
Proceedings of the 2015 Winter Simulation Conference
L. Yilmaz, W. K. V. Chan, I. Moon, T. M. K. Roeder, C. Macal, and M. D. Rossetti, eds.

TRADEOFFS BETWEEN OBJECTIVE MEASURES AND EXECUTION SPEED IN
ITERATIVE OPTIMIZATION-BASED SIMULATION (IOS)

Mohammad Dehghanimohammadabadi
Thomas K. Keyser

Department of Industrial Engineering and

Engineering Management
Western New England University

Springfield, MA, USA

ABSTRACT

In this paper an Iterative Optimization-based Simulation (IOS) framework is designed, developed and
examined. This framework includes a threefold contribution of Simulation, Optimization and Database
Manager. In this IOS model, optimization takes place repeatedly at the model’s operational level to
optimize the combination of system’s state variables during the simulation run. Predefined trigger events
momentarily pause the simulation and activate optimization in order to optimize the system’s
configuration. This cycle replicates until the simulation reaches its timespan. By deploying this promising
IOS model, practitioners can take advantage of a long-term simulation run of their system, while it
optimizing several times according to the occurrence of predefined incidents. The main concern here is
the trade-off between simulation and optimization which is examined in this study. The results prove a
positive impact of the IOS approach on the system’s performance measures, although it takes longer to
execute compared to the Non-IOS approaches.

1 INTRODUCTION

The dichotomy between simulation and optimization is fading gradually, as researchers are applying a
balanced use of simulation and optimization Figueira and Almada-Lobo (2014). Since its inception, the
Simulation-based Optimization (SO) approach has gained popularity quickly. SO provides a structured
approach to optimize parameter values, where optimization is performed on a function of the output
variables (steady state or transient) associated with a simulation model Swisher et al. (2004). Typically,
SO methods have been widely applied in various industries and with computer advances, integration of
these methods has seen remarkable advances. Figueira and Almada-Lobo (2014) has overviewed variety
of well-known SO approaches and has proposed a taxonomy. According to this study, one major class of
SO models is Iterative Optimization-based Simulation (IOS) which an optimization manager is embedded
in a simulation agent. In the IOS approach, optimization would be called during simulation execution.

IOS models are not extensively studied and less than a handful of studies can be found in the
literature. The aim of this paper is to review the existing studies and propose a generalize IOS framework.
The proposed framework could be integrated with simulation software engines to effectively handle
stochastic events in a simulation run. Therefore the main contributions of this paper are listed as follow:

 • develop an Iterative Optimization-based Simulation (IOS) framework which can be applied to a
wide range of complex systems, e.g. Manufacturing, Healthcare, etc. • include the ability to call optimization with predictable and unpredictable trigger events in
simulated time

2848978-1-4673-9743-8/15/$31.00 ©2015 IEEE

Dehghanimohammadabadi and Keyser
 • analyze the trade-off between execution time and cost of the model vs. Non-IOS approaches

Additionally, most of the optimization-simulation models are designed for short term planning with

limited stochasticity. While, this novel IOS model, enables practitioners to take advantage of a long-term
simulation run of their system while it has been optimized several times according to predefined incidents
without simplifying assumptions.

As opposed to other papers that call optimization at predictable events during simulation run, this
framework is able to trigger optimizer by occurrence of predictable and unpredictable events. For
instance, in a manufacturing system, predictable event could be job completion, and unpredictable event
could be machine failure or new job arrival.

The trial version of this framework has been coded in C# and has been integrated with SIMIO as
simulation manager, MATLAB as optimizer and MySQL as database manager. Although most of the
examples in this paper are referred to a manufacturing system, however, this promising approach can be
applied in any stochastics system, where uncertainty prevails, e.g. healthcare systems, supply chain
system, etc.

The remainder of this paper is organized as follows. In order to clarify the aim of this study and the
gap that it is addressing, the literature review of the most recent IOS approaches are shown in Section 2.
Section 3 is dedicated to the details of the framework and structure of different components of the model.
The results of the proposed method are shown in Section 4 while Section 5 is devoted to summary and
concluding remarks. The recommendations for future research of this study are stated in Section 6.

2 LITERATURE REVIEW

A large number of studies have been conducted on the subject of simulation optimization during last two
decades. Figueira and Almada-Lobo (2014) recently categorized these methods into two different classes
including Solution Evaluation and Solution Generation techniques. Solution evaluation approaches
compare a set of solutions in solution space and will come up with the best or set of the best solutions.
Some of the main methods of this class include statistical selection methods, metaheuristics, random
search, stochastic approximation and reverse simulation technique.
 The other type of SO models are called “Solution Generation” (SG) methods. SG approaches do not
compare the solutions’ advantages, but simply compute some variables which would be part of the whole
solution generation. According to Figueira & Almada-Lobo, Solution Generation methods are subdivided
into two categories: “Solution Completion by Simulation” (SCS) and “ Iterative Optimization-based
Simulation” (IOS). In the SCS, the optimizer discovers initial solutions under ideal conditions. Then, tries
to achieve a better and more accurate value for a subset of initial solution’s variables. While in the IOS
techniques, optimization functions in a simulated system. The optimization takes place frequently at the
model’s operational level to optimize the combination of system configuration during the simulation
timespan. In this method, the simulation module may either face a need for optimization or use a trigger
event which calls for optimization. In fact, simulation momentarily halts itself and transfers the state of
the system to the optimization manager, which solves an analytical problem that is accordingly
formulated to account for the current system’s state.
 Very little, if any, has been reported in the literature relating to Interactive Optimization-based
Simulation approaches. Jeong (2000) introduced the idea of condition-based events IOS which is called
optimized simulation-based scheduling system (OSBSS). OSBSS seeks to find an optimized schedule
with aid of the simulation optimizer by using Artificial Intelligence (AI) search techniques. In this
framework the optimizer module interactively communicates with a simulation module to identify the
improved dispatching rules. Subramanian et al. (2000) used an IOS approach to solve a stochastic
optimization related to the management of a Research and Development (R&D) pipeline problem (cross-
project management of all tasks associated with a particular set of objectives with a limited pool of
resources). Subramanian et al. extended their earlier study by developing a twin-loop computational

2849

Dehghanimohammadabadi and Keyser

architecture, which integrates mathematical programming and discrete event simulation Subramanian et
al. (2003). The inner loop of this computational architecture does simulation-optimization of timelines,
which later can be fitted in the outer loop, called risk-control loop. The latter, obtains improvements in the
solutions to the underlying stochastic optimization problem.
 Gupta and Sivakumar (2005) presented a Conjunctive Simulated Scheduling (CSS) scheme which
combines the concepts of simulation and scheduling of a shop. Here, as soon as a resource is released, a
new job has to be selected as the next operation on this resource. At this decision point, scheduling of jobs
is done and the simulated clock is progressed forward. In this study, simulation-based scheduling signals
optimization just by occurrence of predictable events in simulated time which are job completions.

Mejtsky (2007) described a metaheuristic algorithm for simulation optimization which carries out
simulation runs simultaneously and evaluates different simulation runs during their execution before the
end is reached. This algorithm leverages a branching approach which mirrors the decision tree of an
optimization problem. Kulkarni and Venkateswaran (2014) developed an iterative simulation and
optimization approach where a discrete-event simulation model is interfaced with a meta-heuristic based
solver. Sivakumar (2001) designed, developed and implemented a discrete event simulation-based “on-
line near-realtime” dynamic multiobjective scheduling system. This model dynamically generates
schedules in a manner to achieve Pareto optimal cycle time distribution and machine utilization. In their
model, for short–term analysis, simulation is initiated by using a deterministic approach with defined
rules and policies.

3 METHODOLOGY

The IOS approach that is designed, developed and implemented in this research includes a threefold
contribution of Simulation, Optimization and Database Managers. These system managers operate in
harmony to achieve the goal of selecting the best system configurations (e.g. scheduling, resource
allocation, etc.) for different states of the system. In this approach, the simulation manager (Simio TM)
marches through the time until any of the predefined trigger events occur and halts the simulation
momentarily. When a trigger event occurs, a snapshot of the manufacturing system will be taken in order
to store the current state parameters of the manufacturing system into the database (MySQL).
 This approach yields an optimized status of the entire environment upon a stochastic event
occurrence. The main concern here is the trade-off between simulation and optimization which can occur
either moment-by-moment, in periodic scheme or on an event-driven basis. In moment-by-moment IOS,
glimpses of the simulation’s run constantly transfer to the optimizer for every single event within the
simulation run, while in periodic scheme this could occur on a regular basis. However, the most
applicable and realistic type of these techniques is event-driven basis or trigger-based IOS. These events
will be activated during the simulation run once the status of the system changes and needs optimization.
Therefore, simulation will momentarily pause itself and transfer the state of the system and variable
attributes to the optimization manager. The optimization manager solves an analytical problem and sends
the results back to the simulation. In order to have better understanding of the proposed framework, all of
examples are provided here are drawn for a manufacturing system. However, this does not limit the
model's practical usefulness for manufacturing system and could be applicable to any kinds stochastic
environment.
 This framework is capable to signal the optimization with either predictable or unpredictable events
with simulated time. The predictable events involve a certain amount of predictability whose are usually
controllable in real world systems by users, e.g. shift schedule optimization or schedule optimization after
each job completion. Unpredictable events in the system are those random events that are not necessarily
under the user’s control and require quick response in a real-world system e.g. machine failure, machine
repair or new job arrival. Therefore, this framework is designed in such a way that could mimic any type
of events that require system optimization in the real world environment.

2850

Dehghanimohammadabadi and Keyser

 Two different types of trigger events are considered in this study. The first type of trigger events are
limit-based events, e.g. jobs’ tardiness or machines’ utilizations. These monitor the performance of the
system and trigger the optimization manager upon limit being exceeded circumstances. The second type
of triggers are event-based, e.g. machine breakdown or new demand, which upon their occurrence cause
the simulation to pause and call for optimization. Several possible events are listed in Table 1. The details
of these three managers and their integration are described as follows.

3.1 Simulation Manager

In any organization, leadership is the most important factor and its support is crucial for sustaining
continuous improvement in organizations (Dehghanimohammadabadi and Keyser 2014). Simulation
modeling is pivotal element in any improvement changes because it empowers researchers to reduce the
risk and cost of the changes. Simulation determines the ideal state before touching the real-world system
which could be a sufficient justification to convince managers to adopt improvements.

 In this methodology SimioTM is utilized as the simulation manager. Simio stands for “SIMulation
modeling framework based on Intelligent Objects” (Pegden 2007). The main reason that Simio is
considered for this study is that the software is programmed in C# language and is compatible with any
other C# modules. This “Application Programmers Interface” (API) allows the users to customize or
extend their designed model properly. The extension could be adding new steps, elements and rules,
importing and exporting data, enhancing experimentation with external algorithms, or interfacing from
external programs. For this study, a few APIs are utilized or programmed in order to integrate the
simulation manager with other components of the model. A few of these steps are listed as follows:

 • DbExecute, DbRead and DbWrite step instances are used in order to store the simulation
attributes to the MySQL database. The frequency of data transfer can be adjusted by the user. • A “user defined” step instance called “OptTrig” is programmed to launch the optimization
manager whenever needed. In this step, the occurrence of any predefined event along the
simulation run, will halt the simulation temporarily and execute the optimization manager. It
needs to be stated that, in addition to the previously mentioned steps, several other steps are
required to be embedded into the simulation modeling in order to detect the trigger events.

Table 1: List of possible events which act as an optimization trigger for a manufacturing system.

Type Event Parameters Description

Event-
driven
basis

Machine
Breakdowns

MTBF
MTTR

If a machine breaks down or repairs, the number of available
resources changes and the manufacturing system needs to be
reconfigured.

Preventive
Maintenance

Maintenance
Schedule

Due to the Preventive Maintenance (PM) plans, machines can
be unavailable during certain periods.

Demand
Pattern

Demand’s
rate

Demand’s fluctuation signals the optimizer to adopt the
manufacturing system configuration accordingly.

Limit
based
events

Unexpected
Tardiness

USL
LSL

The average tardiness is monitored upon the most recent
finished entities and, if it i s beyond limits, the optimizer will be
called.

Machine
queue length

Threshold
A threshold limit could be set up to alarm the simulation once
average queue length of the server(s) intensifies.

Machine
Utilization

MnMU
MxMU

dropping the machine utilization below Minimum Machine
Utilization (MnMU) or above Maximum

2851

Dehghanimohammadabadi and Keyser

 The conceptual algorithm of this framework is explicitly described in Table 2 and includes two main
phases. In phase 1, prior to simulation initialization, substantial supporting information such as resources,
jobs, processing times, setup time, due dates etc. will be stored to the database manager. This information
is usually available from Enterprise Resource Planning (ERP) systems. Then, the optimizer calculates the
initial optimal scheduling and updates the second layer of the database (L2). At this point, the simulation
has the first optimal solution and is ready to run. The real IOS scheme occurs through the second phase of
the model. Any pre-defined event will trigger the framework to dynamically update the scheduling of jobs
in the system. The details of the framework system and relationship between managers are described as
following.

3.2 Database Manager

The use of a database is easily motivated, especially with large amounts of data and supports the
convenient preservation and management of data (Syberfeldt et al. 2013). A database manager is utilized
in this paper in order to store and retrieve optimization results and simulation system attributes. The
Database manager in this framework is the single point of interaction between simulation and
optimization manager and plays a “connecting chain” role in this model. In case of implementing this IOS
framework for real-world systems, the ERP data could exported to the database. Moreover, if simulation
runs for long-term strategic planning, database could store huge amount of data regarding system
attributes and all of the achieved optimal solutions during simulation run.
 This database is composed of two layers, L1 and L2. The first layer (L1) is devoted to relevant data
from the simulation manager, which would be utilized later as inputs for the mathematical modeling. In
the real world systems, the required data may either derive from system sensors or the output of a high-
fidelity numerical simulation model (Shi and Zhou 2009). In this model, an abundance of instant data will
be readily available for further analysis by embedding proper Simio steps (DbWrite, DbRread and
DbExecute) during the simulation runs. This data is composed of several attributes and variables from
different states of the system, which will be taken by snapshotting the manufacturing system along
different states. This data will be used for the current manufacturing state assessment via optimization.
The L2 stores the optimization solutions to be fed into the simulation model and updates the
manufacturing system setting. All of the aforementioned data persist in database until simulation
completes. The MySQL database is integrated to the model because it is fast enough for our framework, it
is reliable free of charge and equally important, has an available API for the C# programming language.

Table 2: IOS framework algorithm: A manufacturing system example.

Initial
Phase

1: Update the first layer of database (jobs, machines, stages, processing and setup
times, due dates, etc.)

2: Run optimization model.
3: Derive initial scheduling solution.
4: Update the second layer of database (Assign jobs to available machines and

priorities).
5: Feed the solution to the simulation model.
6: Run simulation model.

IOS
Phase

7: while unprocessed-jobs != 0 do
7.1: If trigger-event-occurs then

7.1.1: Pause the simulation.
7.1.2: Take snapshot of the simulation
7.1.3: Update database (unprocessed jobs, available machines).
7.1.4: Form new mathematical modeling based on unprocessed jobs and

2852

Dehghanimohammadabadi and Keyser

3.3 Optimization Manager

One of the advantages of this research is that the optimization manager is independent from a specific
optimization method. Varieties of analytical tools can be plugged into the model and function as
mathematical solvers. Once the trigger event signals the optimization manager, the required data will be
taken from first layer of the database and will be fed to the optimization manager.

A Parallel Machine Scheduling (PMS) problem has been modeled. In the classical PMS problem,
there are ݊ number of jobs which can be operated on any of ݉ available machines with specific
processing time and without preemption. The objective is to find the optimal schedule in terms of certain
performance measures of the system. MATLAB is used to develop the mathematical modeling and
optimization algorithm of a single-stage parallel machine scheduling. The first algorithm that is used is
Simulated Annealing (SA) which provides near to optimal solution. SA was developed by Kirkpatrick,
Gelatt, and Vecchi (1983) and its name is inspired by annealing from metallurgy. SA has shown
successful applications in a wide range of combinatorial optimization problems, and this fact has
motivated researchers to use simulated annealing in many simulation-optimization problems (Rai and
Ettam 2013). This algorithm starts with an initial feasible solution, then a cooling schedule will be
utilized to move from one solution to another for identifying the optimal solution (Rai and Ettam 2013).
The mathematical modeling of the current problem is presented follows:

3.3.1 Assumptions

Several assumptions are assumed in this case which are stated as follows:
 • All jobs and available machines are ready to be scheduled in time zero. • Preemption of operations of each job is not allowed. • The setup times are sequence-dependent, which means the setup time varies from one job to other

job on each machine. • Different jobs have different processing time on each machine. • Each machine can process only one operation at a time. • Each job has a distinct due date and must be processed only one time. • Each job can be processed only by one free machine. • All machines are unrelated.

In this method, once the triggers take place, the simulation is paused and the manufacturing system

configuration is controlled.

available machines.
7.1.5: Run optimization model.
7.1.6: Derive new scheduling solution.
7.1.7: Update the L2, the second layer of database (Assign jobs to available

machines and priorities).
7.1.8: Feed the solution to the simulation model.
7.1.9: Run simulation model.

7.2: end if
8: end while
9: Return the simulation results (Cmax, Machine utilizations, WIP, etc.).

2853

Dehghanimohammadabadi and Keyser

3.3.2 Notation

Subscripts ܰ The number of Jobs ܯ The number of Machines ݅, ݆ Index for job (݅, ݆ = 1,2, … ,ܰ) ݉ Index for machine (=݉ 1,2, … (ܯ,

Input parameters ܲ Processing time of job ݅ on machine ݉ ଶ Normalized weight of earliness/tardinessݓ ଵ Normalized weight of makespanݓ݉ Factory cost per time unit (including variable and invariable costs) ܵ Setup time for assigning job ݅ after job ݇on machine ߣ ݅ The tardiness penalty of job ݅ ݀ Due date of jobߚ ݅ The earliness unit penalty of jobߙ

Decision variables ܥ Completion time of job ݅ ܥ௫ Total completion time or makespan ܧ Earliness of job ݅;ܧ = max {0,݀ െ ;݅ } ܶ Tardiness of jobܥ ܶ = max {0,ܥ െ ݀} ݕ 1 if job ݅ on machine m precedes job ݆; otherwise, it is zero.

3.3.3 The mathematical model

minܼ = min൭ݓଵ × ௫ܥߣ + ଶݓ × ߙܧ + ߚ ܶே
ୀଵ ൱ (1) ܯ × ݕ + ൫ܥ െ ൯ܥ + ܵ ,݅ ݆ ߳ ܰ; ܯ (2) ;ܯ ߳ ݉ × (1 െ (ݕ + ൫ܥ െ +൯ܥ ܵ ,݅ ݆ ߳ ܰ; ܥ (3) ;ܯ ߳ ݉ െ ݀ ܶ (4) ;ܰ ߳ ݅ ݀ െ ܥ ௫ܥ (5) ;ܰ ߳ ݅ ܧ ݕ (6) ;ܰ ߳ ݅ ܥ א ,݅ {0,1} ݆ ߳ ܰ; ܶ (7) ;ܯ ߳ ݉ ܧ, ܥ, (8) ;ܰ ߳ ݅ 0

Equation (1) is the objective function which aims to minimize makespan (ܿ௫) and the total jobs’

earliness or tardiness cost at the same time. Inequality (2) and (3) impose the restriction that job ݅
precedes the job j or job j precedes job I on machine m. Earliness and tardiness of job ݅ are indicated at
equations (4) and (5). Equation (6) is used to calculate makespan which is the max of all of machines
completion time. Last two equations, constraints (7) and (8) are used to identify the binary variables and
non-negativity of decision variables.

2854

Dehghanimohammadabadi and Keyser

4 RESULTS

In this study the tradeoff between objective measures of system performance and execution speed is
explored. As is shown in Figure 1, these experiments are implemented on a simulated single-stage
manufacturing system with four parallel non-identical machines. In this simulation model, jobs are
processed in priority basis with different processing times and sequenced-dependent setup time.
 A generalized factorial experiment with two factors and up to three levels is designed. The first factor
is “Type of Simulation” which includes IOS compared with two Non-IOS techniques, Shortest Processing
Time (SPT) and Earliest Due Date (EDD), which are common heuristic dispatching rules. In the Non-IOS
approaches, simulation marches through the time until reaching the model timespan. In SPT, whenever a
machine is available, the shortest job for that particular machine is handled first and completed, while in
EDD, upon machine availability, the job with earliest due date is selected. In these two Non-IOS
simulation types, no trigger event has been embedded into the system which makes simulation run faster.
While, for IOS technique, in each optimization iteration, the SA algorithm solves a scheduling problem
where the objective function is the weighted summation of makespan and earliness/tardiness cost. In this
experiment, event-driven basis IOS approach is used with two triggers. These triggers are machines
failures and repairs which both change the number of available machines in the system. By changing the
number of available machines, the simulation manager initiates the optimization and reschedules all of the
unprocessed jobs according to the fresh optimal solution. For instance, as is depicted in Figure 1, if
Machine 1 fails, other machines take over processing for it.

Figure 1: Layout of the simulation model.

 Another factor considered is the “Number of Jobs” in the system with three levels: 20, 40 and 60 jobs.
In this experiment, the responses of interest are “Execution Time” of simulation and maximum
completion time or Cmax, Work In Process (WIP), and cost of earliness/tardiness of the jobs. The original
design in Table 3, shows one replication of the generalized factorial experiment design. The first two
columns of data, correspond to the factors of experiment with three types of simulation and three levels of
Number of Jobs. The yields of experiment are displayed in last four columns of the table.

The results of this experiment indicate that, the IOS framework clearly will affect the “Execution
Time” of simulation run. Implementing the IOS approach, as was expected, makes the simulation engine
slower since multiple optimizations occur within each simulation iteration. As shown in Figure 2, the
difference of Execution Time between the approaches becomes more apparent when number of jobs in

2855

Dehghanimohammadabadi and Keyser

the system increases. When the Number of jobs is 20, this difference is negligible, while this gap becomes
larger when the Number of Jobs increases to 60.

The impact of the IOS model on the system’s performance measures is examined and a few insights
are obtained. The first is that, as it appears in Figure 3(a) and 3(b), the horizontal reference lines indicate
the positive impact of the IOS on WIP and Cmax compared with SPT and EDD. The reason is, in IOS,
optimization manager provides an optimal schedules by considering sequence-based setup time and
processing time, while SPT takes into account just the shortest processing time. As is shown in Figure
3(c), there is a visible improvement in tardiness/earliness cost of the jobs as well. The reason that the IOS
outperforms the EDD is that, the optimization manager takes cost-effectiveness into account while
calculating both tardiness cost and earliness cost of each job.

Table 3: The generalized factorial design of the experiment.

Factors Responses of Interest

Simulation
Type

Number of
Jobs

Execution
Time (Min)

Cmax
(Min)

WIP
Earliness / Tardiness

Cost
EDD 20 0.3 140.1 1322.1 7503.5

EDD 40 0.9 233.4 4444.4 28821.6

EDD 60 1.9 342.4 10282.7 79508.7

IOS 20 2.1 74.9 849.7 4760.8

IOS 40 13.1 130.2 2723.4 14360.1

IOS 60 27.3 177.0 5435.7 34652.4

SPT 20 0.4 107.1 1084.2 7670.7

SPT 40 1.4 234.2 4415.3 30740.1

SPT 60 2.1 352.0 10328.1 79184.5

Figure 2: Effects of experiment factors on Execution Time of the simulation.

2856

Dehghanimohammadabadi and Keyser

 The impact of the second factor of this study, Number of Jobs in the system, is illustrated in Figure 4,
as expected, the results prove that, by increasing the Number of Jobs, all of the system performance
metrics decline. By changing Number of Job from 20 to 60, not only Execution Time rises, but also WIP,
Cmax and earliness/tardiness cost remarkably increase.

Figure 4: Effect of Number of Jobs on manufacturing metrics.

5 DISCUSSION AND CONCLUSION

The proposed IOS framework is novel from many perspectives. First, the introduced method leverages the
capability of a Data Base Management System (DBMS) for transferring the data for the both simulation
and optimization managers. This model is able to consider parameters such as: the state of the system at
upstream and downstream locations by reading from a continually updated database. Another benefit of
the model is independency of the simulation and optimization managers, which are performing separately
across a local network over multiple CPUs.

This promising approach can be applied in any stochastic system, where uncertainty prevails.
According to Rogers and Flanagan, in this kind of environment, it may be beneficial to change the way
the shop is controlled at certain points in time (Rogers and Flanagan 1991). Therefore, this method forms
a simulation-optimization model which is consistent with the real incidents that occur in the stochastic
systems in real-time. Most of the examples provided in this study refer to manufacturing system, while
this model is applicable to variety of stochastic systems. For instance, one can apply this framework to

Figure 3: Effect of IOS and Non-IOS simulation on manufacturing metrics.

2857

Dehghanimohammadabadi and Keyser

simulate a healthcare system while the user uses optimization module to get an optimal scheduling of the
patients for physicians. the possible trigger events could be new patient arrival, call in sick of two
physicians or even out of limit patients waiting time.

Deploying this favorable IOS model, improves the accuracy of the system’s simulation analysis for
long-term planning, while it optimizes several times without simplifying the assumptions. One can verify
the accuracy of the IOS model by comparing the model’s results such as Cmax, tardiness cost, WIP, etc.,
with the actual manufacturing system performance.
 One concern associated with this method is the potential for slow execution. In this study, the
tradeoffs between objective measures and execution speed are examined. The experiment results indicate
that, the IOS model compared to the Non-IOS approaches (SPT and EDD) has longer “Execution Time”
but progressively improves the system’s performance. It needs to be mentioned that, the Execution Time
difference between these two approaches becomes more apparent when the Number of Jobs in the system
increases. In the case of 20 jobs, almost no difference exists between the IOS and the Non-IOS in terms of
Execution Time, but the IOS yields better performance measures. Whereas, this difference gap becomes
more evident when the Number of Jobs increases to 60.

6 FUTURE WORKS

This approach is speculative and needs further evaluation before implementation in a real-world system.
The data in the current database can be substituted with real data from ERP systems. The suggested
framework can be used as the basis for future studies to enhance the discrete event simulation engine. As
a suggestion for future research, the optimization manager can also utilize the optimization historical
results to boost the optimization process, by mining common patterns in the data. Also, multiple
optimization algorithms could be embedded into the platform in order to evaluate different mathematical
problems. One can investigate the efficiency of various optimizers and select the most appropriate one.

REFERENCES

Dehghanimohammadabadi, M., and Thomas, K. 2014. “Does the Iranian National Productivity and
Excellence Award Get Leadership Buy-In.” In Proceeding of 2014 Annual IIE Conference, Montreal,
QC. http://www.xcdsystem.com/iie2014/abstract/finalpapers/I994.pdf.

Figueira, G., and Bernardo, A. 2014. “Hybrid Simulation–optimization Methods: A Taxonomy and
Discussion.” Simulation Modelling Practice and Theory.
http://www.sciencedirect.com/science/article/pii/S1569190X14000458.

Gupta, A., and Appa I. S. 2005. “Conjunctive Simulated Scheduling.” The International Journal of
Advanced Manufacturing Technology 26 (11-12): 1409–13.

Jeong, K. 2000. “Conceptual Frame for Development of Optimized Simulation-Based Scheduling
Systems.” Expert Systems with Applications 18 (4): 299–306.

Kirkpatrick, S., C. D. Gelatt, M. P. Vecchi, and others. 1983. “Optimization by Simmulated Annealing.”
Science 220 (4598): 671–80.

Kulkarni, K., and Jayendran V. 2014. “Iterative Simulation and Optimization Approach for Job Shop
Scheduling.” In Proceedings of the 2014 Winter Simulation Conference, edited by A. Tolk, S. Y.
Diallo, I. O. Ryzhov, L. Yilmaz, S. Buckley, and J. A. Miller, 1620–31. Piscataway, NJ: Institute of
Electrical and Electronics Engineers, Inc. http://dl.acm.org/citation.cfm?id=2694054.

Mejtsky, G. J.. 2007. “A Metaheuristic Algorithm for Simultaneous Simulation Optimization and
Applications to Traveling Salesman and Job Shop Scheduling with Due Dates.” In Proceedings of the
2007 Winter Simulation Conference, edited by S. G. Henderson, B. Biller, M. Hsieh, J. Shortle, J. D.
Tew, and R. R. Barton, 1835–43. Piscataway, NJ: Institute of Electrical and Electronics Engineers,
Inc. http://dl.acm.org/citation.cfm?id=1351871.

2858

http://dl.acm.org/citation.cfm?id=1351871

Dehghanimohammadabadi and Keyser

Pegden, C. D. 2007. “SIMIO: A New Simulation System Based on Intelligent Objects.” In Proceedings of
the 2007 Winter Simulation Conference, edited by S. G. Henderson, B. Biller, M. Hsieh, J. Shortle, J.
D. Tew, and R. R. Barton, 1835–43. Piscataway, NJ: Institute of Electrical and Electronics Engineers,
Inc. http://dl.acm.org/citation.cfm?id=1351948.

Rai, S., and Ranjit K. E. 2013. “Simulation-Based Optimization Using Simulated Annealing for Optimal
Equipment Selection within Print Production Environments” In Proceedings of the 2013 Winter
Simulation Conference, edited by R. Pasupathy, S.-H. Kim, A. Tolk, R. Hill, and M. E. Kuhl, 1097–
1108. Piscataway, NJ: Institute of Electrical and Electronics Engineers, Inc.
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6721499.

Rogers, P., and Maureen, T. F. 1991. “Online Simulation for Real-Time Scheduling of Manufacturing
Systems.” Industrial Engineering 23 (12): 37–40.

Shi, J., and Shiyu, Z. 2009. “Quality Control and Improvement for Multistage Systems: A Survey.” IIE
Transactions 41 (9): 744–53.

Sivakumar, A. I. 2001. “Multiobjective Dynamic Scheduling Using Discrete Event Simulation.”
International Journal of Computer Integrated Manufacturing 14 (2): 154–67.

Subramanian, D., Joseph F. P., and Gintaras V. R. 2000. “A Simulation—optimization Framework for
Addressing Combinatorial and Stochastic Aspects of an R&D Pipeline Management Problem.”
Computers & Chemical Engineering 24 (2): 1005–11.

Subramanian, D., Joseph F. P., Gintaras V. R., and Gary E. B.. 2003. “Simulation-Optimization
Framework for Stochastic Optimization of R&D Pipeline Management.” AIChE Journal 49 (1): 96–
112.

Swisher, J. R., Paul D. H., Sheldon, H. J., and Lee W. S. 2004. “A Survey of Recent Advances in Discrete
Input Parameter Discrete-Event Simulation Optimization.” IIE Transactions 36 (6): 591–600.

Syberfeldt, A., Ingemar, K., Amos, N., Joakim S., and Torgny A. 2013. “A Web-Based Platform for the
Simulation–optimization of Industrial Problems.” Computers & Industrial Engineering 64 (4): 987–
98.

AUTHOR BIOGRAPHIES

Mohammad Dehghanimohammadabadi is a PhD candidate in Engineering Management, Western
New England University, MA, USA. This article is part of his PhD dissertation which is related to
develop a new Iterative Optimization-based simulation method. In this research, he is seeking to add a
new feature to the simulation software packages by running an optimizer manager through a simulation
run. His Email address is mohammad.dehghani@wne.edu.

Thomas K. Keyser is a Professor of Industrial Engineering and Engineering Management, Western New
England University, MA, USA. He has published over 30 works in multiple journals and conference
proceeding and has done several projects related to the simulation. He has received funding from
organizations such as National Science Foundation, National Institute of Standards and Technology,
GTE, and General Electric Aircraft Engines. His Email address is thomas.keyser@wne.edu.

2859

mailto:mohammad.dehghani@wne.edu

