Proceedings of the 2015 Winter Simulation Conference
L. Yilmaz, W. K. V. Chan, I. Moon, T. M. K. Roeder, C. Macal, and RoBetti, eds.

TRADEOFFSBETWEEN OBJECTIVE MEASURES AND EXECUTION SPEED IN
ITERATIVE OPTIMIZATION-BASED SIMULATION (109)

Mohammad Dehghanimohammadabadi
Thomas K. Keyser

Department of Industrial Engineering and
Engineering Management
Western New England University

Springfield, MA, USA

ABSTRACT

In this paper @ lterative Optimizatiorbased Simulation (I0S) framework designed, developednd
examined This framework includes ardefold contribution of Simulation, Optimization and Database
Manager.In this I0S modeloptimization takes place repeatedlyat the model's operational level to
optimize the combination of systé&state variables during the simulation rémedefinedrigger everd
momentarily pause the simulation and activate optimization in order to optimize the 'system
configuration.This cycle replicasuntil the simulation reaches its timespd@y deploying this promising
IOS modé& practitionerscan take advantag®ef a long-term simulation rulef their systemwhile it
optimizing several times according to the occurrence of predefined inciddr@snain concern here is
the trade-off between simulation and optimization whglexamined in this studylhe results pove a
positive impact of the 10&@pproach on theystem’s performance measurakhoughit takes longer to
execute comparei the NorlOS approaches.

1 INTRODUCTION

The dichotomybetween simulation and optimizatios fading gradually, as researcheasse applying a
balanced use of simulation and optimizatiigueira and Almada-Lob{014) Snce its inception, the
Simulation-based Optimization (S@pproachhas gained popularity quickl50 provides a structured
approach to optimize parameter values, where optimization is performedumetion of the output
variables gteady state or transient) associated with a simulation model Swishe(200d) Typically,
SO method$avebeenwidely applied in various industries andthvcomputeradvances, integration of
thesemethods has seen remarkable advances. Figueira and Almad#20d4ddhas overviewed variety
of well-known SO approaches and has proposed a taxondooprding tothis study, one major class of
SO models is Iterative Optimizatidrased Simulation (I0S) whi@m optimization manager is embedded
in a simulation agentn the 10S approach, optimization would be called during simulation execution.
IOS models are not extensively studied and less than a hasfd&tudiescan be found in the
literature The aim of this paper is to review the existing studies and propose a generalize 10S framework.
The proposed framework could be integrated with sitiarasoftware engines to effectively handle
stochastic events in a simulation run. Therefore the main contribwtiohis papeare listed as follow:

e developan lterative Optimizatiofbased Simulation (I0S) framewovkhich can be applied to a
wide range of complex systems, e.g. Manufacturing, Healthcare, etc.

e include the ability to call optimization witlpredictable and unpredictable trigger events in
simulated time
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e analyze the trade-off between execution time and cost of the model vs. Non-lIOS approaches

Additionally, nost of the optimizatiorsimulation models are designed for short term planning with
limited stochasticity. While, thisovel IOS model, enables practitioners to take advantage of atdomg
simulationrun of their system while it has been optimized several times according to predefined incidents
without simplifying assumptions.

As opposed to other papettsat call optimization at predictable evewturing simulation run, this
framework is able to trigge optimizer by occurrence of predictable and unpredictable evEots.
instance, in ananufacturing system, predictable event coulddbecpmpletion, and unpredictable event
could be machine failurer new job arrival

The trial versionof this framework has been coded in C# and has been integrated with SIMIO as
simulation manager, MATLAB as optimizer and MySQL as database manager. Althmsgyhof the
examples in this paper are referteda manufacturing system, however, this promising approach can be
applied in anystochastics systenwhere uncertainty prevails, e.g. healthcare systems, supply chain
system, etc.

The remainder of this paper is organized as folldwarder to clarify he aim of this study and the
gap that it is addressing, the literature reviewhefmost recent I0O@pproaches are shown $ection2.
Section3 is dedicated to the details of the framework and structure of different componentsnofitie
The results othe proposed method are shown in Section 4 while Sebtierdevoted to summaignd
concluding remarksThe recommendations for future research of this sanel\stated in Section 6

2 LITERATURE REVIEW

A large number of studidsavebeen conducted on tlseibject of simulation optimization during last two
decades. Figueira amdmada-Lobo (2014)ecentlycategorizedhese methods into two different classes
including Solution Evaluationand Solution Generationtechnigques. Solution evaluation approaches
compare a set of solutions in solution space and will come up with thertsedtof the best solutions.
Some of the main methods of this class inelathtistical selection methods, metaheuristics, random
search, stochastic approximation and reverse simulation technique.

The other type of SO models are call&blution Generation” (SG) methods. SBproachgdo not
compare the solutiohadvantages, but simply compute some variables which woubdtief the whole
solution generationAccording to Figueira & Almad&obo, Solution Generatiomethods arsubdivided
into two categories: Solution Completion by Simulation” (SC&hd “Iterative Optimizatiorbased
Simulation” (10S).In the SCStheoptimizerdiscoverdnitial solutions under ideal conditions. Théres
to achieve a better and more accurate value for a subsetiafsolution’svariables. While in the 10S
techniques, optimization functiolrs a simulated system. The optimization takes pfaeguently at the
model’s operational level to optimize the combination of system configurdtiang the simulation
timespanIn this methodthe simulation module may either face a need for optimization or use a trigger
event which calls fobptimization. In fact, simulation momentarily halts itself and transfers the state of
the system to the optimization manager, which solves an analytiohlem that is accordingly
formulated to account for the current systestate.

Very little, if any, has been reported in thterature relating to Interactive Optimizatitmased
Simulation approaches. Jeong (200@Qjoduced the idea of conditidrased eventBDS which is called
optimized simulatiorbased scheduling system (OSBSS). OSB8&ks to find an optimized schedule
with aid of the simulation optimizer by using Artificial Intelligence (Al) search techniques. In this
frameworkthe optimizer module interactively communicates with a simulatiwduleto identify the
improved dispatchingules Subramaniaret al. (2000)used an I0OS approado sdve a stochastic
optimization related to the management of a Research and Development (R&D) pipeline peaddem (
project management of all tasks associated with a particular set of objectives with a limited pool of
resources). Subramaniat al. extendé their earlierstudy by developing a twin-loop computational
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architecture, which integrates mathematical programming and discrete event sinildtramanian et

al. (2003) The inner loop of this computational architecture does simulation-optimization of timelines,
which later can be fitted in the outer loop, called-gsktrol loop. The latter, obtains improvements in the
solutions to the underlying stodia optimization problem

Gupta and Sivakumar (200pyesented a Conjunctiveimulated Scheduling(CSS) scheme which
combines the concepts of simulaticend scheduling of a shop. Here,sa®n as a resource is released, a
new job has to be selected as the next operation on this resource. At this decision point, scheduling of jobs
is done and the simulated clock is progressed forward. In this study, similatied schedulingignals
optimizationjust by occurrence of predictable events in simulated time which are job completions.

Mejtsky (2007) described a metaheuristic algorithm for simulation optimization which carries out
simulation runs simultaneously and evaluates different simulation runs during their execution before the
end is reached. This algorithm leverages a branching agpmnhichmirrors the decision tree of an
optimization problem. Kulkarni and Venkateswaran (201ddveloped aniterative simulation and
optimization approach whegediscreteevent simulation model is interfaced watmetaheuristic based
solver Sivakumar(2001) designed, developed and implemented a discrete event similased"on-
line near-realtimé dynamic multiobjectivescheduling systemThis model dynamically generates
schedules in a manner to achieve Pareto optimal cycle time distribution and machine utilization. In their
model, for shorterm analysis, simulation is initiated by usingleterministic approach with fieed
rules and policies.

3 METHODOLOGY

The IOS approach that is designed, developed and implemented in this research includes a threefold
contribution of Simulation, Optimization and Database MarsmgHnese system managers operate in
harmony to achieve the goal of selecting the best system configurations (e.g. scheduling, resource
allocation, etc.) for different states of the system. In this approach, the simulation manager{Bimio
marches through the timentil any of the predefined trigger events occur andshak simulation
momentarily. When a trigger event occurs, a snapshot of the manufacturing system will be taken in order
to store the current state parameters of the manufacturing system into the database (MySQL).

This approachyields an optimized statusof the entire environment upon stochasti event
occurrenceThemain concern here is the trade-off between simulation and optimization edriabccur
eithermomentby-moment,in periodicscheme opbn anevent-driven basidn momentby-moment 10S,
glimpses of the simulation’s run constantly transfeth®optimizer for every single event within the
simulation run, while in periodic scheme this could ocoor a regular basis. Howevgertthe most
applicable and realistic type of these techniques is alrargn basis or triggebased 10SThese events
will be activated during the simulatigon once the status of the system changes and needs optimization.
Therefore, simulation will momentarily pause itsatid transfer the state of the system and variable
attributes to the optimization manager. Tipdimization manager solves analytical problem and sends
the results back to the simulation. In order to have better understanding of theegrivsapsework, all of
examples are provided here are drawn for a manufacturing system. Howevelgehisot limit the
model's practical usefulne$sr manufacturing system and could be applicdblany kindsstochastic
environment.

This framework iscapable tosignal the optimization with either predictable or unpredictable events
with simulated time. The predictable eveimgolve a certain amount of predictability wheee usually
controllable in real world systenty usersge.g.shift schedule ojrhizationor schedule optimization after
each job completion. Unpredictable events in the system are those raneiotsthat arenot necessarily
under theuser’scontrolandrequire quick response in a reebrld systeme.g. machine failure, machine
repar or new job arrivalTherefore, this framework @esigned in such a wdlgat could mimic any type
of evensthat require system optimizationtimereal worldenvironment.
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Two different types of trigger events are considered in this silitly first type of trigger events are
limit-basedevents,e.g. jobs’ tardiness or machinesitilizations. These monitor the performance of the
systemand trigger the optimization manager upon limit being exceetledmstances. The second type
of triggers are event-baseelg. machine breakdown or new demand, which upon their occucanse
the simulation tgause and call fasptimization.Severalpossible events are listedTablel. The details
of these three managers and their integration are described as follows.

31

Simulation M anager

In any organization, leadership is the most important factor and its support is crucial for sustaining
continuass improvement in organigans (Dehghanimohammadabadi and Keyser 20 jinulation
modeling is pivotal element in any improvement changes because it empowers researchers to reduce the
risk and cost of the changeSimulation determines the ideal state before touching thevoeld system

which could be a sufficient justification to convince managers to adopt improvements

Table 1:List of possible events which act asaptimization triggefor a manufacturing system

Type Event Parameters Description
Machine MTBE If a machine breaks down or repairs, the number of avai
resources changes and ttmanufacturing system needs to
Event | Breakdowns MTTR .
driven reconfigured
basi Preventive | Maintenance Due to the Preventive Maintenance (PM) plans, machines
asis . : i . )
Maintenance Schedule | be unavailableluring certain periods.
Demand Demand’s | Demand’s fluctuation signals the optimizer to adopt
Pattern rate manufacturing system configuration accordingly
The average tardiness monitored uponthe most recen
Unexpected USL - ” T S o .
) finished entities andf it i s beyond limits the optimizerwill be
. Tardiness LSL
Limit called.
based | Machine A thresholdlimit could be set up to alarm the simulation on
Threshold : o
events | queue length average gueue length thie server(s) intensifies.
Machine MnMU dropping the machine utilization below Minimum Machi
Utilization MxMU Utilization (MnMU) or above Maximum

be

In this methodology Simid is utilized asthe simulation manager. Simio stands f@IMulation
modeling framework based oimtelligent Objects” (Pegden 2007)The main reason that Simio is
considered for this study is that teeftware is programmed i@# language and is compatibletvany
other C# modules. Thi%Application Programmers Interface” (APlpllows the usexto customize or
extend their designed model properfhe extension could be adding new steps, elements and rules,
importing and exporting data, enhancing experimamalvith external algorithmsor interfacing from
external programskor this study, a few APIs are utilized or programmed in order to integrate the
simulation manager with other components of the model. A few of these steps are listed as follows:

DbExecue, DbRead and DbWritetep instances are used in order to store the simulation
attributes to the MySQL database. The frequency of data transfer can be adjusted by the user.

A ‘“user defined” tep instance called “OptTrigis programmed to launch the optimization
manager whenever needed. In this step, dbeurrence of anypredefined event along the
simulation run will halt the simulation temporarily and execute the optimization mankger.
needs to be stated that, in addition to the previously mentioned steps, several other steps are
required to be embedded into the simulation modeling in order to detect the trigger events.
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The conceptual algorithm of this framework is explicitly describetaible 2andincludes twomain
phasesln phase 1, prior to simulation initialization, substantial supporting information such as resources,
jobs, processing times, settime, duedates etcwill be stored to the database managéris information
is usually available from Enterprise Resource Planning (ERP) systems. Then, the optimizer calculates the
initial optimal scheduling and updates the second layer of the databasAt(ti#ls point, thesimulation
hasthe first optimal solutiomnd is ready to run. The real IOS scheme occurs through the second phase of
the model. Any pralefined event will trigger the framework to dynamically update the scheduling of jobs
in the systemThe details of the framework system and relationship between managers are desxribed
following.

3.2 Database Manager

The use of a database éssily motivated, especially with large amounts of datd supports the
convenienfpreservation and management of d&wberfeldt et al. 2013A database managér utilized

in this paper in order tstore and retrieve optimization resultsand smulation system attributes. The
Database manager in this framework is the single point of interaction between simulation and
optimization manager amays a “connecting chain” role in this modi.case of implementing this 10S
framework for real-world ystems, the ERP data could exported to the databBseover, if simulation

runs for long-term strategic planning, database could dtage amount of dataegarding system
attributes and all of the achievedtimal solutions during simulation run.

This database is composed of two layers, L1 and L2. The first layer (L1) is devoted to relevant data
from the simulation manager, which would be utilized later as inputs for the mathematical modeling. In
the real world systems, the required data may edbgwve from system sensors or the output of a high-
fidelity numerical simulation model (Shi and Zhou 200d8)this model, an abundance of instdatawill
be readily available for further analysisy embedding propefimio steps (DbWrite, DbRread and
DbExecute) during the simulation ruriBhis data is composed of several attributes and variables from
different states of the system, which will be taken by snapshotting the manufacturing system along
different states. This data will be used for the current manufacturing state assessment via optimization.
The L2 stores the optimization solutions to be fed into the simulation model and updates the
manufacturing system settindill of the aforementioneddata persist in database until simulation
completesThe MySQL database is integrated to the model because it is fast enough for our frartework
is reliablefree of chargend equally importanhas an available API for the C# programming language

Table2: 10S framework algorithmA manufacturingsystemexample

1. Updatethe first layer of database (jobs, machingiages, processing and set
times, due dates, etc.)

Run optimization model.

Derive initial scheduling solution.

Updae the second layer of database (Assign jobs to availatdehines anc
priorities).

5: Feed the solution to the simulation model.

6: Run simulation model.

Initial
Phase

RWON

7. whileunprocessegbbs != 0 do
7.1: If triggereventoccursthen
10S 7.1.1Pause the simulation.
Phase 7.1.2Take snapshot dghe simulation
7.1.3Update database (unprocessed jobs, available machines).
7.1.4Form new mathematical modeling based on unprocessed jobs
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available machines.
7.1.5Run optimization model.
7.1.6Derive new scheduling solution.
7.1.7Update the L2, the second layer of database (Assign jobsaitable
machines and priorities).
7.1.8Feed the solution to the simulation model.
7.1.9Run simulation model.
7.2: end if
8: end while
9: Return the simulation results (Cmax, Machine utilizations, WIP, etc.).

3.3 Optimization Manager

One of the advantages of this research is that the optimization manager is independent from a specific
optimization method. Varieties of analytical tools can be plugged into the model and function as
mathematical solvers. Once the trigger event signals the optimization manager, the required data will be
taken from first layer of the database and will be fed to the optimization manager.

A Parallel Machine Scheduling (PMS) problem has been modeled. In the classical PMS problem,
there aren number of jobs which can be operated on anyncdvailable machines with specific
processing time and without preemption. The objective is to findgtimal schedule in terms of certain
performance measures of the systéATLAB is used to develop the mathematical modeling and
optimization algorithm of a singlstage parallel machine scheduling. The first algorithm that is used is
Simulated Annealing (SA) which provides near to optimal solution. SAdeasloped by Kirkpatrick,

Gelatt, and Vecchi (1983and its name is inspired bgnnealing from metallurgy. SAas shown
successful applications in a wide range of combinatorial optimization problems, and thizagact
motivated researchers to use simulated annealing in many simwdatiarization problems(Rai and
Ettam 2013) This aforithm starts with an initiafeasible solution, then aooling schedule will be
utilized to move from one solution to another for identifying the optimal solution (Rai and Ettam 2013)
The mathematical modeling of the current problem is presented follows:

3.31 Assumptions
Several assumptions are assumed in thiswhgs are stated as follows:

e All jobs and available machines are ready to be scheduled in time zero.

Preemption of operations of each job is not allowed.

The setup times are sequence-dependent, which means the setup time varies from one job to other
job on each machine.

Different jobs have different processitigne on eacimachine.

Each machine can process only one operation at a time.

Each job has a distinct due date and must be processed only one time.

Each job can be processed only by one free machine.

All machines are unrelated.

In this method, once the triggers take place, the simulation is paused and the manufacturing system
configuration is controlled.
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3.3.2 Notation

Subscripts
N The number of Jobs
M The number of Machines
i,j Index for job(i,j = 1,2, ...,N)
m Index for machine (m= 1,2, ..., M)

Input parameters

P; Processing time of jobon machinen

a; The earliness unit penalty of jéb

Bi The tardiness penalty of jab

d; Due date of jols

A Factory cost per time unit (including variable and invariable costs)
Siim  Setup time for assigning jakafter job kon machine m

wy Normalized weight of makespan

w, Normalized weight of &linessfardiness

Decision variables

C; Completion time of job

Cmax Total completion time or makespan
E; Earliness of jols; E; = max {0,d; — C;}
T; Tardiness of job; T; = max {0, C; — d;}

Yijm 1ifjobion machine m precedes jpiotherwise, it is zero.

3.3.3 The mathematical model

N
min Z = min (Wl X ACppax + Wy X Z a;E; + BiTi> 1)
i=1
M X Yijm + (Ci = G) + Sijm < Pim VijeN; YmeM; (2)
Mx(l_yijm)'l'(cj_ci)'l'sjimSpjm Vi,jEN; VmeM; (3)
Ci—d; <T; VieN; (4)
di_CiSEi ViEN; (5)
Yijm € {0,1} Vi,jeN; VmeM; (7)
Ty E;,C; =20 VieN; (8)

Equation(1) is the objective function which aims to minimize makesfgp,,) andthe total jobs
earlinessor tardinesscost at the same timénequality (2) and (3) impose the restrictiathat jobi
precedes the job j or job j precedes job | on machinEarliness and tardiness of jolre indicated at
equations(4) and (5). Equation(6) is used to calculate makespan which is rieex of all of machines
completion time. Last two equatioregnstraints (7and(8) are used tadentify the binary variabkand
non-negativity of decision variables.

2854



Dehghanimohammadabadi and Keyser

4 RESULTS

In this study the tradeoff between objective measures of system performance and execution speed is
explored.As is shown in Figurel, these experiments are implemented on a simulated single-stage
manufacturing system with four parallel non-identical machines. In this simulation model, jobs are
processed in priority basis with different processing times and sequéegeddent setup time.

A generalized factorial experimewtith two factors and up to three levels is designed. The first factor
is “Type of Simulation” which includes IOS compared with two N@$ techniques, Shortest Processing
Time (SPT) and Earliest Due Date (EDD), which are common heuristic dispatching rafesNom-10S
approachessimulation marches through the time until reactthng model timgsan.In SPT, whenever a
machine is availablehé shortest jolfior that particular machine is handled first and completédle in
EDD, upon machine availability, the job with earliest due date is selelctethese twoNon1OS
simulation typs, no trigge event has been embedded into the system which makes simulation run faster.
While, for IOS technique,ni each optimization iteratiothe SA algorithm solves acheduling problem
where the objective function is the weighted summatiomakesparandeariness/tardiness cosh this
experiment, event-driven basi®S approachis used with two triggersThese triggers are machines
failures and repairghich both change the number of available machines in the sy®gnochanging the
number of available magtes, the simulation manager initiates the optimization and reschedules all of the
unprocessed jobs according to the fresh optimal solukon.instance, as is depictéad Figure 1, if
Machine Ifails, other machines take over processing for it.
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Figurel: Layout of the simulation model

Another factor considered ibe“Number of Jobs” in the system with three levels: ADand60 jobs
In this experiment, e responses of interest are “Execution Time” swhulation and maximum
completion time or Cmax)Vork In ProcessWIP), andcost of earliness/tardiness of the joblke original
designin Table 3 showsone replicaton of the generalized factorial experimedesign.The first two
columns of datacorrespond to the factors of expeemwith threetypes of anulation and three levels of

Number of Jobs. fie yields ofexperimentredisplayed in last four columns of the table.

The results of this experiment indicate that, the 10S framework clearly will affect the “Execution
Time” of simulation run. Implementing the 10S approach, as was expected, makes the simulation engine
slower since multiple optimizations occur within each simulation iteration. As shown in Egthe
difference of Execution Time between the approaches becomes more apparent when number of jobs in
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the system increases. When the Number of jobs is 20, this difference is negligible, while this gap becomes
larger when the Number of Jobs increase&0.

The impact of the IOS model on the system’s performance measures is examined and a few insights
are obtained. The first is that, as it appears in Fig(agehd &), the horizontal reference lines indicate
the positive impct of the I0OS on WIP and Cmax compared with SPT and EDD. The reason is, in 10S,
optimization manager provides an optimal schedules by considering sedpasece setup time and
processing time, while SPT takes into account flustshortest processing time. As is shown in Figure
3(c), there is a visible improvement in tardiness/earliness cost of the jobs as well. The reason that the I0OS
outperforms the EDD is that, the optimization manager takeseffestiveness into account while
calculating both tardirss cost and earliness cost of each job.

Table3: Thegeneralized factorial@kign of the experiment

Factors Responses of I nterest
Simulation Number of Executipn Cmax WIP Earliness / Tardines
Type Jobs Time (Min) (Min) Cost
EDD 20 0.3 140.1 1322.1 7503.5
EDD 40 0.9 233.4 4444 .4 28821.6
EDD 60 1.9 342.4 10282.7 79508.7
I0S 20 2.1 74.9 849.7 4760.8
I0S 40 13.1 130.2 2723.4 14360.1
I0S 60 27.3 177.0 5435.7 34652.4
SPT 20 0.4 107.1 1084.2 7670.7
SPT 40 1.4 234.2 4415.3 30740.1
SPT 60 2.1 352.0 10328.1 79184.5
Interaction Plot for Time
20 40 60
ez
Type £ k12
(3]
’ ; |
24 s NumO“Jn;J;:
18- = o3
12+ = NumOflobs
B
N
[0S SPT EDD

Figure2: Effects of &periment factors on Executidnme of thesimulation
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Effect of Simulation Type on WIP
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Figure3: Effect of IOS and No#OS simulation on manufacturing metrics

The impact of the second factor of this study, Number of Jobs in the system, is illustFitpdend,
as expected, the results prove that, by increasing the Number of Jobs, all of the system performance
metrics decline. By changing Number of Job from 20 to 60, not only Execution Tesehig also WIP,
Cmax and arlinesstardinesgostremarkably increase.
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Figure 4: Effect of Number of Jobs on manufacturing metrics

5 DISCUSSION AND CONCLUSION

The proposed I08amework is novel from many perspectivEgst, the introduced method leegieshe
capability of aData Base Management System (DBMS) for transferring thefatathe both simulation
andoptimization managsr This models able to consider parameters such as: the state of the system at
upstream and downstream locations by igdrom a continuldy updated database. Another benefit of
the model is independency thfe simulation and optimization managevhich are perfornmg separately
acrass a local network over multiple CPUs.

This promising approach can be applied in anylhsetic system, where uncertainty prevails.
According to Rogers anBlanaganin thiskind of environment, it may be beneficiad change the way
the shop is controlled at certain points in time (Re@gad Flanagan 199Mherefore, this method forms
a simulatioroptimization model which is consistent with the real incidents that occur in the stochastic
systems in redime. Most of the examples provided in this study refer to manufacturing systeite,
this model is applicable to variety of stochastic systems. For instance, one can apply this framework to
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simulate a healthcare system while the user uses optimization module to get an optimal scheduling of the
patients for physicianghe possible trigger events could beswnpatient arrival, call in sick of two
physiciansor even out of limit patients aiting time

Deploying this favorable 10S model, improvie® accuracy of the system’s simulation analysis for
long-term planning, while it optimésseveral times without simplifying tressumptionsOne can verify
the accuracy of the 10S model by comparing the model’s results such as Cmax, taoin®gtP, etc.,
with the actual manufacturing system performance.

One concermassociated with th method is the potential forslow exection. In this study the
tradeoffs between objective measures and execution speedaaneed The experiment results indicate
that,the I0S model compare to the Non-IOS approaches (SPT and EDRgs longer ExecutionTime”
but progressively improves the system’s performance. It needs to be mentioned that, the Execution Time
differencebetween these twapproaches becomes more apparent when tingblr of dbs in the system
increases. In thease of 2¢obs,almost no dierence exists betweehelOS and the NoOS in terms of
ExecutionTime, but the IOS yields better performance measures. Whereasgiffesencegap becomes
more evidentvhen the Number of Jobs increases to 60.

6 FUTURE WORKS

This approach is speculatiaead needs further evaluation befarglementation in a reatorld system.

The data in the current database can be substituted with real data from ERP shistesuggested
frameworkcan be used as the basis for future stuieshhance the discrete event simulation endise.

a suggestionfor future researchhe optimization manager caiso utilize the optimization historical
results to boost the optimization process, by mining common patterns in theAbata multiple
optimization algorithmould be embedded into the platform in order to evaluate different mathematical
problems. @e can investigate the efficiency of various optimizers and select the most appropriate one.
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