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ABSTRACT

Currently machines in a parallel work center ims®mnductor manufactory are assumed uniform in terms
of impact on yield for most logic to dispatch ednle this machine set. But in reality machines are
different even though they are allowed for the sgmoelucts. In some layer forming areas machines can
get a so called health parameter which describes thenticondition of the machine. A high health value
means, that defects produced watimachine are less probable. Atee products, which are processed at
this work center, differ in their complexity and f@aarea used for one chifphe goal is to schedule
products with a high complexity and a larger chipesio those machines withe best health value.
Doing so will minimize defect wafer area. For thififferent dispatching rules and a mixed integer
programming approach are compared within a simulation model for practical test data.

1 INTRODUCTION

The improvement of yield is an important goalirsemiconductor manufactory. Since the production of
today's chips in the semiconductor manufacturing partially takes up to three months and several hundred
process steps (Potoradi et al. 2002; Yurtsever t0819) until the completion of each layer, there is a
large potential for optimization here. To optimize gibly scheduling, different approaches already exist

in literature. For example Wein (1992) investigatieel correlation between yield and cycle time. Other
approaches for example try to optimize time daej@mcies between product steps (Klemmt and Ménch
2012). Furthermore, preventive maintenance is scheduled (i.e. Lange et al. 2014) to hold the machines
within a stable health. But evemhen the machines get regulamaintenance the machines perform
different. This machine performance could be described by a health factor which also could be used in
scheduling. Currently no literature was found in viahibe influence of machine health parameter to the
scheduling was investigated.

In this paper we try to establish a yield integration into scheduling, where machine dependent
parameter are used. These machine parameter domnation about the actual health condition of a
machine. In our case this is typically usefal layer forming processes within the semiconductor
manufactory. This could be for example PVDhypical vapor deposition), CVD (chemical vapor
deposition) or lithography step. Within these layer fiogrprocesses it may happen that a local defect on
a wafer occurs. The result from this local defect is #liaffected chips on thiwafer are defective. Now
our approach is that importantoplucts should be processed on magehiwith a high health value. The
definition of important products thelny could be products with a highip size per die on the one hand
and products with a high number of complex fayen the other hand. The reason why the important
products should be processed on a well performing machine is shown in Figure 1.

978-1-4673-9743-8/15/$31.00 ©2015 IEEE 2953



Doleschal, Weigert, and Klemmt

] T — — P —~

A
~

. /

] o I \\ /,

Figure 1: Affected wafer surface for a local defect.

In this figure a local defect is shown on three défe wafers with different chip size per die. Here,
the affected wafer area is much higher for products with a high chip size compared to products with a
small chip size. Due to this fact, our goal is tonpare different types of dispatching rules and a mixed
integer programming approach which take care of thehne health parameter. In this work we do not
calculate the health value. Also no direct conmecthetween the health value and the yield is used.
Furthermore, no direct real data is used. Instédlis, practical test data was generated.

The paper is structured as follows. In section 2 the problem is described. Section 3 is used to present
the dispatching rules and define the mixed intggegramming models. In section 4 the experimental
setup is presented and afterwards in section 5 the resaltshown. An outlook and conclusion is done in
section 6.

2 PROBLEM DESCRIPTION

The underlying work center problem was derived framractical point of view. A work center with
unrelated parallel machines was ussdeference. Also an amount of jobs was created, whereby each job

is assigned exactly to one product. Also each job has a release date and an operational due date, which
defines the due date for the current operation. Thaekdfproducts have a dedica matrix. This matrix

contains the allowed machines for each product. Fumive, the products are divided into 2 groups —
important products (IP) and normalopucts (NP). This classification is used for the yield integrated
scheduling and the resulting objeetifunction. The processing times differ for each product, whereby the
processing time is equal for one puotl and different allowed machkia. Each machine has a health
value, which defines the actual health state of théshime. In this investigation this value is defined
between zero and one. The health value is equal for all products processed on this machine. The health
value is also assumed to be constant during the vtinoéehorizon. This is done because of the simplicity

of the model.

The schedules, which are used to calculate dhbjectives, are generated with a discrete event
simulation model (c.f. Figure 2). All properties, which are described within section 2, have been
implemented in the simulation model.

Also several dispatching rules are included within this simulatiodem These different dispatching
rules are compared with a mixed integer programming approach. Furthermore, an interface was
implemented where the results from a mixgeger programming (MIP) model could be used.

The observed objectives in this investigation are

o Flow factor — The ratio of the cycle time to the raw processing time

e Tardiness — The sum of delay for late jobs. Early jobs get a tardiness of zero

e Quality — This is defined as the sum of the machine health value for each important job processed

on the corresponding machine
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Figure 2: Exemplary simulation model (simcron MODELLER).
3 METHODS

3.1 Dispatchingrules

As a reference, three different dispatchingsulvith different complexity are implemented:
e Operational due date - ODD
e Best Machine - BestM
e Practical rule - DePrio
The ODD rule is the simplest one. All jobs arelaned using their local operational due date. If a
machine gets idle, the next allowed job regardirg dhe date is scheduled on this machine. Here no
difference between important and non-important jobs is done. Also thibk talme of the machine is not
observed. This rule is investigated by (Rose 2003) and is usually used to minimize tardiness.
The next dispatching rule is called “Best Machinidére for all important products only the machine
with the highest health value is allowed. All athmachines which are released for this product in the
dedication matrix get locked. So these products could only be processed on the “best” machine out of the
set of allowed machines. Furthermore, the sortinth@fobs is also done by the ODD rule. Additionally,
all jobs of the important products get a priority state. This means, these jobs have a higher priority
compared to the normal jobs. This is done becaiste hardly reduced dedication matrix for the
important products. Due to the nature of this dispatching rule, the result concerning the quality of the jobs
is an upper bound for this objective.
The last used dispatching rule is a practicalmated rule called DePrio. Due to the confidentiality
the rule is not described in detail here. It works wptiority based dispatchinlists for every machine.
Here also the ODD rule is used assis. Furthermore, the jobs get aaiditional priority in the case of
important products. But the priority is reduced fmportant jobs depending on the actual load and
machine health value. So in caamt to the basic ODD rule, where one global dispatching list exists, each
machine has an own dispatching tisw, where the jobs are sortiey their priority value.
Because mathematical methods for scheduling get more and more practicable, also two mixed integer
programming scheduling approaches were investigated, which is described in the following.

3.2  Mixed integer programming

Two mixed integer programming approaches are te$teel background of both mathematical models is
equal, but the implementation and the coupling lith simulation model differs between both models.
Both mathematical models are based on a capatityning. In the following the models are called
MIPv1 and MIPv2 for version 1 and version 2.
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3.2.1 Input parameter

For describing the implementation of the mathdoal model the input parameter should be
explained first. These input parameters are retriénwed the simulation model and could be divided into
dynamic and static parameters. This means, a glatameter does not change within the time horizon —
in contrast to a dynamic parameter.

Static parameters

o n different product®; (i=1,... )

e m unrelated parallel maching$ (k=1,...m)

e Dedication matrixD e{0,}""" . Also D,:={i|D;,=1} is the set of products permitted for
processing on machin&,. In the same manneR;= {k | D;; = 1} is the set of machines
permitted for processing produdts

e pt;; > 0is the processing time for a job of prodBobn machineés, if D, = 1,

¢ Machine health value:i, € (0,1] (k =1,.../n ) for each machine

e Set of important product®? = {l,z., }

Dynamic parameters

¢ Remaining machine processing time;, e N(k =1,.../mn)

e Job volumey, e N(i =1,... )

Additionally weighting parameteis; andw; exist, which are used to weight the MIP objective
function.

3.2.2 Variables

The used decision variables in the mixed integer models are the following:

X;r € RN amount of jobs from produ@; assigned to machin, (k=1,...m; ie D))

oy €{0,1} Boolean matrix, which defines whether a produstscheduled on machiper not.

Cmax €N maximum makespan for all machines

G, €{0,1} Boolean vector, which defines whether a maehinused by an important product or not
H, {0, Boolean vector, which defines whether a machine is used by a normal product or not

TherebyX is a positive real variable in the firstIP model and a positive natural humber in the
second model. With the defined inppdrameters and variables the cedamnixed integer models could be
described.

3.2.3 MIPv1

In this first approach, the underlying mixed integeograming model was used to reduce the dedication
matrix in the simulation model. To describe thgechive function in this mathematical model, the
following substitutions are used:

Quality: 0= Y X, -mh, 1)

ielP
keD;

Number of allowed machines for normal produsts, = > v;, (2)

i¢IP
keD;
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m 3
Product overlapd = > G, - H, ®)

k=1

Now the mathematical model could be désed. In this version the variablg is a real variable
greater than O:

@, Crax+ @5 (0 +0—M \p) = min subject to 4)
X, =v iefl,...,n} (5)

keD,

KY, 2X,, iefl,...n}; keD, (6)

X, 27, i€ IP;k € D, (7)

wt+ ) X, -pt,, <C kefl,...,m} (8)

ieD,

K-G2)7Y, kefl,...,m} (9)

DY, 26, kefl,...,m} (10)

K-H=>2>7Y, kefl,...,m} (11)

et
ZYi,kZHk kefl,...,m} (12)

ieD,
iglP

This model has the task to minimize the maximakespan and to optimize the quality parameter.
Thereby it is triggered more than once within the &thon model (c.f. section 3.5). As seen above, the
quality is simply described as the sum of the machewsdth values for each imgant job. So the second
part of the objective function (4) has the goalomtimize this quality objective and additionally to
minimize the product overlap for the machines al asgto maximize the number of allowed machines
for the normal products. This is done because the so reduced dedicationnmulixectly used within
the simulation model. The parametersandw; are used to weight the two main goals of the objective
function. Such an implementation is also describeldlemmt (2012). Equation (5) is used to assign all
jobs to a machine. (6) ensures tliatis 1 if X;,> 0. ThereforeK is a big number. For important products
also the other direction is done with equation {ijth (8) the maximum worklad over all machines is
calculated. Equations (9) and (10) are used to define whether an important product is scheduled on a
machine or not. In the same way, this is donenésmal products with the help of (11) and (12) .

So, with this implementation way to help the simulation model by assigning the jobs to the
machines. Due to the reduced dedication matrxithportant products should be scheduled on good
machines with as less overlajtlwother products as possible.

3.24 MIPv2

In contrast to the first version of the mathematiwaldel, here the dedication matrix is not reduced. In
this approach the capacity planning model is miategrated into scheduling. The result from the
mathematical model is an assignment of a nundjejobs to machines. Due to the fact that the
mathematical model is still a capacitjanning model, this is dongithout knowledge of due dates or
release dates. In the simulation model, this resulséd to assign the number of jobs to the machines.
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The order in which the jobs are processed is still defined by the simulation model using the ODD rule.
Here the mathematical model could be written much easier. So, the only swipstitaith is made equal
to version 1 is the quality objective (1).

In this second version the variablg, is defined as positive integer. This is done because the result
from X is directly used in the simulation model ané fbbs could only be assigned in the whole to the
machines and cannot be divided into smaller jobs.

Now, the optimization model can be formulated as following:

o -C_ —w,-Q— min subject to (13)
ZXM =V iefl...,n} (14)
rpt, +2Xi,k pt, <C kefl,..,m} (15)

(13) is the objective function. The parametersandw, are also used to weight both objectives. (14) is
used to ensure that gtibs are assigned to machines. With (15) the makeSparis calculated for the
whole machine pool. For this the assignment mafrand the remaining processing timpsare used.

3.2.5 Result from mathematical mode and implementation
The results from these mathematical models are ughthvihe defined simulation model. For this a user
specific script code has been implemented withinsiheulation model, which is needed to trigger the

mathematical optimization run and to transposedkalt to the simulation model as shown in Figure 3.

Simulation model

MIP model

Figure 3: Dynamic coupling betwe®&fiP model and simulation model.

The MIP model is calculated every 10 (simulation) minutes. The MIP model also gets a forecast of 10
minutes for incoming jobs. This means, all jobs with a release date within the next 10 minutes are
considered. In the first MIP version the implemewntatbf the reduced dedication matrix is done directly
in the simulation model. The consideration of theutes of the second MIP version within the simulation
model is done via product volume lists for each nraehSo, each machine gets the information how
many jobs of a product are allowed to be processeel.s€quence of the jobs is done by the simulation
model using the described ODD rule.

4 EXPERIMENTAL SETUP

To test the presented methods, a set of test instangesasated. Table 1 gives an overview for the used
parameters.
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Table 1: Experimental setup (UD - uniform distribution).

Factor Valuesised Total values
Number of products 20 1
Number of jobs per produst UD ~ [100; 500] 1
Number of machines 10 1
Minimum machine health 0.1;0.4; 0.7 3
Number of important products 1;2;4 3
Product dependent processing times UD ~ [1h; 3h] 1
Release dates/d uD ~ [0,%%- Dt on ] 1
Operational due dateld odd =rdd + UD ~[2~E;10.E] 1
Number of independent instances 50
Total number of problems 450

The unrelated parallel machine work center consisi®ahachines, processi2@ different products.
The number of important products differs betweemd 4, where the corresponding products are chosen
randomly. The maximum machine health is alway$He minimum health varies between 0.1 and 0.7.
The processing times for each product are chosen randomly between one and three hours. The release
dates for all jobs are distributed between 0 and L@Bimum capacitive makespan. The value “1.03” is
calculated experimentally to gain an averagewnflfactor of about three using the ODD rule. The
operational due dates are distributed using the average processing times.

On the basis of these test instances, the presergthods are tested and results are generated.

5 RESULTS

In this section the results for the used methous the observed objectives are presented. Thereby, the
parameter wfor the MIP model is chosen out of the set {1; 5; 25; 50}. The parameisrl.
In Figure 4 the results for all test instas and the quality objective are shown.

All test instances

0,95

0,9

0,85 -
0,8

Quality

0,75 -
0,7
0,65 -
0,6

BestM‘ DePri($ MIPv1 | MIPv2 ‘ obD ‘

Figure 4: Results for all test instances regarding quality objective.

As expected, the Best Machine dispatching rule generates the highest quality value. The result of the
MIP methods depends on the used paranmgtehlso, the ODD rule has the lowest quality result.
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The results for the tardiness and the flow factor are divided into three bars for each method. The first
bar shows the result for all products. In the secomdobly the important products are considered and
vice versa in the last bar only the result for themarproducts are presented. The x-axis has two rows.
The first row describes the parametgrand the second row the used method.

In the next figures the results for the tardiness objective are presented. In Figure 5 the results for all
test instances are shown. Therebw, ykaxis is cut at 10, because partly results are much higher. As seen
in this result, the Best Machine rule and thiged integer approach&gth a high parametes, generates
poor results regarding tardiness. This is due to the reduced dedication matrix especially for these test
instances with a high number of important produtlte DePrio rule performs a little bit poorer than the
ODD rule for important products. This rule could als® parameterized. However, this has not been
investigated until now.

All test instances

=

Tardiness
OFRP NWAUIUITON OO

MIPv2

m All products  ® Important products = Normal products

Figure 5: Result for all test instanaegarding tardiness (y-axis cut off).

To show the influence of the number of import@nbducts, in Figure 6 the results for 1 and 4
important products are presented. Thereby, this timey/taxis is not cut off. This result shows that the
choice of parameters is important.

Number of important products=1 Number of important products =4
3,5 180
3 160
25 140
g | g 120
£ 27 £ 100
g 1,5 g 80
~ 1] + 60
40
0,5 20
0 0
0 0 1 5 | 25| 50 1 5| 25| 50 0 0 0 1\5\25 50 1\5\25 50| 0
BestM| DePri MIPv1 MIPv2 OoDD BestM| DePri MIPv1 MIPv2 OoDD
= All products = Important products = Normal products = All products = Important products = Normal products

Figure 6: Results for tardiness for one and four important products.

The last investigated objective is the flémetor. The results are shown in Figure 7.
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Figure 7: Result for flow factor for all test instances.

Here a similar result as seen for tardiness coulglshienated. Also the minimum health values for the
machines have an influence on the results. So inr€&iguhe result for a minimum health value of 0.7 is

shown.

Minimum machine health = 0.7

Flow factor

BestM| DePri MIPv1 MIPv2 ODD

m All products = Important products = Normal products

Figure 8: Result for flow factor and a minimum machine health of 0.7.

Here the deviation of flow factor is much smaltean in Figure 7. This can be explained by the
objective function of the MIP model. In the case whbee deviation of the minimum health is smaller,
also the possible optimization for quality objectisesmaller and so the influence of parametedrops.

In summary, the presented results show that results from the mixed integer programming
approaches hardly depend on the paraméwizaThe extreme values of 25 and 50 égrgain results
close to the optimum for quality, but also performrseoresults for the tardiness and flow factor. The
Best Machine rule is only useable to get the udmmaind for the quality. Alin all the mixed integer
approaches even with a laws outperform the practical orientated dispatching rule DePrio. Also for the
two other objectives the results are picatile for these mathematical models.

6 CONCLUSION AND OUTLOOK

In this paper a yield integrated scheduling moef which uses a machine health parameter, is
implemented. For this, different dispatching rudesl mixed integer programming models are compared
with the well-known ODD dispatching rule. The resudtsow that the mathematical approach gains
slightly better results compared to the practical atigping rule. Further, an improvement in the quality
often concludes to a worsening of other objectiids results in our study show an improvement in
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guality by an average of up to 20% compared to the ODD rule. Here, the formulation used for the quality
objective is just an abstract improvement of the yi€like result cannot be directly converted into yield.
This has to be done for each problem area specificaligrall, the presented investigation is a proof of
concept for implementing machine health parameter to scheduling methods.

Further research regarding the parameterizationeopitictical dispatching rule and the mathematical
approach should be performed. Also more complexitssinces as well as real data should be used to
get a better overview of possible improvement.
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