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ABSTRACT

In this paper we discuss the results of extensive research on supply chain modelling and analysis in high-tech

supply chains. We distinguish between the forecast-driven and the customer-order-driven part of the supply

chain. For each part we present a generic model that captures real-life complexity of high-tech supply

chains. With each model comes a class of operational control policies that coordinate work order release

across the supply chain. We discuss the empirical research that shows the validity of the models proposed

and the associated class of control policies. We discuss the mathematical tractability of near-optimal

control policies based on the fact that optimal control policies within the class of policies proposed satisfy

generalized Newsvendor equations. We discuss optimal positioning of quantity and time buffers and issues

for further research.

1 INTRODUCTION

High-Tech Supply Chains deliver user-specific capital goods assembled in a multitude of sequential and

parallel steps executed by a multitude of different companies. Typically, these capital goods are delivered

under volatile market conditions, while the cumulative supply chain lead time over which purchasing

and manufacturing decisions are based on forecasts of the market demand ranges from 6 months to two

years. In most situations the order-driven final assembly activities of the Original Equipment Manufacturer

(OEM) adds only 10%-20% to the value cumulated from the forecast-driven purchasing and manufacturing

activities. This implies that most of the capital investment in High-Tech supply chains is created on forecasts

of the volatile future. As the customer/users of capital goods demand high on-time delivery this creates a

high-risk environment to operate in.

There are a few levers companies in high-tech supply chains can use. Firstly, the volatile risky

market situation implies that they should ensure high profit margins that enable to build a financial buffer

against periods of low demand. Secondly, resource and pipeline alignment within the supply chain and

with the customers/users enables to respond as quickly as possible to changing market conditions for the

customer/users of the equipment produced by the OEM. The actual responsiveness of the supply chain to

unexpected rates of demand increase depends on the buffers in resources and materials created in anticipation

of such events. As anticipation buffers imply capital investment without an immediate return, the financial

buffer needed in periods of low demand is partly consumed by anticipation buffers. In recent years we

see an emergence of supply chain finance instruments being applied in high-tech supply chains, ranging

from time-dependent trade-credit terms to customers/users investing in the OEM, and the OEM investing

in key suppliers. The extend to which these instruments are used depends on the OEM market situation. In

some markets the OEM is a de facto monopolist, in which case the supply chain finance instruments are

used extensively. In other markets, such as health care equipment, competition is much stronger, whereby

the OEM’s position does not allow for favorable financing conditions to its suppliers, nor is it favoured

financially by its customers.
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In this paper we assume the market situation given. Eventually this translates into some market demand

over time, which is partly known and partly unknown. The unknown part is considered to be stationary,

i.e. exhibits a time-independent stochastic behaviour. We note here that this assumption of stationarity

is a statistically necessary condition. If we would assume that the stochasticity is time-dependent, then

each sample would have a unique underlying stochastic process, which cannot be inferred from this

single data point. We also note here that the stationary stochastic behaviour can be translated into non-

stationary stochastic behaviour, e.g. by assuming that the market demand exhibits multiplicative seasonal

behaviour. Furthermore, the unknown demand may be uncertain in quantity and timing. Clearly, assuming

that demand is forecast in future time buckets, one may abstract from the timing uncertainty. However,

explicitly distinguishing between timing uncertainty and quantity uncertainty may improve the forecast

quality. Still, in this paper we assume that we are confronted with either quantity uncertainty in discrete

time or timing uncertainty in continuous time. Let us motivate this assumption, before using it in Section

2, where we propose a generic model for the high-tech supply chain.

When forecasting demand for the forecast-driven part of the supply chain, this typically concerns

monthly or weekly demand forecasts. In many situations, weekly forecasts are derived by allocating the

monthly forecast over 4 or 5 weeks according to some pre-specified percentages. The monthly and weekly

buckets combined with the quantity volatility obscure possible demand timing uncertainty. Also note

that demand for modules, subassy’s and components delivered to the OEM by 1st tier suppliers is often

derived from multiple types of equipment, which further obscures the demand timing uncertainty, which is

fundamentally related to individual customer orders. Thus we assume that the forecast-driven part of the

supply chain uses quantity buffers in the form of slack materials and slack resources.

In contrast, the order-driven part of the high-tech supply chain by definition is not subject to demand

quantity uncertainty. Admittedly, we abstract here from possible changes in order specifications during the

final assembly process. In principle these changes should be timed in such a way that they do not impact

the final assembly process itself. This can be done by distinguishing between different phases in the final

assembly process and communicating the last possible moment for changes in order specification elated

to a particular phase. The timing uncertainty remaining is not related to the timing of order acceptance,

but to the uncertainty in the final assembly process, particularly related to functional testing of modules,

interfaces and the final product. Thus we assume that the order-driven part of the supply-chain uses time

buffers in the timing of order release to the subsequent phases in the final assembly process.

The above distinction between the quantity-buffered forecast-driven part of the supply chain and the

time-buffered order-driven part of the supply chain has been empirically tested in a series of MSc projects

since 2002. The basis of the model for the forecast-driven part of the supply chain is the multi-item

multi-echelon inventory model described in De Kok and Visschers (1999) and De Kok and Fransoo (2003).

This model assumes constant planned lead times for each item, an arbitrary Bill of Material and i.i.d.

demand in subsequent time units. The constant planned lead times imply that after an item work order

release to the shopfloor, the item work order is completed after a fixed time, independent of the work

order size. The multi-item multi-echelon control policy called Synchronized Base Stock policy ensures

that work-order releases are material-feasible, so that only process uncertainty must be accounted for when

setting the item-dependent planned lead times. We refer to De Kok and Visschers (1999) and De Kok and

Fransoo (2003) for details on the policy structure. It is outside the scope of this paper to provide a detailed

discussion of its mode of operation.

The basis of the model for the order-driven part of the supply chain is the multi-item multi-echelon

production system model described in Yano (1987a), Yano (1987c), Yano (1987b), and Axsäter (2005). This

model assumes a convergent (final) assembly process consisting of production stages, where each stage has

a stochastic throughput time and throughput times of different stages are independent. The control policy

assumed is based on constant planned lead times for each stage, which determines the planned release and

completion times for each stage. A work-order for the final product consists of work-orders for each stage.

A work-order for a stage can only start if all preceding work-orders have been completed and its start
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time has been passed. The model abstracts from capacity constraints and resulting congestion effects and

solely takes into account the throughput time stochasticity caused by congestion effects. The model has

been empirically tested at a manufacturer of lithographic systems for the semiconductor industry, showing

that the model performance outcomes are close to the empirically measured performance outcomes, in

particular the fraction of systems delivered on time to the customer (cf. Atan, De Kok, Van Boxel, and

Janssen (2015)).

The contribution of this paper is as follows. Firstly, in Section 2 it presents a set of generic models and

associated control policies that can be used as the basis for operational planning and control of high-tech

supply chains. We discuss the empirical validity of these models as derived from the MSc projects mentioned

above. The validation studies do not make any assumptions on the control policies actually used in practice.

In fact, given the extensive human interventions, it would be impossible to describe the actual policies used.

The ultimate consequence of the actual control policies used are the average inventory levels and average

customer service levels measured over the validation period. Given that the Synchronized Base Stock

policies assumed in the empirical studies, which are tuned to the average inventories measured, generate

customer service levels in line with the actually measured customer service levels, we must conclude that the

average inventory levels across the supply chain are the main determinants of the customer service levels.

This is an extremely important finding, as the complexity of multi-item multi-echelon systems forces us to

make assumptions concerning control policies that allow for computational tractability. Apparently we can

make such assumptions without jeopardizing empirical validity. Secondly, assuming that the parameters

of these control policies have been determined, either by algorithms or by human inputs, these control

policies provide computationally highly efficient order release mechanisms that ensure all orders released

are material feasible. This is clearly the case for the customer-order driven part. For the forecast-driven part

of the supply chain, we note here that the computational complexity of the above-mentioned Synchronized

Base Stock policies is similar to that of the MRP I logic (cf. Hopp and Spearman (1993). Thirdly, in

Section 3 we consolidate earlier work (Diks and De Kok (1998), De Kok and Visschers (1999), De Kok

and Fransoo (2003), Gong, De Kok, and Ding (1994), and Atan, De Kok, Van Boxel, and Janssen (2015))

to show that the optimal control policies satisfy so-called generalized Newsvendor equations. This enables

efficient computation of near-optimal control policies. Finally, in Section 4 we discuss generic insights

about where to buffer uncertainty, both in the forecast-driven and customer-order-driven part of the supply

chain.

2 THE GENERIC SUPPLY CHAIN MODELS AND REALITY

The notion of supply chain is misleading. In real-life supply chains do not exist. We are faced with

networks consisting of mutually dependent processing activities, coupled by controlled item stockpoints.

2.1 Forecast-Driven Supply Chain

At the most-downstream end of the forecast-driven part of the supply chain, we scope the supply chain by

the products, the end-items, it delivers to a market place consisting of multiple customers, which demand,

or more generally, the forecast error, is considered exogenous. Depending on the position of the customer

order decoupling point (cf. Olhager (2003)), end-items are sellable products, subassemblies (modules)

or components. This concerns Make-To-Stock (MTS), Assemble-To-Order (ATO), and Make-To-Order

(MTO), respectively. In High-Tech Supply Chains ATO is the most common mode of operation.

At the most-upstream end of the forecast-driven supply chain we scope the supply chain by the suppliers,

whose lead times of items supplied are considered exogenous. Within the scope of the supply chain we

control item availability over time. Each item has a constant lead time that captures the inherent throughput

times from order release to order completion that result from the confrontation between resources with

stochastic processing times and stochastic item demand. The stochasticity in item demand is a consequence

of the stochastic exogenous demand for end items that propagates upstream by item workorders released
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Table 1: Model of the forecast-driven part of the supply chain.

i : item index, where i ∈ M = {1, ...,M}.
k : index of end-items, where k ∈ N = {1, ...,N}.
Li : planned lead time of item i.
ai, j : the number of items i used in each unit of item j.
hi : unit inventory holding cost for item i added to that of its child items.
Hi : unit inventory holding cost for item i.
bk : unit backlogging cost for end-item k.
Dk : demand for end-item k in an arbitrary period.
Xi : net stock of item i at the end of period an arbitrary.
Qi : average order quantity of item i in an arbitrary period.

by the supply chain control policy. Despite the notion of dependent demand for upstream items, each

time and again, for each item in the supply chain, the demand is stochastic. This fact makes multi-item

multi-echelon systems so difficult to analyze mathematically, even under given control policies (cf. De Kok

and Fransoo (2003)).

The model we propose for analysis of the forecast-driven part of the (high-tech) supply chain is

presented in Table 1. We assume exogenous demand for end-items is i.i.d. in subsequent periods. We

assume linear holding and penalty costs. In case penalty costs are unknown we can use the Newsvendor

fractile to determine the penalty costs, i.e.

P{Xk ≥ 0} = pk

pk+Hk
. (1)

Note that the Newsvendor fractile concerns the non-stockout probability at the end of an arbitrary

period. This service measure is much easier to obtain from data in ERP systems than the often-proposed

fill rate, which needs an accurate estimate of demand. In most real-life situations the notion of demand for

end-items is far from obvious, e.g. in case of lost-sales. The matrix (ai, j) is the Bill Of Material matrix

that results from superposition of all end-item Bills of Material.

There is no hope that tractable optimal policies exist for multi-item multi-echelon systems (cf. Zipkin

(2000) and Diks and De Kok (1998)) under stationary stochastic demand. In De Kok and Visschers (1999)

and De Kok and Fransoo (2003) experimental evidence is provided that the Synchronized Base Stock policies

perform well compared with other control policies for multi-item multi-echelon systems. Synchronized

Base Stock policies are based on a generalization of the synchronization concept for pure assembly systems

in Rosling (1989), which translates the multi-item multi-echelon network structure determined by the Bill

Of Material and the planned lead times into a set of divergent so-called decision node structures. For

such divergent structures Diks and De Kok (1999) proposes near-optimal policies composed of base stock

policies for each decision node and linear allocation rules to ensure material feasibility of order releases

in these divergent structures. The resulting order releases can be translated back to material feasible order

releases in the original network.

The algorithms have been implemented in a software tool called ChainScope. As the tool has been

applied in both high-tech supply chains (cf. Bisschop (2007), Goli (2005), De Jong (2010), Van Wanrooij

(2012)), and in high-volume supply chains (Camp (2002), Den Hartog (2005), Hernandez Wesche (2012),

Radstok (2013), Roose (2007)), we introduced the average order quantity Qi as an input parameter. We

implemented the average order quantity by setting the review period such that the average demand per

review period was close to the average order quantity. This modelling approach was the only compromise

to mathematical rigour. Both simulation experiments and our empirical studies showed that this modelling

approach yields good results.

One may wonder whether the perspective of optimal policies is the only relevant one. We should

always be aware of the fact that the concept of optimality is only rigorously defined within the context of

a mathematical model with a unambiguously defined objective function. Any mathematical model is an

abstraction of reality and for most models known in literature little evidence is provided of its empirical

validity. Another perspective is that we need tractable models that explain the performance of real-life supply
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Table 2: Model of the forecast-driven part of the supply chain.

s : item index, where s ∈ M = {0, · · · ,M}.
0 : index of the customer specific end-item.
τs : throughput time of stage s completing item s.
Ls : planned lead time of stage s completing item s.
ai,s : 1 if item u is the successor of s, 0 otherwise.
hs : inventory holding cost per time unit for item s added to the cumulative holding cost per unit time of its preceding items.
b0 : penalty cost per unit time late delivery of the customer-specific end-item 0.
Xs : net stock of item s at the end of period an arbitrary.

chains. The MSc projects mentioned above and some more (Boulaksil (2005), Janssen (2004), Van Pelt

(2015), Uquillas Andrade (2010)) showed that the Synchronized Base Stock policies and the algorithms

derived from there, explain the relationship between on the one hand the structural input variables defined

by the model, i.e. BOM, lead times, the historical data concerning exogenous demand, item inventories,

and lot sizes, and on the other hand the historical data on end-item non-stockout probabilities and fill rates.

We aggregated historical data over time into sample averages of item inventories, lot sizes and end-item

customer service levels. From demand data we computed sample average and sample standard deviation

of end-item demand.

Our empirical studies revealed another important phenomenon that has not been observed before

in literature: multi-item multi-echelon control policies constrain the possible outcomes of average item

inventories. This is a result of the mutual relationships between items via the BOM and lead times. Suppose

two items have the same parent and item 1 has a longer lead time than item 2. In that case any sensible

policy ensures that at any point in time that X2 ≤ X1. It follows that E[X2] ≤ E[X1]. In practice one may

have decided to set target safety stocks of items 1 and 2 at the same level for ”obvious” reasons. In that

case e.g. MRP logic will yield E[X2] > E[X1]. The difference is dead stock of item 2. We implemented the

dead stock concept briefly explained here as slack variables within the Synchronized Base Stock policies.

In conclusion, our empirical studies showed that the Synchronized Base Stock policies, together with

the dead stock concept, could explain the empirically measured performance in a wide range of different

multi-item multi-echelon systems that represented the forecast-driven part of real-life supply chains.

2.2 Customer-Order-Driven Supply Chain

By definition, the order-driven part of the (high-tech) supply chain does not face demand uncertainty.

The uncertainty is primarily in the subsequent assembly steps and the functional testing of the resulting

subassemblies and eventually the final product. Also here throughput times are the consequence of the

confrontation of stochastic resource requirements in time and quantity, and resource availability. Again we

use planned lead times for the various assembly stages distinguished to be controlled, to plan the order

releases. As mentioned above we use the planned lead times to set planned release and completion times

for each stage. Each stage starts at its planned release time or as early as possible after that, if it has to

wait for completion of preceding stages.

In this case we explicitly use the probability distributions of the assembly stages as input for our

optimization problem. Furthermore we assume that the cost added at a stage is incurred from the start of

this stage until the product is delivered to the customer. Note that in this situation we assume that both

holding costs and penalty costs are per unit time for each system assembled. With each stage we associate

an item s, which is the output of the stage. By nature the final assembly process is strictly convergent.

We note here that we assume that each customer-specific end-product follows the same stages. This is a

necessary assumption, as otherwise we cannot plan. One may want to distinguish between several different

product types, yet we need sufficient instances from the past in order to infer with some statistical support

the stage throughput time probability distributions.

The model we propose for analysis of the order-driven part of the (high-tech) supply chain is presented

in Table 2.
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The throughput times τs for a single end-item are mutually independent. We do not need independence

assumptions for the throughput times of different machines. We note here that in queueing network systems

throughput times at the same stage are mutually dependent. This is not a problem. However, throughput

times of subsequent stages may be dependent as well. The planned lead time control policy may induce

independence of subsequent stages in case of a high probability of early completion of the predecessor

stage. Furthermore stochasticity in throughput times in assembly stages may be dominated by the impact

of testing and rework. In that case the independence assumption concerning different stages may be valid,

as well. Clearly further research concerning the impact of the independence assumption is needed.

The objective is to minimize the sum of holding and penalty costs averaged over all machines. In

Atan, De Kok, Van Boxel, and Janssen (2015) we use a conjecture that states that the optimal planned lead

times solution satisfies generalized Newsvendor equations, which have a strong similarity to the generalized

Newsvendor equations found in Diks and De Kok (1998). While the equations in Diks and De Kok (1998)

can be solved recursively, the equations in Atan, De Kok, Van Boxel, and Janssen (2015) must be solved

by an iterative fixed point algorithm, where in each iteration a set of generalized Newsvendor equations

can be solved recursively. Thanks to the (experimentally determined) fast convergence of the fixed point

algorithm, the optimal planned lead times solution can be efficiently computed.

In Atan, De Kok, Van Boxel, and Janssen (2015) we show the empirical validity of the model in the case

of the final assembly of lithography systems for the semiconductor industry. We gathered empirical data on

the throughput times, computed sample mean and standard deviation and fitted a gamma distribution. We

gathered data on costs, planned lead times and on the sample fraction of systems delivered on time. With

the given planned lead times we obtained probabilities of on-time delivery close to the sample fractions.

Furthermore we found that in some cases the optimal solutions were close to the ones used in practice, in

other cases substantial improvements could be made, i.e optimal overall planned throughput time for the

final assembly process were shorter than used in practice. Further study revealed that the former situation

occurred in situations were a considerable number of systems of the same type had been produced, while

the latter situation occurred for newer systems with lower cumulative production numbers. We concluded

that tacit knowledge, if sufficiently trained, can provide near-optimal solutions for assembly systems with

stochastic throughput times. The model proposed supports much faster training.

3 GENERALIZED NEWSVENDOR EQUATIONS

As mentioned above, for both models proposed we can find the optimal solutions by solving so-called

generalized Newsvendor equations. These generalized Newsvendor equations can be formulated by con-

sidering subsystems of the original system. Under the Synchronized Base Stock policies, the model for

the forecast-driven part of the supply chain can be translated into a set of divergent systems that can be

optimized independently. With each node n of a divergent system we associate a subsystem consisting

of node n and all its downstream nodes. With each node n we associate an echelon holding cost hn and

cumulative holding cost Hn that can be easily deducted from the holding costs of the original system. With

each node n we associate its downstream end-items k ∈ En. We define Xkn as the net stock of end-item k

in the subsystem associated with node n. Then it is shown in Diks and De Kok (1998) that the optimal

policy should satisfy the set of equations (2).

P{Xkn ≥ 0} = pk+Hn−hn

pk+Hk
,∀k ∈ En. (2)

From the divergent structure of the subsystems it follows that equations (2) can be solved recursively.

As the optimal policy is intractable, Diks and De Kok (1999) proposes to use so-called linear allocation

rules. Unfortunately, these policies do not satisfy equations (2), but the solutions obtained perform well.

In Atan, De Kok, Van Boxel, and Janssen (2015) the generalized Newsvendor equations for the order-

driven part of the supply chain were defined in a somewhat different way. They define the event As that a

particular stage s causes late delivery of the final product to the customer:
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An element w of the probability space is an element of As if and only if under w, i) stage s starts in

time, ii) if the immediate successor of stage s starts in time then the final stage finishes in time and iii) the

tardiness of stage s exceeds W−s, and the final stage, stage 0, is late.

Here W−s is the maximum of latenesses of all other predecessors of the successor of s than s itself.

Informally, As represents the set of all events in which stage s is to be blamed for the lateness of the system.

It is easy to see that the sets As, ∀s ∈ {1,2, . . . ,S}, are mutually exclusive and the union of these events

consists of all w in the probability space for which the final stage is late. In this case the generalized

Newsvendor equation conjecture is as follows:

P(As) = hs

p+H0
,∀s ∈ {1,2, . . . ,S} . (3)

Now we can define an event Bn for the divergent system, similar to the event As for the assembly system.

Note that we can associate with each end-item k a path from node s. With such a path we can associate

a series of subsequent events, that consists of orders that start from an order by node s, subsequently an

order at time t + Ls from the immediate successor on the path to end-item k, and so on, until the order

from end-item k, its subsequent arrival and the time of the next end-item k order arrival. Let us denote the

time of this next order arrival as the critical moment. The event Bn is defined as follows:

An element w of the probability space is an element of Bn if and only if under w, i) the order of node

n is satisfied by its predecessor, ii) if the order from the immediate successor of stage n on the path to

end-item k ∈ En is satisfied then there is no stock-out just before the critical moment and iii) there is a

stockout at the critical moment.

Then equations (2) are equivalent to equations (4),

P(Bn) = hn

pk+Hk
,∀k ∈ En. (4)

This implies that for both models considered, i.e. forecast-driven and customer-order driven, we find

that the probability that an item (stage) causes disservice should be proportional to its added holding cost.

As a corollary we find that the probability of disservice at an end-item equals its Newsvendor fractile.

We believe that these results are very important in view of the computational efficiency that results from

solving the generalized Newsvendor equations and the intuitive interpretation provided.

4 POSITIONING QUANTITY AND TIME BUFFERS IN THE SUPPLY CHAIN AND FURTHER

RESEARCH

Given the above strong similarities between the optimization problems for the forecast-driven part and order-

driven part of the supply chain, we expect similar findings concerning where to buffer against uncertainty

under the (near-)optimal policies proposed. As mentioned in De Kok and Fransoo (2003) by far the most

part of the supply chain buffers in time and quantity in the high-tech supply chain should be concentrated

at the two main decoupling points. The first decoupling point decouples the forecast-driven supply chain

from the order-driven supply chain by ensuring sufficient module availability to start the final assembly

process in time. The second decoupling point decouples the process uncertainty in the subsequent (and

parallel) assembly stages from the planned delivery moment by keeping a big time buffer at the last stage

of the final assembly. This is in line with the conjecture in Goldratt (1997).

In the forecast-driven part of the supply chain other buffers are positioned immediately before assembly

processes that produce items with a substantial added cost. In particular quantity buffers are created for

predecessors of such items with long lead-times. In most of the supply chains studied in the MSc projects,

the optimal policies do not hold any stock for many items, implying that the optimal policies create a flow

from purchase items until the end-items. Though flow is strongly advocated by ”lean thinkers”, we found

that most supply chain professionals consider our findings counterintuitive.
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In the order-driven part of the supply chain we find that time buffers are held just before assembly

stages, i.e. stages with multiple predecessors. As expected, the time buffers are highest for low-cost

preceding stages. However, we found that for the lithography systems also time buffers were created for

the most expensive module of the system. According to our intuition this is caused by the high throughput

time uncertainty of this module. This reveals a specific aspect of the model for the order-driven supply

chain that cannot be found in the model for the forecast-driven part: the impact of lead-time uncertainty.

This brings us to some issues for further research. Firstly, it is important to consider the two separate

models proposed in an integrated setting. In high-tech supply chains, the planned lead times in the order-

driven part of the supply chain have an impact on the forecast accuracy of the forecast-driven supply chain

and the timing of the order releases in this part. The longer the planned lead times in the order-driven

part to ensure on-time delivery to the customer, the earlier the orders for components and modules must

be released and the lower the accuracy of the forecasts on which these order releases are based. In turn,

the forecast-driven supply chain does not provide 100% fill rate, so that delays caused by disservice must

be absorbed by the time buffers in the order-driven supply chain. As we argued that the added value of

the modules constitutes already more than 80% of the final product value, the generalized Newsvendor

equations seem to suggest that the modules should contribute considerably to the disservice to the final

customer. That implies that the modules should cause substantial delays to the initial stages of the final

assembly process.
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