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ABSTRACT 

In this paper an Iterative Optimization-based Simulation (IOS) framework is designed, developed and 
examined. This framework includes a threefold contribution of Simulation, Optimization and Database 
Manager. In this IOS model, optimization takes place repeatedly at the model’s operational level to 
optimize the combination of system’s state variables during the simulation run. Predefined trigger events 
momentarily pause the simulation and activate optimization in order to optimize the system’s 
configuration. This cycle replicates until the simulation reaches its timespan. By deploying this promising 
IOS model, practitioners can take advantage of a long-term simulation run of their system, while it 
optimizing several times according to the occurrence of predefined incidents. The main concern here is 
the trade-off between simulation and optimization which is examined in this study. The results prove a 
positive impact of the IOS approach on the system’s performance measures, although it takes longer to 
execute compared to the Non-IOS approaches. 

1 INTRODUCTION 

The dichotomy between simulation and optimization is fading gradually, as researchers are applying a 
balanced use of simulation and optimization Figueira and Almada-Lobo (2014). Since its inception, the 
Simulation-based Optimization (SO) approach has gained popularity quickly. SO provides a structured 
approach to optimize parameter values, where optimization is performed on a function of the output 
variables (steady state or transient) associated with a simulation model Swisher et al. (2004). Typically, 
SO methods have been widely applied in various industries and with computer advances, integration of 
these methods has seen remarkable advances. Figueira and Almada-Lobo (2014) has overviewed variety 
of well-known SO approaches and has proposed a taxonomy. According to this study, one major class of 
SO models is Iterative Optimization-based Simulation (IOS) which an optimization manager is embedded 
in a simulation agent. In the IOS approach, optimization would be called during simulation execution. 

IOS models are not extensively studied and less than a handful of studies can be found in the 
literature. The aim of this paper is to review the existing studies and propose a generalize IOS framework. 
The proposed framework could be integrated with simulation software engines to effectively handle 
stochastic events in a simulation run. Therefore the main contributions of this paper are listed as follow: 

 • develop an Iterative Optimization-based Simulation (IOS) framework which can be applied to a 
wide range of complex systems, e.g. Manufacturing, Healthcare, etc.  • include the ability to call optimization with predictable and unpredictable trigger events in 
simulated time 
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 • analyze the trade-off between execution time and cost of the model vs. Non-IOS approaches 

 
Additionally, most of the optimization-simulation models are designed for short term planning with 

limited stochasticity. While, this novel IOS model, enables practitioners to take advantage of a long-term 
simulation run of their system while it has been optimized several times according to predefined incidents 
without simplifying assumptions. 

As opposed to other papers that call optimization at predictable events during simulation run, this 
framework is able to trigger optimizer by occurrence of predictable and unpredictable events. For 
instance, in a manufacturing system, predictable event could be job completion, and unpredictable event 
could be machine failure or new job arrival. 

The trial version of this framework has been coded in C# and has been integrated with SIMIO as 
simulation manager, MATLAB as optimizer and MySQL as database manager. Although most of the 
examples in this paper are referred to a manufacturing system, however, this promising approach can be 
applied in any stochastics system, where uncertainty prevails, e.g. healthcare systems, supply chain 
system, etc. 

The remainder of this paper is organized as follows. In order to clarify the aim of this study and the 
gap that it is addressing, the literature review of the most recent IOS approaches are shown in Section 2. 
Section 3 is dedicated to the details of the framework and structure of different components of the model. 
The results of the proposed method are shown in Section 4 while Section 5 is devoted to summary and 
concluding remarks. The recommendations for future research of this study are stated in Section 6. 

2 LITERATURE REVIEW 

A large number of studies have been conducted on the subject of simulation optimization during last two 
decades. Figueira and Almada-Lobo (2014) recently categorized these methods into two different classes 
including Solution Evaluation and Solution Generation techniques. Solution evaluation approaches 
compare a set of solutions in solution space and will come up with the best or set of the best solutions. 
Some of the main methods of this class include statistical selection methods, metaheuristics, random 
search, stochastic approximation and reverse simulation technique. 
 The other type of SO models are called “Solution Generation” (SG) methods. SG approaches do not 
compare the solutions’ advantages, but simply compute some variables which would be part of the whole 
solution generation. According to Figueira & Almada-Lobo, Solution Generation methods are subdivided 
into two categories: “Solution Completion by Simulation” (SCS) and “ Iterative Optimization-based 
Simulation” (IOS). In the SCS, the optimizer discovers initial solutions under ideal conditions. Then, tries 
to achieve a better and more accurate value for a subset of initial solution’s variables. While in the IOS 
techniques, optimization functions in a simulated system. The optimization takes place frequently at the 
model’s operational level to optimize the combination of system configuration during the simulation 
timespan. In this method, the simulation module may either face a need for optimization or use a trigger 
event which calls for optimization. In fact, simulation momentarily halts itself and transfers the state of 
the system to the optimization manager, which solves an analytical problem that is accordingly 
formulated to account for the current system’s state. 
 Very little, if any, has been reported in the literature relating to Interactive Optimization-based 
Simulation approaches. Jeong (2000) introduced the idea of condition-based events IOS which is called 
optimized simulation-based scheduling system (OSBSS). OSBSS seeks to find an optimized schedule 
with aid of the simulation optimizer by using Artificial Intelligence (AI) search techniques. In this 
framework the optimizer module interactively communicates with a simulation module to identify the 
improved dispatching rules. Subramanian et al. (2000) used an IOS approach to solve a stochastic 
optimization related to the management of a Research and Development (R&D) pipeline problem (cross-
project management of all tasks associated with a particular set of objectives with a limited pool of 
resources). Subramanian et al. extended their earlier study by developing a twin-loop computational 
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architecture, which integrates mathematical programming and discrete event simulation Subramanian et 
al. (2003). The inner loop of this computational architecture does simulation-optimization of timelines, 
which later can be fitted in the outer loop, called risk-control loop. The latter, obtains improvements in the 
solutions to the underlying stochastic optimization problem.  
 Gupta and Sivakumar (2005) presented a Conjunctive Simulated Scheduling (CSS) scheme which 
combines the concepts of simulation and scheduling of a shop. Here, as soon as a resource is released, a 
new job has to be selected as the next operation on this resource. At this decision point, scheduling of jobs 
is done and the simulated clock is progressed forward. In this study, simulation-based scheduling signals 
optimization just by occurrence of predictable events in simulated time which are job completions.  

Mejtsky (2007) described a metaheuristic algorithm for simulation optimization which carries out 
simulation runs simultaneously and evaluates different simulation runs during their execution before the 
end is reached. This algorithm leverages a branching approach which mirrors the decision tree of an 
optimization problem. Kulkarni and Venkateswaran (2014) developed an iterative simulation and 
optimization approach where a discrete-event simulation model is interfaced with a meta-heuristic based 
solver. Sivakumar (2001) designed, developed and implemented a discrete event simulation-based “on-
line near-realtime” dynamic multiobjective scheduling system. This model dynamically generates 
schedules in a manner to achieve Pareto optimal cycle time distribution and machine utilization. In their 
model, for short–term analysis, simulation is initiated by using a deterministic approach with defined 
rules and policies. 

3 METHODOLOGY 

The IOS approach that is designed, developed and implemented in this research includes a threefold 
contribution of Simulation, Optimization and Database Managers. These system managers operate in 
harmony to achieve the goal of selecting the best system configurations (e.g. scheduling, resource 
allocation, etc.) for different states of the system. In this approach, the simulation manager (Simio TM) 
marches through the time until any of the predefined trigger events occur and halts the simulation 
momentarily. When a trigger event occurs, a snapshot of the manufacturing system will be taken in order 
to store the current state parameters of the manufacturing system into the database (MySQL).  
 This approach yields an optimized status of the entire environment upon a stochastic event 
occurrence. The main concern here is the trade-off between simulation and optimization which can occur 
either moment-by-moment, in periodic scheme or on an event-driven basis. In moment-by-moment IOS, 
glimpses of the simulation’s run constantly transfer to the optimizer for every single event within the 
simulation run, while in periodic scheme this could occur on a regular basis. However, the most 
applicable and realistic type of these techniques is event-driven basis or trigger-based IOS. These events 
will be activated during the simulation run once the status of the system changes and needs optimization. 
Therefore, simulation will momentarily pause itself and transfer the state of the system and variable 
attributes to the optimization manager. The optimization manager solves an analytical problem and sends 
the results back to the simulation. In order to have better understanding of the proposed framework, all of 
examples are provided here are drawn for a manufacturing system. However, this does not limit the 
model's practical usefulness for manufacturing system and could be applicable to any kinds stochastic 
environment. 
 This framework is capable to signal the optimization with either predictable or unpredictable events 
with simulated time. The predictable events involve a certain amount of predictability whose are usually 
controllable in real world systems by users, e.g. shift schedule optimization or schedule optimization after 
each job completion. Unpredictable events in the system are those random events that are not necessarily 
under the user’s control and require quick response in a real-world system e.g. machine failure, machine 
repair or new job arrival. Therefore, this framework is designed in such a way that could mimic any type 
of events that require system optimization in the real world environment.   
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 Two different types of trigger events are considered in this study. The first type of trigger events are 
limit-based events, e.g. jobs’ tardiness or machines’ utilizations. These monitor the performance of the 
system and trigger the optimization manager upon limit being exceeded circumstances. The second type 
of triggers are event-based, e.g. machine breakdown or new demand, which upon their occurrence cause 
the simulation to pause and call for optimization. Several possible events are listed in Table 1. The details 
of these three managers and their integration are described as follows. 

3.1 Simulation Manager 

In any organization, leadership is the most important factor and its support is crucial for sustaining 
continuous improvement in organizations (Dehghanimohammadabadi and Keyser 2014). Simulation 
modeling is pivotal element in any improvement changes because it empowers researchers to reduce the 
risk and cost of the changes. Simulation determines the ideal state before touching the real-world system 
which could be a sufficient justification to convince managers to adopt improvements. 

 
 In this methodology SimioTM is utilized as the simulation manager. Simio stands for “SIMulation 
modeling framework based on Intelligent Objects” (Pegden 2007). The main reason that Simio is 
considered for this study is that the software is programmed in C# language and is compatible with any 
other C# modules. This “Application Programmers Interface” (API) allows the users to customize or 
extend their designed model properly. The extension could be adding new steps, elements and rules, 
importing and exporting data, enhancing experimentation with external algorithms, or interfacing from 
external programs. For this study, a few APIs are utilized or programmed in order to integrate the 
simulation manager with other components of the model. A few of these steps are listed as follows: 

 • DbExecute, DbRead and DbWrite step instances are used in order to store the simulation 
attributes to the MySQL database. The frequency of data transfer can be adjusted by the user. • A “user defined” step instance called “OptTrig” is programmed to launch the optimization 
manager whenever needed. In this step, the occurrence of any predefined event along the 
simulation run, will halt the simulation temporarily and execute the optimization manager. It 
needs to be stated that, in addition to the previously mentioned steps, several other steps are 
required to be embedded into the simulation modeling in order to detect the trigger events. 

Table 1: List of possible events which act as an optimization trigger for a manufacturing system. 

Type Event Parameters Description 

Event-
driven 
basis 
 

Machine 
Breakdowns 

MTBF 
MTTR 

If a machine breaks down or repairs, the number of available 
resources changes and the manufacturing system needs to be 
reconfigured. 

Preventive 
Maintenance 

Maintenance 
Schedule 

Due to the Preventive Maintenance (PM) plans, machines can 
be unavailable during certain periods. 

Demand 
Pattern 

Demand’s 
rate 

Demand’s fluctuation signals the optimizer to adopt the 
manufacturing system configuration accordingly. 

Limit 
based 
events 

Unexpected 
Tardiness 

USL 
LSL 

The average tardiness is monitored upon the most recent 
finished entities and, if it i s beyond limits, the optimizer will be 
called. 

Machine 
queue length 

Threshold 
A threshold limit  could be set up to alarm the simulation once 
average queue length of the server(s) intensifies. 

Machine 
Utilization 

MnMU 
MxMU 

dropping the machine utilization below Minimum Machine 
Utilization (MnMU) or above Maximum 
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 The conceptual algorithm of this framework is explicitly described in Table 2 and includes two main 
phases. In phase 1, prior to simulation initialization, substantial supporting information such as resources, 
jobs, processing times, setup time, due dates etc. will be stored to the database manager. This information 
is usually available from Enterprise Resource Planning (ERP) systems. Then, the optimizer calculates the 
initial optimal scheduling and updates the second layer of the database (L2). At this point, the simulation 
has the first optimal solution and is ready to run. The real IOS scheme occurs through the second phase of 
the model. Any pre-defined event will trigger the framework to dynamically update the scheduling of jobs 
in the system. The details of the framework system and relationship between managers are described as 
following. 

3.2 Database Manager 

The use of a database is easily motivated, especially with large amounts of data and supports the 
convenient preservation and management of data (Syberfeldt et al. 2013). A database manager is utilized 
in this paper in order to store and retrieve optimization results and simulation system attributes. The 
Database manager in this framework is the single point of interaction between simulation and 
optimization manager and plays a “connecting chain” role in this model. In case of implementing this IOS 
framework for real-world systems, the ERP data could exported to the database. Moreover, if simulation 
runs for long-term strategic planning, database could store huge amount of data regarding system 
attributes and all of the achieved optimal solutions during simulation run. 
 This database is composed of two layers, L1 and L2. The first layer (L1) is devoted to relevant data 
from the simulation manager, which would be utilized later as inputs for the mathematical modeling. In 
the real world systems, the required data may either derive from system sensors or the output of a high-
fidelity numerical simulation model (Shi and Zhou 2009). In this model, an abundance of instant data will 
be readily available for further analysis by embedding proper Simio steps (DbWrite, DbRread and 
DbExecute) during the simulation runs. This data is composed of several attributes and variables from 
different states of the system, which will be taken by snapshotting the manufacturing system along 
different states. This data will be used for the current manufacturing state assessment via optimization. 
The L2 stores the optimization solutions to be fed into the simulation model and updates the 
manufacturing system setting. All of the aforementioned data persist in database until simulation 
completes. The MySQL database is integrated to the model because it is fast enough for our framework, it 
is reliable free of charge and equally important, has an available API for the C# programming language.  

Table 2: IOS framework algorithm: A manufacturing system example. 

Initial 
Phase 

1: Update the first layer of database (jobs, machines, stages, processing and setup 
times, due dates, etc.) 

2: Run optimization model. 
3: Derive initial scheduling solution.  
4: Update the second layer of database (Assign jobs to available machines and 

priorities). 
5: Feed the solution to the simulation model. 
6: Run simulation model. 

IOS 
Phase 

7: while unprocessed-jobs != 0 do 
7.1: If trigger-event-occurs then 

7.1.1: Pause the simulation. 
7.1.2: Take snapshot of the simulation 
7.1.3: Update database (unprocessed jobs, available machines). 
7.1.4: Form new mathematical modeling based on unprocessed jobs and 
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3.3 Optimization Manager 

One of the advantages of this research is that the optimization manager is independent from a specific 
optimization method. Varieties of analytical tools can be plugged into the model and function as 
mathematical solvers. Once the trigger event signals the optimization manager, the required data will be 
taken from first layer of the database and will be fed to the optimization manager.  

A Parallel Machine Scheduling (PMS) problem has been modeled. In the classical PMS problem, 
there are ݊  number of jobs which can be operated on any of ݉  available machines with specific 
processing time and without preemption. The objective is to find the optimal schedule in terms of certain 
performance measures of the system. MATLAB is used to develop the mathematical modeling and 
optimization algorithm of a single-stage parallel machine scheduling. The first algorithm that is used is 
Simulated Annealing (SA) which provides near to optimal solution. SA was developed by Kirkpatrick, 
Gelatt, and Vecchi (1983) and its name is inspired by annealing from metallurgy. SA has shown 
successful applications in a wide range of combinatorial optimization problems, and this fact has 
motivated researchers to use simulated annealing in many simulation-optimization problems (Rai and 
Ettam 2013). This algorithm starts with an initial feasible solution, then a cooling schedule will be 
utilized to move from one solution to another for identifying the optimal solution (Rai and Ettam 2013). 
The mathematical modeling of the current problem is presented follows: 

3.3.1 Assumptions 

Several assumptions are assumed in this case which are stated as follows: 
 • All jobs and available machines are ready to be scheduled in time zero. • Preemption of operations of each job is not allowed. • The setup times are sequence-dependent, which means the setup time varies from one job to other 

job on each machine. • Different jobs have different processing time on each machine. • Each machine can process only one operation at a time. • Each job has a distinct due date and must be processed only one time. • Each job can be processed only by one free machine. • All machines are unrelated. 
 
In this method, once the triggers take place, the simulation is paused and the manufacturing system 

configuration is controlled. 
 

available machines. 
7.1.5: Run optimization model. 
7.1.6: Derive new scheduling solution.  
7.1.7: Update the L2, the second layer of database (Assign jobs to available 

machines and priorities). 
7.1.8: Feed the solution to the simulation model. 
7.1.9: Run simulation model. 

7.2: end if 
8: end while 
9: Return the simulation results (Cmax, Machine utilizations, WIP, etc.). 
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3.3.2 Notation 

Subscripts ܰ  The number of Jobs ܯ  The number of Machines ݅, ݆  Index for job (݅, ݆ = 1,2, … ,ܰ) ݉  Index for machine ( =݉ 1,2, …  (ܯ,
 

Input parameters ௜ܲ௠  Processing time of job ݅ on machine ݉  ଶ  Normalized weight of earliness/tardinessݓ ଵ  Normalized weight of makespanݓ݉  Factory cost per time unit (including variable and invariable costs) ௝ܵ௜௠ Setup time for assigning job ݅ after job  ݇on machine  ߣ ݅ ௜  The tardiness penalty of job ݅ ݀௜  Due date of jobߚ ݅ ௜  The earliness unit penalty of jobߙ 
 
Decision variables ܥ௜  Completion time of job ݅ ܥ௠௔௫ Total completion time or makespan ܧ௜  Earliness of job ݅;ܧ௜ = max  {0,݀௜ െ ;݅ ௜} ௜ܶ  Tardiness of jobܥ ௜ܶ = max  {0,ܥ௜ െ ݀௜} ݕ௜௝௠ 1 if job ݅  on machine m precedes job ݆; otherwise, it is zero. 

 

3.3.3 The mathematical model 

minܼ = min൭ݓଵ × ௠௔௫ܥߣ + ଶݓ × ෍ߙ௜ܧ௜ + ௜ߚ ௜ܶே
௜ୀଵ ൱  (1) ܯ × ௜௝௠ݕ + ൫ܥ௜ െ ௝൯ܥ + ௜ܵ௝௠ ൑ ,݅ ׊ ௜௠݌ ݆ ߳ ܰ; ܯ (2) ;ܯ ߳ ݉׊  × (1 െ (௜௝௠ݕ + ൫ܥ௝ െ +௜൯ܥ ௝ܵ௜௠ ൑ ,݅ ׊ ௝௠݌ ݆ ߳ ܰ; ௜ܥ (3) ;ܯ ߳ ݉׊  െ ݀௜ ൑ ௜ܶ (4) ;ܰ ߳ ݅׊ ݀௜ െ ௜ܥ ൑ ௠௔௫ܥ (5) ;ܰ ߳ ݅׊ ௜ܧ ൒ ௜௝௠ݕ (6) ;ܰ ߳ ݅׊ ௜ܥ א ,݅ ׊ {0,1} ݆ ߳ ܰ; ௜ܶ (7) ;ܯ ߳ ݉׊  ௜ܧ, ௜ܥ, ൒  (8) ;ܰ ߳ ݅׊ 0

 
Equation (1) is the objective function which aims to minimize makespan (ܿ௠௔௫) and the total jobs’ 

earliness or tardiness cost at the same time. Inequality (2) and (3) impose the restriction that job ݅  
precedes the job j or job j precedes job I on machine m. Earliness and tardiness of job ݅ are indicated at 
equations (4) and (5). Equation (6) is used to calculate makespan which is the max of all of machines 
completion time. Last two equations, constraints (7) and (8) are used to identify the binary variables and 
non-negativity of decision variables. 
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4 RESULTS 

In this study the tradeoff between objective measures of system performance and execution speed is 
explored. As is shown in Figure 1, these experiments are implemented on a simulated single-stage 
manufacturing system with four parallel non-identical machines. In this simulation model, jobs are 
processed in priority basis with different processing times and sequenced-dependent setup time.  
 A generalized factorial experiment with two factors and up to three levels is designed. The first factor 
is “Type of Simulation” which includes IOS compared with two Non-IOS techniques, Shortest Processing 
Time (SPT) and Earliest Due Date (EDD), which are common heuristic dispatching rules. In the Non-IOS 
approaches, simulation marches through the time until reaching the model timespan. In SPT, whenever a 
machine is available, the shortest job for that particular machine is handled first and completed, while in 
EDD, upon machine availability, the job with earliest due date is selected. In these two Non-IOS 
simulation types, no trigger event has been embedded into the system which makes simulation run faster. 
While, for IOS technique, in each optimization iteration, the SA algorithm solves a scheduling problem 
where the objective function is the weighted summation  of makespan and earliness/tardiness cost. In this 
experiment, event-driven basis IOS approach is used with two triggers. These triggers are machines 
failures and repairs which both change the number of available machines in the system. By changing the 
number of available machines, the simulation manager initiates the optimization and reschedules all of the 
unprocessed jobs according to the fresh optimal solution. For instance, as is depicted in Figure 1, if 
Machine 1 fails, other machines take over processing for it.  

 

 

Figure 1: Layout of the simulation model. 

 Another factor considered is the “Number of Jobs” in the system with three levels: 20, 40 and 60 jobs. 
In this experiment, the responses of interest are “Execution Time” of simulation and maximum 
completion time or Cmax, Work In Process (WIP), and cost of earliness/tardiness of the jobs. The original 
design in Table 3, shows one  replication of the generalized factorial experiment design. The first two 
columns of data, correspond to the factors of experiment with three types of simulation and three levels of 
Number of Jobs. The yields of experiment are displayed in last four columns of the table. 

The results of this experiment indicate that, the IOS framework clearly will affect the “Execution 
Time” of simulation run. Implementing the IOS approach, as was expected, makes the simulation engine 
slower since multiple optimizations occur within each simulation iteration. As shown in Figure 2, the 
difference of Execution Time between the approaches becomes more apparent when number of jobs in 
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the system increases. When the Number of jobs is 20, this difference is negligible, while this gap becomes 
larger when the Number of Jobs increases to 60. 

The impact of the IOS model on the system’s performance measures is examined and a few insights 
are obtained. The first is that, as it appears in Figure 3(a) and 3(b), the horizontal reference lines indicate 
the positive impact of the IOS on WIP and Cmax compared with SPT and EDD. The reason is, in IOS, 
optimization manager provides an optimal schedules by considering sequence-based setup time and 
processing time, while SPT takes into account just the shortest processing time. As is shown in Figure 
3(c), there is a visible improvement in tardiness/earliness cost of the jobs as well. The reason that the IOS 
outperforms the EDD is that, the optimization manager takes cost-effectiveness into account while 
calculating both tardiness cost and earliness cost of each job. 

Table 3: The generalized factorial design of the experiment. 

Factors Responses of Interest 

Simulation 
Type 

Number of 
Jobs 

Execution 
Time (Min) 

Cmax 
(Min) 

WIP 
Earliness / Tardiness 

Cost 
EDD 20 0.3 140.1 1322.1 7503.5 

EDD 40 0.9 233.4 4444.4 28821.6 

EDD 60 1.9 342.4 10282.7 79508.7 

IOS 20 2.1 74.9 849.7 4760.8 

IOS 40 13.1 130.2 2723.4 14360.1 

IOS 60 27.3 177.0 5435.7 34652.4 

SPT 20 0.4 107.1 1084.2 7670.7 

SPT 40 1.4 234.2 4415.3 30740.1 

SPT 60 2.1 352.0 10328.1 79184.5 
   

Figure 2: Effects of experiment factors on Execution Time of the simulation. 
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 The impact of the second factor of this study, Number of Jobs in the system, is illustrated in Figure 4, 
as expected, the results prove that, by increasing the Number of Jobs, all of the system performance 
metrics decline. By changing Number of Job from 20 to 60, not only Execution Time rises, but also WIP, 
Cmax and earliness/tardiness cost remarkably increase. 

 

Figure 4: Effect of Number of Jobs on manufacturing metrics. 

5 DISCUSSION AND CONCLUSION 

The proposed IOS framework is novel from many perspectives. First, the introduced method leverages the 
capability of a Data Base Management System (DBMS) for transferring the data for the both simulation 
and optimization managers. This model is able to consider parameters such as: the state of the system at 
upstream and downstream locations by reading from a continually  updated database. Another benefit of 
the model is independency of the simulation and optimization managers, which are performing separately 
across a local network over multiple CPUs.  

This promising approach can be applied in any stochastic system, where uncertainty prevails. 
According to Rogers and Flanagan, in this kind of environment, it may be beneficial to change the way 
the shop is controlled at certain points in time (Rogers and Flanagan 1991). Therefore, this method forms 
a simulation-optimization model which is consistent with the real incidents that occur in the stochastic 
systems in real-time. Most of the examples provided in this study refer to manufacturing system, while 
this model is applicable to variety of stochastic systems. For instance, one can apply this framework to 

Figure 3: Effect of IOS and Non-IOS simulation on manufacturing metrics. 
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simulate a healthcare system while the user uses optimization module to get an optimal scheduling of the 
patients for physicians. the possible trigger events could be  new patient arrival, call in sick of two 
physicians or even out of limit patients waiting time. 

Deploying this favorable IOS model, improves the accuracy of the system’s simulation analysis for 
long-term planning, while it optimizes several times without simplifying the assumptions. One can verify 
the accuracy of the IOS model by comparing the model’s results such as Cmax, tardiness cost, WIP, etc., 
with the actual manufacturing system performance. 
 One concern associated with this method is the potential for slow execution. In this study, the 
tradeoffs between objective measures and execution speed are examined. The experiment results indicate 
that, the IOS model compared to the Non-IOS approaches (SPT and EDD) has longer “Execution Time” 
but progressively improves the system’s performance. It needs to be mentioned that, the Execution Time 
difference between these two approaches becomes more apparent when the Number of Jobs in the system 
increases. In the case of 20 jobs, almost no difference exists between the IOS and the Non-IOS in terms of 
Execution Time, but the IOS yields better performance measures. Whereas, this difference gap becomes 
more evident when the Number of Jobs increases to 60. 

6 FUTURE WORKS 

This approach is speculative and needs further evaluation before implementation in a real-world system. 
The data in the current database can be substituted with real data from ERP systems. The suggested 
framework can be used as the basis for future studies to enhance the discrete event simulation engine. As 
a suggestion for future research, the optimization manager can also utilize the optimization historical 
results to boost the optimization process, by mining common patterns in the data. Also, multiple 
optimization algorithms could be embedded into the platform in order to evaluate different mathematical 
problems. One can investigate the efficiency of various optimizers and select the most appropriate one. 
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