of the elements in the array and multiplying

with some random weights. The average number of send events per entity is parameterized by sent . The

events are distributed among the entities according to either a geometric or uniform distribution for both

sending and receiving entities. The array length can also be distributed according to a geometric or uniform

distribution. To test the event queue, each entity maintains qavg of its future events in the event queue.

4.1 Parallel Scaling Experiments

As a first result, we present classic scaling runs to see what effect MPI parallelization has. The results are

presented in Figure 1, where both panels show event rates on the y-axis and the number of MPI ranks on

the x-axis. The left panel shows results from test runs performed on a desktop computer, whereas the right

panel shows results from runs performed on a mid-range cluster.

For scaling studies on a desktop computer with 8 cores, we set the following La-PDES parameter

values: nent = 100, sent = 100, qavg = 1, opsent = 100,000, tend = 1000. All other parameter values are

set to default values according to the La-PDES specifications (Park, Eidenbenz, Santhi, Settlemyer, and

Chapuis 2015). Looking at Figure 1 (a), we note that (i) parallelization indeed improves performance a

little for all simulators, which is due to relatively large value of operations opsent : MPI communication

latency can be more effectively hidden by the compute loads, resulting better parallel scaling as the problem

size increases versus larger number of MPI ranks. (ii) LuaJIT is the clear winner in this scenario across

all rank counts. LuaJIT outperforms its nonJIT-Lua by a factor 8. (iii) nonJIT-Lua and the jitted Python

(Pypy) perform at about the same level. (iv) Unfortunately, and perhaps somewhat surprisingly, pure Python

(PyPy and it’s nonJIT cousin CPython) performs about another factor of 8 to 10 worse than nonJIT-Lua.

The minimalist nature of Lua pays off here. Python appears to suffer from inefficient interface to the

MPI library and its slower, more complex virtual machine. Better JIT compilers are perhaps the answer

to Python’s deficiencies. (iv) Most remarkably, LuaJIT outperforms MiniSSF. The slightly jagged shape

of the MiniSSF curve is due to a different core discretization model: MiniSSF uses 3 threads per LP, and

thus saturates the 8 core machine with 2 hardware threads per core at rank count 4.

The results in Figure 1 (b) are shown only for LuaJIT with jitting turned on and off, as well as MiniSSF.

The La-PDES parameters are identical except for the number of entities nent , which we set to 1000. As

seen from the plots, Simian Lua based benchmark tests are seen to scale well with more processor cores.

The Simian performance stabilizes above MPI Rank = 1000, as that was the total number of entities in this
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test case. MiniSSF, continues to show performance gains till MPI Rank = 1000 as it uses separate threads

for I/O, send and receive message buffering, which are able to utilize the additional processors above the

number of simulation entities. The scaling behavior of all three simulation engines is as expected, showing

big gains in event rate at lower MPI ranks, and tapering to stabilize as number of ranks exceeds number

of LPs (more appropriately, total number of threads for MiniSSF). LuaJIT retains its dominant position,

beating MiniSSF also at large rank counts.

We performed additional experiments according to the specification of La-PDES, where unevenly

distributed computational as well as event loads are distributed across the entities. The relative positions

of the different simulation engines do not change under these scenarios.

4.2 Computationally Intensive Loads
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The performance gains of jitting rely on the

computational load as defined by opsent . In this

second experiment, we vary opsent , while setting

the other parameters fixed to the same values

as in the previous experiments with 100 entities

and 100 expected send events, i.e. nent = 100,

sent = 100,

As we see in Figure 2, as opsent increases,

ratio of the computation load due to the simu-

lation model to the background load due to the

simulation engine increases. The time spent in

computation per event increases, as well. This

means that the JIT compilers have more oppor-

tunities to optimize code, and more time is spent

executing code than compiling it at runtime. While Luajit with JITing turned off initially performs better,

Pypy with JIT turned on eventually succeeds in giving a better event-rate.
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Figure 3: Quality of Message Buffering

4.3 Quality of Message Buffering

Because MPI message buffers can be a source of concern for PDES engines, La-PDES has a scenario that

varies the end time tend parameter without changing the number of total events. To be more precise, we

decrease tend from nent ∗ sent to 5 for various values of number of MPI ranks. Under this test, as the value
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of tend decreases, the same number of events get scheduled in a shorter amount of time. This results in

two things: (1) the remote messages get queued into the MPI buffers, increasing network communication

pressure and increasing synchronization overhead, and (2) the received messages at each entity gets queued

locally in its event-queue, potentially increasing the queue sizes and thereby increasing push and pop

times. All other parameter values remain as in previous runs, except opsent , which we set to 1000 here.

MiniSSF initially performs better than Simian Lua because of the worker threads pushing messages

using the extra processing resources available in the desktop machine. However, as the number of MPI ranks

increases, the extra threads (3×MPI Ranks) tend to compete for valuable resources, and bogs down the

event-rates. Pure Lua implementation of the priority-queue also shows its relative inefficiency compared to

the C++ version at lower tend values and higher number of MPI ranks. The statically typed C++ event-queues

are better able to deal with the message buffering at these settings. However, at lower number of MPI

ranks and/or higher tend values, JITed application code tends to scale better.
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Figure 4: Efficiency of Queue Management

4.4 Efficiency of Event Queue Management

In order to test the efficiency of the event queue management, we run experiments varying the qavg parameter,

which indicates how many events per entity are in the event queue at the steady state of the simulation.

Other parameter values are as follows: nent = 100, sent = 10000, tend = 1000. The value of opsent was set

to either 1 or 1000.

Efficient priority-queue data structures relying on heaps as their backbone, have push and pop times

O(logn), where n is the number of elements in the queue. For larger values of qavg, the priority-queue

which stores the future events in the LP’s timeline gets larger, and n increases, thereby also increasing

the workloads of sorting the queue in place according to time-priority. We found that all language and

compiler combinations behave in a similar fashion with varying qavg. Since Simian Lua version has a pure

Lua implementation of the event-queue, at larger qavg values, we see a slightly decreased performance in

JITed mode. At larger qavg values, since the event-queues can become large, we also have side-effects

due to the computer hardware’s memory hierarchy and limited cache sizes. Notably, the two plots show

clearly how the ordering of LuaJIT and MiniSSF depends on the computational load of opsent . At low

computational load MiniSSF actually wins over Simian LuaJIT.

5 CONCLUSION

Our main insight is that the use of interpreted languages in combination with Just-In-Time compilation

techniques allow for the same level of PDES performance as traditionally compiled simulation engines
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while still reaping the benefits of interpreted languages of being simple to handle. The trend towards JIT

compilation is of course not limited to PDES; perhaps a bit boldly, we project that within 15 years, traditional

AOT compilation will be found only in historical computer science texts as Just-In-Time compilation will

have become the norm. In the short term, a Python PDES engine opens up parallel discrete event simulation

to a much larger audience of application domain experts.

We encourage other researchers to challenge or validate our results. As for concrete future work, we

plan to look at higher scaling regimes and extend our comparative performance studies to other PDES

engines.
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