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ABSTRACT 

In semiconductor manufacturing, preventive maintenance (PM) is complicated and essential. Since tool 
down time contributes significantly to manufacturing flow variability and thus mean cycle time, effective 
PM planning is important. Here we extend existing PM planning methods to allow for four categories of 
PM models. We study the quality of these PM models and the resulting optimized PM plans via 
simulation. We observe that the approximate mean cycle time formulae for these models are generally of 
good accuracy. Our studies show that good PM plans suggested from the use of these approximate 
formulae remain good plans in the true system. Finally, we study the implications of using optimized PM 
plans generated from one type of model in another type of model. The results suggest that good PM plans 
are relatively insensitive to which of the four PM models are selected.  

1 INTRODUCTION 

Preventive Maintenance activities (PMs) prevent unplanned downtime by imposing planned downtime. 
Well-planned PMs increase overall equipment availability and equipment reliability and decrease 
unplanned tool-failures at the expense of planned downtime. In high technology industries such as 
semiconductor manufacturing, the complexity and diversity of PM tasks have increased. PMs are critical 
for manufacturing performance and require careful consideration. 

The vast majority of research on PMs has focused on the scheduling of an existing PM plan into the 
daily manufacturing operations. However, in Kalir (2013), the question of how frequently PMs should be 
planned to mitigate manufacturing disturbances was studied. They studied a G/G/m queueing model 
subject to one PM (e.g., a monthly PM) and attempted to determine if the PM activities should be split 
(e.g., into two half sized biweekly PM events). Morrison, Kim, and Kalir (2014) extended this approach 
to allow for multiple PMs with different cycles (e.g., monthly, quarterly and yearly PM cycles). That 
approach allowed for more practical PM planning. However, in both of these studies, the PMs were 
considered to be time-based and preemptive.  

Wu (2014) classified tool down events (e.g., tool failures, interruptions and PM events) into four 
categories: time-based preemptive (TB/P), run-based preemptive (RB/P), time-based non-preemptive 
(TB/NP) and run-based non-preemptive (RB/NP). Wu (2014) also provided approximate equations for the 
mean cycle time in G/G/1 queues subject to these classes of interruptions. 

Here, we extend the nonlinear optimization models for PM planning as given in Morrison, Kim and 
Kalir (2014) to account for all four classes of interruptions from Wu (2014). We study the quality of the 
mean cycle time approximations via simulation at the optimal PM cycles suggested by the nonlinear 
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program. The approximation accuracy is acceptable. We study the quality of the optimal PM cycle 
decisions suggested by the nonlinear program (based on the approximate mean cycle time equations) by 
simulating how well they perform relative to a simulation based optimal setting for the PM plans. The PM 
cycle recommendation from the nonlinear program performs nearly as well as that obtained via detailed 
simulation. Finally, we consider how the PM cycle recommendation given from one of the PM types 
(from Wu (2014)) performs when used in a system that operates under a different PM type. We observe 
that the mean cycle time is relatively invariant to which model provided the PM recommendation. That is, 
it does not really matter which of the four classes of PMs are used. The resulting cycle time only changes 
by a few percent. This is because the mean cycle time manifold is quite flat in a relatively large region 
around the good PM cycle decisions.  

The organization of the paper is as follows. In Section 2, we review the classification of Wu (2014) 
and provide some preliminary concepts. The quality of the mean cycle time approximations and the 
optimization results are studied via simulation in Section 3. We study the sensitivity of the results to the 
model used in Section 4. Concluding remarks are presented in Section 5. Detailed models are provided in 
the Appendix. 

2 PRELIMINARIES 

We first review four types of equipment models and approximations for their mean cycle time as detailed 
in Wu (2014). A model for PM planning from Morrison, Kim and Kalir (2014) which was generalized 
from the work of Kalir (2013) is reviewed. Finally, PM data that is similar to real data that we will use 
throughout our study is introduced.  

2.1 The Four Categories of PMs 

In Wu (2014), four classes of queueing models for failure-prone tools were identified based on the 
manner in which the failures occur. We review these four categories of models as well as approximations 
for their mean cycle time as discussed in Wu (2014). We use the word interruption synonymously with 
the word failure. In our context, we will focus on PM events as our interruptions or failures. 
 As discussed in Wu (2014), according to Buzacott and Hanifin (1978), interruptions can be classified 
as run-based and time-based. A run-based interruption occurs after the tool has been actively processing 
for some duration of time. They can only happen while the tool is processing. A time-based interruption 
occurs some duration of time after the tool has returned from the previous interruption. They can occur at 
any time regardless of whether the tool is busy or idle.  

These interruptions can further be classified as preemptive or non-preemptive (Wu (2014)). 
Preemptive interruptions can occur anytime (even during processing), while non-preemptive interruptions 
can only occur before or after processing. That is, when a preemptive interruption occurs, the tool 
immediately enters the interrupt state even if it was processing at that time. If a non-preemptive 
interruption occurs, the tool waits until it finishes the processing of its current job before entering the 
interrupt state. 

There are thus four categories of interruptions: TB/P (Time-Based Preemptive), RB/P (Run-Based 
Preemptive), TB/NP (Time-Based Non-Preemptive), and RB/NP (Run-Based Non-Preemptive). 

Approximations for the mean cycle time of a G/G/1 queue subject to the four types of interruptions 
were reviewed and developed in Wu (2014). We have slightly modified the form of those approximations 
to match our intent to use them to reflect different categories of PMs (our interruptions). The details are 
provided in the Appendix. Here, we give the mean cycle time approximation results with limited 
commentary. 

The mean cycle time for a G/G/1 queue subject to TB/P, RB/P, TB/NP and RB/NP PM events (our 
interruptions) are provided in equations (1), (2), (3) and (4), respectively. 
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ሻܲܤ̴ܶܶܥሺܧ  ൎ  
ଵఓ  ଵఓ ሺ ఘଵିఘሻሺଵଶሻሺܥଶ  ௌଶܥ  ൫ಲೃమ ାೃమ൯ሺଵିሻೃఓఘ ሻ, (1) 

 

ሻܲܤ̴ܴܶܥሺܧ  ൎ  
ଵఓ  ଵఓ ሺ ఘଵିఘሻሺଵଶሻሺܥଶ  ௌଶܥ  ሺͳ  ሺͳܣோଶሻܥ െ  ሻ. (2)ߤሻ݉ோܣ

 

ሻܲܰܤ̴ܶܶܥሺܧ  ൎ  
ଵఓ  ೃ 

ಲೃమ శೃమమ ೃ ା 
ഊഋ 
ಲమశೄమమ  

భഋሺଵିೃିഊഋሻሺଵିೃሻ . (3) 

 

ሻܲܰܤ̴ܴܶܥሺܧ  ൎ ଵఓ  ଵఓ ሺ ఘଵିఘሻሺଵଶሻሺܥଶ   ଶீሻ. (4)ܥ

 
Here, , A, and  are the tool service rate, tool availability, and tool loading, respectively. The variables  
CS, CG, CA, CR, and CAR are the coefficients of variation of the service times, effective service times, 
interarrival times, repair times, and times from the start of one PM to the start of the next, respectively. 
Finally, mR and mT are the  mean times to repair the tool (the mean PM duration) and mean time between 
the start of one PM and the start of the next PM (we call this the mean PM cycle). Note that these 
approximations are valid only so long as  <  1.  

2.2 PM Planning Optimization 

We now turn our attention to PM plan optimization as detailed in Morrison, Kim and Kalir (2014). The 
goal of the optimization will be to minimize the mean cycle time for a G/G/1 queue with PMs by 
selecting the mean time between PM events (mT for a single PM cycle). There may be n PMs that the tool 
requires. For example, the tool may require three different PMs with different mean PM cycle durations, 
e.g., a monthly PM, a quarterly PM and a yearly PM. In that case, we use mTi as the mean duration of PM 
cycle i. These mean durations are the decision variables in the PM plan optimization; see Morrison, Kim 
and Kalir (2014). There may be lower and upper bounds ܮ and ܮ௫ that limit the acceptable values 
for ்݉. In Morrison, Kim and Kalir (2014) an approximate method to combine these separate failure 
cycles into a single one is provided. From this, the net mean time between PMs mT can be calculated for 
use in the G/G/1 approximations provided in Wu (2014). Please refer to Morrison, Kim and Kalir (2014) 
for the details as they are omitted here for brevity. 
 Depending on which category of interruption the PMs fall into, the objective function for the 
optimization will use the approximate mean cycle time approximation of equations (1-4). There the 
variables , A, mR, mT, and C2

R are functions of the decision variables mTi, i = 1, …, n. The nonlinear 
program proposed in Morrison, Kim, and Kalir (2014) for G/G/1 queues with PMs is provided in (5-8).  

  
 ሻ (5)ܶܥሺܧ            

 
 

Subject to 
 

 

 
 

Ͳ  ɏሺ்݉ሻ  ͳ, (6) 

 
ܮ   ்݉  ௫ǡܮ ݅ ൌ ͳǡڮ ǡ ݊, (7) 

 
 ்݉  Ͳǡ ݅ ൌ ͳǡڮ ǡ ݊. (8) 
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We will study the performance of these approximations and this optimization as a function of the four 
categories of PMs.  

2.3 PM Data Used in this Paper 

Throughout the remainder of the paper, we use PM data that is similar to real PM data from 
semiconductor manufacturing equipment. Table 1 provides the parameters for two PM cycles and the 
toolset. The distribution, mean value, and coefficient of variation of each random variable are given. The 
superscript 0 indicates that the data was the original data for the PM prior to optimization (the original 
setting for the PMs). Type 1 and Type 2 PMs are represented by the subscripts 1 and 2, respectively. The 
variables ݉ ்బ, ݉ெబ, and ݉ிబ are the mean duration of the original PM cycles, mean duration of the 

activities for PM type i (time the tool is down on average for the PM of type i), and time the tool is 
available for production after the PM is complete, respectively. ܵ ܷ is the mean duration of setup for a 
type i PM (it is not a decision variable). Note that our assumption of exponential interarrival times in 
Table 1 gives us an M/G/1 failure prone queue. 

Table 1: Input parameters for our M/G/1 queue with two types of PM. 

RV Distribution Mean (hours) ࢂࡾ ݉ భ்బ ݉ మ்బ 
 

240 
720 

 ݉ெభబ ݉ெమబ 
Erlang (1/33, 2) 
Erlang (1/15, 2) 

66 
30 

ͳ ξʹΤ  ͳ ξʹΤ  ܵ ଵܷ ܵ ଶܷ 
 

3 
4 

 ݉ிబ Exp (1/119.75) 119.75 1              ሺͳ Τߣ ሻ Exp (0.13) 7.69 1        ሺͳ Τߤ ሻ U (3.425, 4.075) 3.75 0.05 

3 EXAMPLES AND MODEL VERIFICATION 

In Section 3.1, we provide some examples of the results of the optimization using the four different 
categories of Wu (2014) for the PMs. In Section 3.2, we then seek to verify the quality of the 
approximations of (1-4) by comparing the mean cycle time approximations with simulation. Finally, in 
Section 3.3, for TB/NP and RB/NP models, we seek to verify the quality of the results of the optimization 
by comparing a good PM plan suggested via the approximate equations with good PM plans suggested 
via detailed simulation based search.  

3.1 Examples of the Optimization over the Four Categories of PM 

We consider examples of the behavior of the optimization model in Section 2.2 across the 4 types of 
interruption models (TB/P, RB/P, TB/NP, and RB/NP). The PM data is as in Table 1. The results suggest 
that, while the optimal cycle time can differ according to models, the percentage improvement in cycle 
time as well as the optimal decisions are surprisingly close.  
 The results of the optimization are presented in Table 2 according to the types of PM: TB/P, RB/P, 
TB/NP, and RB/NP. Mean downtime (݉ோ), mean uptime (݉ி), availability (A) and utilization (ߩ) of the 
original cycle (before optimization) and optimal cycle are distinguished by superscript 0 and *, 
respectively. Since the original PM cycles (݉ భ்బ, ݉ మ்బ) are the same regardless of models, all variables of 
in the original cycle cases are also same, except for the mean cycle time value (which use the four 
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different approximations (1-4)). We used Excel solver and the Matlab Optimization Toolbox to solve the 
nonlinear program of Section 2.2. 

Table 2: Results for the PM plan optimization in an M/G/1 queue for the four categories of PM. 

Original Cycle Optimal Cycle 
Variables TB/P RB/P TB/NP RB/NP Variables TB/P RB/P TB/NP RB/NP ࢀ 240 ࢀכ כࢀ  720ࢀ 58.6370 56.1993 62.0322 55.3597   ሻ 42.2181 36.6919 79.9766 64.6088כࢀሺࡱ ሻ 73.5657 57.4852 143.4754 109.0027ࢀሺࡱ 0.7822 0.7854 0.7781 0.7866 כ࣋  0.7328࣋ 0.6233 0.6207 0.6266 0.6197 כ  0.6653 32.3289 30.8575 34.3785 30.3507 כࡲ  119.7500ࡲ 19.5408 18.8589 20.4907 18.6240 כࡾ  60.2500ࡾ 449.4445 430.9775 475.1779 424.6187 

 
 We observe several things.  For the optimal cycles, the availability decreases and the utilization increases in all cases.  While the absolute values vary, cycle time improvements are similar and vary from 36.17% to 

44.26%.  In all cases, the optimal decisions (݉ భ்כ , ݉ మ்כ) are surprisingly similar. The ݉ భ்כ  values vary from 
55.4 to 62.0 hours. The ݉ మ்כ  values vary from 424.6 to 475.2 hours. 

 These results suggest the optimal decisions are somewhat invariant to the model choice. We will 
further investigate this point in our study on the sensitivity to model selection in Section 4.  

3.2 Comparison of Approximation for Mean Cycle Time with Simulation 

Wu (2014) conducted extensive simulation experiments to validate the approximations for the mean cycle 
time in the four classes of models he identified. In general the approximations performed well. Here, in 
the context of our problem we similarly compare the mean cycle time values obtained via the 
approximations and via simulation. We check the quality of the approximations at the PM cycle values 
suggested as optimal by the nonlinear program of Section 2.2  (these are the cycles given in the optimal 
cycle section of Table 2.).  
 We use the Autosched AP simulation software. We simulate for 23000 days (5,000 days are for 
warm-up and 18,000 days are for data collection) and 30 replications. The results are provided in Table 3. 
Table 3 provides the percent difference between simulation and the approximations (1-4). The model 
sensitivity (mean simulation cycle time divided by the mean cycle time approximation) is provided as ௌ௨௧ை௧௭௧. A model sensitivity value close to 1 is good. 

Table 3: Results of simulation at the optimized PM cycles. 

Types of 
interruption 

Simulated 
Cycle Time 

Approximate 
Cycle Time Diff (%) 

 ࢚ࢇࢠ࢚ࡻ࢚ࢇ࢛ࡿ

TB/P 39.1678 42.2181 7.7879 0.9277 
RB/P 69.1614 36.6919 46.9474 1.8849 

TB/NP 79.4182 79.9766 0.7031 0.9930 
RB/NP 66.9974 64.6088 3.5653 1.0370 
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 The TB/NP model appears the best in this example with a sensitivity near 1. The run based model 
results (RB/P and RB/NP) are worse than their time based counterparts (TB/P and TB/NP). This agrees 
with what was observed in Wu (2014) and they suggested it is worse for low tool utilizations.  

3.3 Optimization Model Validation 

We next consider the quality of the optimal PM cycles suggested by the nonlinear optimization of Section 
2.2 This is done by searching for the optimal PM cycles via simulation and comparing the result to that 
suggested by the approximate cycle time based nonlinear optimization. Since most real PMs are non-
preemptive, we consider the TB/NP and RB/NP models.  

For each type of model, we search for the optimal PM cycles via simulation by considering numerous 
cases for mT1 and mT2. We consider mT1 = 40, 45, 50, 55, 60, 65, 70, 155, and 240 hours and mT2 = 120, 
235, 350, 400, 450, 500, 550, 700, and 850 hours and all combinations formed by those values. We have 
more points near the optimal PM cycles given in Table 2. We do not search below 40 hours for mT1 and 
120 hours for mT2 since these lower bounds were given in Morrison, Kim and Kalir (2014) and represent 
some practical fab lower limits. We thus consider 81 pairs of mT1 and mT2 values. In all cases we simulate 
for 20 replications and 20000 days (5,000 days of warm-up and 15,000 days of data collection).  

In both the TB/NP and RB/NP models, we compare the results for the simulated mean cycle time 
values for these 81 cases with the values from the approximations of (3-4). We will see that for each mT1 
and mT2 value, the simulated and approximate mean cycle times are very close. The best mT1 and mT2 
values obtained from the 81 cases in the simulation  (which have the smallest mean cycle time value) are 
nearly equivalent with those given by the best mT1 and mT2 values obtained from the approximations. 

3.3.1 Time-Based Non-Preemptive Model 

We first consider an M/G/1 queue with TB/NP preventive maintenance events. The mean cycle time 
values for the simulation and approximations for the 81 pairs of mT1 and mT2 values considered are 
provided in Tables 4 and 5, respectively. From among the 81 decisions considered, the simulation best 
decision is mT1 = 60 and mT2 = 400 hours. The resulting mean cycle time is 78.12 hours. For the 
approximation, the best decision from among those considered is mT1 = 55 and mT2 = 450 hours with an 
approximate cycle time of 80.01 hours. Had we used this decision in the real system, the resulting mean 
cycle time (from the simulation Table 4) would have been 80.01 hours. This is only 2.4% away from the 
best value obtained in Table 4. As such, the result suggested by the approximate values is still a very good 
one. This is because the simulated mean cycle time values in Table 4 are quite invariant to moderate 
changes in the decisions mT1 and mT2 around the best value. This result suggests that the approximate 
equation based optimization of Section 2.2 can give good decisions even though there are some errors 
introduced by the approximation. That is, the shapes of the mTi to mean cycle time curves obtained via 
simulation and approximation, refer to Figure 1, are similar and flat near the optimal decisions.  

 

 

 

 

 

 

2934



Lee, Morrison, and Kalir 
 

Table 4: Result of simulated mean cycle time with TB/NP PMs. 

Simulation 
  (hours)ࢀ

120 235 350 400 450 500 550 700 850 

 ࢀ
(hours) 

40 111.33 86.48 85.58 86.45 86.88 86.50 86.60 86.04 89.62 
45 99.42 86.27 82.91 82.65 82.69 82.95 83.00 80.91 82.87 
50 100.42 83.14 81.02 79.52 81.77 81.41 82.15 84.65 85.05 
55 91.80 84.03 80.09 80.92 80.01 80.21 83.48 83.75 80.72 
60 94.23 84.60 79.46 78.12 80.45 79.77 81.69 81.88 84.92 
65 98.71 82.93 82.95 79.87 82.91 80.27 81.41 82.63 84.72 
70 93.99 82.50 85.18 82.72 81.81 82.77 81.58 82.98 85.72 
155 130.64 116.45 105.71 114.89 108.73 113.90 109.94 109.85 113.75 
240 183.45 156.88 138.29 144.48 150.66 144.83 138.10 155.40 146.39 

 

Table 5: Result of approximate mean cycle time with TB/NP PMs. 

Approximation 
  (hours)ࢀ

120 235 350 400 450 500 550 700 850 

 ࢀ
(hours) 

40 105.07 88.43 85.39 85.06 85.03 85.19 85.49 86.92 88.81 
45 99.67 84.99 82.28 82.00 81.98 82.14 82.43 83.76 85.51 
50 96.86 83.32 80.79 80.53 80.51 80.66 80.93 82.19 83.83 
55 95.57 82.72 80.29 80.03 80.01 80.14 80.40 81.58 83.14 
60 95.24 82.81 80.43 80.17 80.14 80.26 80.50 81.62 83.11 
65 95.57 83.38 81.02 80.75 80.70 80.81 81.03 82.10 83.53 
70 96.35 84.30 81.92 81.64 81.58 81.68 81.88 82.91 84.28 

155 131.09 116.15 112.65 112.04 111.70 111.55 111.53 111.99 112.89 
240 174.22 154.59 149.61 148.63 148.00 147.61 147.40 147.42 148.01 

 

 

Figure 1: Graphs of the approximate and simulated mean cycle time for TB/NP model. 

3.3.2 Run-Based Non-Preemptive Model 

We now consider an M/G/1 queue with RB/NP preventive maintenance events. The mean cycle time 
values for the simulation and approximations for the 81 pairs are provided in Tables 6 and 7, respectively. 
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From among the 81 decisions considered, the simulation best decision is mT1 = 55 and mT2 = 450 hours. 
The resulting mean cycle time is 63.71 hours. For the approximation, the best decision is mT1 = 60 and 
mT2 = 450 hours with an approximate cycle time of 64.62 hours. Had we used this decision in the real 
system, the resulting mean cycle time (from the simulation Table 6) would have been 65.91 hours. There 
is only 3.5% of difference from the best value obtained in Table 6. As such, the result suggested by the 
approximation values is still a very good one. The reasons are similar to those given for the TB/NP model 
in Section 3.3.1 above; see Figure 2.  

Table 6: Results of the simulated mean cycle time with RB/NP PMs. 

Simulation 
  (hours)ࢀ

120 235 350 400 450 500 550 700 850 

 ࢀ
(hours) 

40 88.49 77.55 74.17 69.01 74.55 73.11 71.09 71.23 75.35 
45 82.68 73.20 70.95 72.00 68.65 74.20 68.32 69.75 71.16 
50 80.46 67.04 65.27 67.55 65.57 70.21 66.08 66.29 68.60 
55 82.33 68.12 66.90 67.32 63.71 68.75 67.25 67.02 67.53 
60 77.87 68.27 65.64 67.09 65.91 69.59 65.17 67.04 66.21 
65 73.80 65.78 65.58 64.81 68.28 70.26 64.68 65.50 66.45 
70 76.04 68.56 65.96 65.32 67.04 69.39 65.38 66.84 66.72 
155 94.87 89.82 86.23 85.27 88.30 87.02 86.63 85.41 83.75 
240 121.28 112.29 115.58 108.47 108.92 117.17 108.93 110.79 113.05 

Table 7: Results of the approximate mean cycle time with RB/NP PMs. 

Approximation 
  (hours)ࢀ

120 235 350 400 450 500 550 700 850 

 ࢀ
(hours) 

40 83.49 71.73 69.40 69.08 68.97 69.00 69.12 69.87 70.94 
45 79.22 68.93 66.89 66.62 66.54 66.58 66.72 67.44 68.46 
50 76.84 67.45 65.58 65.34 65.27 65.32 65.45 66.15 67.13 
55 75.59 66.76 65.00 64.77 64.71 64.76 64.89 65.57 66.51 
60 75.06 66.60 64.90 64.68 64.62 64.67 64.79 65.45 66.36 
65 75.01 66.80 65.13 64.92 64.86 64.90 65.02 65.66 66.54 
70 75.31 67.25 65.61 65.39 65.33 65.37 65.49 66.10 66.96 
155 96.57 87.49 85.38 85.02 84.84 84.77 84.78 85.14 85.76 
240 124.27 112.84 109.98 109.44 109.10 108.91 108.83 108.96 109.42 

 

 

Figure 2: Graphs of approximate and simulated mean cycle time for RB/NP model. 
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4 SENSITIVITY TO MODEL SELECTION 

Our goal here is to determine how much it matters which model we select relative to the optimal decision. 
That is, if we obtain optimal PM cycles from the nonlinear program using equation (1) as its objective 
function, will those PM cycle decisions still be good ones if the true system behaves as in equation (2) or 
(3) or (4).  We refer to this as sensitivity to model selection. As we have already seen in Section 3.1, the 
optimal decisions provided when using the different models are similar. Here we study this question more 
deeply. 
 Table 8 provides optimal PM cycles when using approximations (1), (2), (3) and (4) in the nonlinear 
program objective function corresponding to PMs of type TB/P, RB/P, TB/NP and RB/NP, respectively. 
We include them here for convenience in clearer form than in Section 3.1. 

Table 8: Optimal solution of each model. 

Types of 
interruption 

Type 1 PM 
(hours) 

Type 2 PM 
(hours) 

TB/P 55.3597 424.6187 
RB/P 62.0322 475.1779 

TB/NP 56.1993 430.9775 
RB/NP 58.6370 449.4445 

 
 The results of our study are provided in Table 9. There we compare the results of the mean cycle for 
various models when using optimal mTi values suggested for another model. The “Actual Model” is the 
way the system behaves. For the actual model, we conduct 25,000 days of simulation (5,000 days of 
warm-up and 20,000 days for collecting data) to determine the mean cycle time using the mTi value 
suggested as optimal in Table 8 for that model. This value is referred to as “Esim[CT] with optimized mTi 
in actual model”. For example, in every RB/P “Actual Model” row is the simulated mean cycle time one 
would achieve by using the optimal PM cycles from the nonlinear program with equation (2) for the 
objective function; its value is 69.1614 hours for all such rows. We also provide the mean cycle time 
obtained from simulation of the “Actual Model” when the mTi values are set to those provided as optimal 
for the “Test Model” system. This called “Esim[CT] with optimized mTi from test model”.  
 For example, with “Test Model” TB/P and “Actual Model” RB/NP, the first mean cycle time value 
was obtained from simulation of the RB/NP system at the mTi values given in Table 8 for that same 
system. The second mean cycle time value was obtained from simulation of the RB/NP system with the 
mTi values given in Table 8 for the TB/P system. 
 The percent difference between these two cycle time values is provided as “% difference”. This 
difference varies from 0.15 % to 4.57 %; less than  5%.  From this, we conclude that the optimal decision 
is relatively invariant to the model used.  
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Table 9: Simulated mean cycle time when applying optimal mTi values from one model to a different one. 

Test Model Actual 
Model  

Esim[CT] with 
optimized mTi 

in actual model 

Esim[CT] with 
optimized mTi 

from test model 
Diff (%) 

TB/P 
RB/P 69.1614 68.3693 1.1453 

TB/NP 79.4182 80.4664 1.3198 
RB/NP 66.9974 66.8762 0.1809 

RB/P 
TB/P 39.1678 40.4041 3.1564 

TB/NP 79.4182 81.9266 3.1585 
RB/NP 66.9974 65.0629 2.8874 

TB/NP 
TB/P 39.1678 38.9253 0.6191 
RB/P 69.1614 67.5705 2.3003 

RB/NP 66.9974 64.9584 3.0434 

RB/NP 
TB/P 39.1678 39.0886 0.1511 
RB/P 69.1614 66.0004 4.5705 

RB/NP 79.4182 82.0235 3.2805 

5 CONCLUDING REMARKS 

As tool down time contributes significantly to cycle time in semiconductor manufacturing, it is essential 
to carefully consider PM plans. Recent efforts in Kalir (2013) and Morrison, Kim and Kalir (2014) have 
investigated nonlinear programming methods to optimize PM plans. They considered PMs of the TB/P 
class. However, as studied in Wu (2014), tool down events can be classified into four categories: TB/P, 
RB/P, TB/NP and RB/NP. Here, we sought to extend the PM planning results into these other categories 
and investigate via simulation the quality of these models.  
 As in Wu (2014), we found that the approximate mean cycle time formulae for M/G/1 queues under 
the four categories of PMs are in general of good quality. The run based models (RB) were in general less 
accurate than their time based (TB) counterparts. In two examples considered, we observed that a 
decision suggested as good by the approximate mean cycle time equations was also good in the true 
(simulated) system. This was due to the flatness of the objective function curve near the good decisions. 
Finally, we studied the sensitivity of the mean cycle time to the model chosen for use in the nonlinear 
program. We observed that no matter which model is the true model, it does not really matter if you use a 
different model in the nonlinear program. The decisions provided by the nonlinear program were 
relatively good for all models in the cases considered.  
 Future directions include increasing the number of replications in our simulations and conducting 
studies for a larger number of test systems. It would be good to consider a variety of distributions for our  
random variables. We will also seek properties that provide insight for PM planning and lead to rules of 
thumb.  

A APPENDICES 

The results given here are modified versions of those developed and provided in Wu (2014). We adjust 
them to fit our PM context. 

A.1 Time-Based Preemptive 

TB/P events have impact on the service time of a customer, so we consider the mean generalized service 
time of a customer.  ܧሺܩሻ is the mean generalized service time which considers the availability of a 
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machine resulting from downtimes ( ሺ ሻ ൌ  ଵఓ). In Wu (2014), the mean QT (queue time) and CT (cycle 

time) are modeled as ܧሺܳܶሻ ൌ  ఘಸாሺோಸሻሺଵିఘಸሻ  ሺͳ െ ሻܶܥሺܧ ሺܴሻ andܧேሻܣ ൌ ሺܳܶሻܧ    .ሻܩሺܧ
In our model, the mean downtimes ( ܧሺܦሻ ) and uptimes ( 

ଵఎ ) of a TB/P interruption are treated as ݉ோ 

and ݉ி , respectively. Thus, the coefficient of variation of generalized service time is ܥଶீ ൌ ௌଶܥ ሺଵାೃమሻሺଵିሻೃఓఘ  and the residual downtime is ܧሺܴሻ ൌ ሺଵାೃమሻଶ ݉ோ. The mean cycle time approximation is 

ሻܲܤ̴ܶܶܥሺܧ  ൎ  
ଵఓ  ଵఓ ሺ ఘଵିఘሻሺଵଶሻሺܥଶ  ௌଶܥ  ൫ಲೃమ ାೃమ൯ሺଵିሻೃఓఘ ሻ. (A.1) 

A.2 Run-Based Preemptive 

When we treat the PMs as RB/P,  we do not allow the PMs to occur when the machine is idle. Since RB/P 

interruptions do not occur during a machine idle period, the mean queue time is ܧሺܳܶሻ ൌ  ఘಸாሺோಸሻሺଵିఘಸሻ . The 

coefficient of variation of the generalized service time is ܥଶீ ൌ ௌଶܥ  ሺͳ  ሺͳܣோଶሻܥ െ ߤሻ݉ோܣ  and the 
mean cycle time equation of RB/P is 

 

ሻܲܤ̴ܴܶܥሺܧ  ൎ  
ଵఓ  ଵఓ ሺ ఘଵିఘሻሺଵଶሻሺܥଶ  ௌଶܥ  ሺͳ  ሺͳܣோଶሻܥ െ  ሻ. (A.2)ߤሻ݉ோܣ

A.3 Time-Based Non-Preemptive  

For TB/NP interruptions, Wu (2014) models the interruption as a high priority customer. As such, when a 
PM arrives, it waits until the tool finishes its current customer and immediately takes over the tool (it may 
wait behind another queued PM). As our cycle time of interest is for the customers, we need only the 
mean queue time and service time of customers. From Wu (2014), the mean queue time equation is ܧሾܳ ଶܶሿ ൌ ఘభாሺோೄభሻାఘమாሺோೄమሻሺଵିఘሻሺଵିఘభሻ , where index 1 for high priority job (PM) and 2 for low priority job (customer) 

and the mean cycle time equation for customers is ܧሺܶܥሻ ൌ ሺܵଶሻܧ  ሺܳܧ ଶܶሻ. 
We model the arrival rate of the PMs as ߣଵ ൌ ଵ (since the mean PM cycle is ்݉) and the arrival rate 

of customers is ߣଶ ൌ ߣ . The system loading caused by PMs and customers are ߩଵ ൌ ሺܵଵሻܧଵߣ ൌ ೃ 

ሺܵଵሻܧ) ൌ ݉ோ ଶߩ ,( ൌ ሺܵଶሻܧଶߣ ൌ ఒఓ (ܧሺܵଶሻ ൌ ͳ Τߤ ሻ, respectively. The total system loading is ߩ ൌ ଵߩ ߩଶ ൌ ೃ  ఒఓ. The mean cycle time approximation for customer in a G/G/1 queue with TB/NP PM is 

 

ሻܲܰܤ̴ܶܶܥሺܧ  ൎ  
ଵఓ  ೃ 

ಲೃమ శೃమమ ೃ ା 
ഊഋ 
ಲమశೄమమ  

భഋሺଵିೃିഊഋሻሺଵିೃሻ . (A.3) 

A.4 Run-Based Non-Preemptive 

Wu (2014) treated RB/NP interruption as set-ups and classified it into state-induced set-ups and product-
induced set-ups. In this research, we consider only product-induced setups as a model for our PMs. 

According to Wu (2014), the probability of performing RB/NP interruption after any job is 
ଵேು, where ܰ 

is the number of jobs being processed between successive interruptions on average. Under this 

assumption, the mean generalized service time is ܧሺܩሻ ൌ ሺܵܧ  ܶሻ ൌ ሺܵሻܧ  ாሺሻேು , where ܲ  is the 

product-induced set-up times and ܶ is the product-induced setup-time experienced by each job. 
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By treating PMs as  RB/NP product-induced set-ups, we obtain a mean cycle time approximation as 

follow. Calculate the mean downtime as ܧሺܲሻ ൌ ݉ோ, ܰ ൌ ሻܩሺܧ and ்݉ ߣ ൌ ሺܵሻܧ  ೃఒ  ൌ ଵఓ  ሺଵିሻఒ . 

The mean queue time equation is the same as the RB/P interruption model, we have 
 

ሻܲܰܤ̴ܴܶܥሺܧ  ൎ ଵఓ  ଵఓ ሺ ఘଵିఘሻሺଵଶሻሺܥଶ   ଶீሻ. (A.4)ܥ

 
However, the coefficient of variation of the generalized service time is different from the RB/P model. 

The coefficient of variation of the generalized service time is ܥଶீ ൌ    

ೄమഋమାೃమೃమഊ  ାഊ షభమഊమ ೃమሺ భഋಲሻమ . 
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