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ABSTRACT

We introduce La-pdes, a parameterized benchmark application for measuring parallel and serial discrete

event simulation (PDES) performance. Applying a holistic view of PDES system performance, La-pdes

tests the performance factors of (i) the (P)DES engine in terms of event queue efficiency, synchronization

mechanism, and load-balancing schemes; (ii) available hardware in terms of handling computationally

intensive loads, memory size, cache hierarchy, and clock speed; and (iii) interaction with communication

middleware (often MPI) through message buffering. La-pdes consists of seven scenarios for individual

performance factors and an agglomerative stress evaluation scenario. The scenarios are implemented through

concrete values of input parameters to La-pdes, which include number of entities and events, endtime,

inter-send time distributions, computational and event load distributions, memory use distributions, cache-

friendliness, and event queue sizes. We demonstrate through instrumentation that La-pdes assumptions

regarding distributions are realistic and we present results of the eight scenarios on the PDES engine Simian.

1 INTRODUCTION

Benchmarks are a fundamental tool for measuring and describing the performance of a specific hardware

and software combination. Benchmarking and benchmarks are widely used across multiple quantitative

disciplines of computer science. The SPEC benchmark suite is used by computer architects to evaluate

architectural improvements (e.g. cache sizes and eviction strategies) and used by compiler developers to

measure the speedups induced by various optimizations. They are useful because they offer computer

architects and compiler writers a simple toolset for evaluating the effects of an optimization or design

choice. Within the high performance computing (HPC) community, the LINPACK benchmark is used as

the single most relevant metric for ranking the performance of the world’s fastest computers (Dongarra et al.

1979, TOP500 ). Unfortunately, because the LINPACK benchmark is a single application that measures

the performance of linear algebra operations on a dense matrix, it is not necessarily representative or

predictive in describing the performance for many classes of applications, such as adaptive mesh refinement

and sparse matrix operations. Further, as the architecture of HPC systems have become heterogeneous

(leveraging general-purpose graphics processing units (GPGPUs) and dense compute co-processors) new

benchmarks are emerging that evaluate performance over a much larger range of workloads and hardware

designs (Murphy et al. , Dongarra and Heroux 2013).

Within the PDES community, the Phold benchmark (Fujimoto 1990) and the recent benchmark based on

Phold (Bahulkar et al. 2010) are important tools for describing the level of parallelism and scalability achieved

by a parallel simulation toolkit. However, the Phold benchmark provides only a small degree of control over
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the number and types of events occurring within a logical process versus events occurring between logical

processes. With the proliferation of heterogeneous computer systems in the HPC community, it is necessary

to develop new PDES benchmarks that are capable of representing the complexity and hierarchical nature

of emerging compute platforms and their associated programming models. That is, the PDES community

needs new benchmarks that evaluate the performance of the models that then simulate these complex,

heterogeneous computer systems.

In this paper we describe a new benchmark suite for parallel simulators, La-pdes. La-pdes offers fine-

grained control over the events processed within an entity, and those requiring service by an additional entity.

Further, La-pdes enables the evaluation of a simulator under extremely diverse, yet realistic computation,

memory access, and communication workloads. In detail, La-pdes evaluates the performance factors of (i) the

(P)DES engine in terms of efficiency of the event queue management, the synchronization mechanism, and

load-balancing schemes; (ii) the hardware in terms of handling computationally intensive loads, memory

size, cache hierarchy, and clock speed; and (iii) the interaction with the communication middleware

(often MPI) in terms of message buffering. La-pdes defines seven different scenarios to evaluate these

performance factors individually and one additional scenario for an agglomerative evaluation that touches

all aforementioned performance factors. These different scenarios are implemented through concrete values

for the twelve input parameters in La-pdes, which can also be set to mimic specific real PDES applications,

including agent-based simulations and network simulations. La-pdes parameters consist of the number of

entities and events, end time, inter-send distributions, computational and event load distributions, memory

use distributions, cache-friendliness, and event queue size. To validate this benchmarking approach, we

instrument existing simulation applications and show the La-pdes distributions are realistic. In order to

demonstrate the utility of the La-pdes benchmark, we implement the benchmark for a simulation toolkit.

2 RELATED WORK

La-pdes provides different scenarios to evaluate the efficiency of event queue management, handling

computationally intensive loads, memory utilization, the synchronization mechanism, the load-balancing

schemes, and quality of message buffering. Also one additional agglomerative scenario evaluates all of

these factors together. Although benchmarks exist to evaluate (P)DES, to the best of our knowledge,

La-pdes is the first benchmark that evaluates various performance factors of (P)DES both individually and

in an agglomerative way.

The Phold benchmark is the most popular benchmark for evaluating the performance scalability of

PDES, that is ensuring that a PDES engine improves performance as the number of processors and memory

are increased across a distributed computer (Fujimoto 1990). The Phold benchmark mainly evaluates a

PDES ability to handle computationally intensive loads and event queue scalability; La-pdes provides a more

thorough list of scenarios that includes more performance factors than the Phold benchmark. Moreover, La-

pdes differs from Phold in that La-pdes uses random variables with user-specified probability distributions

to generate communication inter-send times, memory usage, and computational characteristics.

In Liljenstam et al., the authors present a partitioning technique for personal communication systems

(PCS), and evaluate the effectiveness of the partitioning technique in terms of balancing the load across

multiple SWiMNet simulation instances (Liljenstam and Ayani 1997). Similarly, Thulasidasan et al. proposes

a partitioning technique to achieve balanced computational load in distributed simulation environments

and evaluates the load balancing using real applications including FastTrans (Thulasidasan et al. 2010).

Researchers have also focused on the quality of event queue management algorithms as an important area

for evaluating simulation engine performance (Yan and Eidenbenz 2006, Rönngren et al. 1991). The

La-pdes benchmark recognizes that this is a vital area of PDES research, and thus provides a capability for

evaluating these algorithmic advances across multiple application domains easily, without a dependence

on detailed knowledge of the internals and implementation of a particular simulation application.
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3 LA-PDES BENCHMARK APPLICATION

The La-pdes benchmark application is controlled through a set of twelve parameters that allows the

benchmark to mimic the behavior of real discrete event simulation applications. The parameters enable

fine-grained control over the numbers of events, the number of entities, the distribution of events to sending

and receiving entities, the memory footprint per entity, the computational load incurred by the event

handlers, and finally a “dial” to set the cache-friendliness of the selected computational loads. Although we

only discuss an La-pdes implementation for the Python Simian PDES engine (Santhi 2015), the La-pdes

application can be implemented for any discrete simulation engine.

In constructing our simulation benchmark, we postulate that the assignment of entities to LPs, and

any potential entity migration between LPs, is a task that the simulation engine needs to solve for the

application, rather than as an input from the application or benchmark. This notion is partially based on our

simulation domain, where emerging compilers and programming models dynamically map parallel tasks

onto heterogeneous compute resources to increase utilization and efficiency (Thulasidasan et al. 2010,

Dagum and Menon 1998, Wienke et al. 2012, Grimshaw et al. 1999). Popular frameworks, such as

Metis (Karypis and Kumar 1995), or, more simply, hints provided by the application programmer suffice to

influence the entity mapping algorithms of the simulation engine. Interestingly, due to this base assumption,

La-pdes is not well-suited to mimic the behavior of Phold, a popular PDES benchmark, which explicitly

distinguishes between on-LP and off-LP events.

La-pdes has a simple high-level architecture. Each entity, Ei, has a SendHandler, a ReceiveHandler, and

a local list data structure, Li, consisting of floating-point value elements. The SendHandler is responsible

for sending events to destination entities, and upon completing a send, the handler re-schedules itself for the

next event. The ReceiveHandler is responsible for receiving an event and then calculating a specific number

of floating point multiplications and additions using the list elements. The time spent in these calculations

results in adjustments in the scheduling of additional events. Table 3 shows all of the parameters that make

up the La-pdes input set.

We have implemented La-pdes for the Python version of the Simian PDES engine and report results in

the subsequent sections. La-pdes as an application is about 250 lines of Python code, which can be ported to

other simulation engines in a few days if the work is performed by an expert on the simulation engine. For

instance, we have implemented La-pdes versions for Simian Lua (the Lua version of Simian PDES engine),

which took an hour of work for the port. Similarly, it took two days of work to implement La-pdes for the

C/C++ based MiniSSF (MiniSSF ) by a MiniSSF expert. The Python/Lua version of La-pdes are found at

the Simian website (Simian ). As future work, we plan to implement and test La-pdes for ROSS (ROSS

) and NS-3 (NS-3 ). We are also working towards a more comprehensive instrumentation and statistical

analysis of existing DES applications.

3.1 COMMUNICATION CONTROLS

La-pdes provides controls for the patterns of communication volume for each entity. Consider an entity

Ei, such that i ∈ {0, . . . ,nent −1}. Both a target for the number of messages to send, si, and a target for the

number of messages to receive, ri, are provided on a per entity basis.

Temporal communication patterns are controlled by setting an inter-send time interval of τi for entity

Ei. More formally, let S = nent × sent be the total number of messages in the simulation (where nent is the

number of entities and sent is the average number of sent events per entity). We define the probability that

an entity sends a message as: pi
send := psend(1− psend)

i where pi
send is the probability that a message (out

of all S messages) is sent by entity Ei. This probability is described by a geometric distribution, that is,

the probability distribution of the number of messages to choose before selecting a message sent by Ei

with probability psend . The messages to be sent for entity Ei are thus: si := pi
send ×S. Entity Ei computes

si at initialization. It then computes its inter-send time interval τi: τi := T
si

, where T is the end time of

simulation, which we set T := S.
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Table 1: Description of parameters for La-pdes.

Parameter Default Value Range Description

Communication Parameters

nent - 1, . . . ,∞ Number of entities

sent - 1, . . . ,∞ Average number of send events per entity. The total number

of expected events is nent × sent . Individual entities determine

how many events they need to send based on psend and their

index. Then they adjust their local inter− send time using an

exponential distribution.

endTime 1000 1.0, . . . ,∞ Duration of simulation. Note that minDelay is always 1.0 where

minDelay represents a minimum delay value for synchronization

between MPI ranks.

preceive 0 [0,1] Parameter for geometric distribution of destination entities

indexed by entity index. Entity Ei receives a fraction of

preceive× (1− preceive)
i−1 of all the requested messages. Lower-

indexed entities receive larger shares. preceive = 0: uniform

distribution. preceive = 1: only entity E0 receives messages.

psend 0 [0,1] Parameter for geometric distribution of sender entities indexed by

entity index. Entity Ei sends a fraction of psend × (1− psend)
i−1

of all the requested messages. Lower-indexed entities receive

larger shares. psend = 0: uniform distribution; psend = 1: only

entity E0 sends messages.

invert F {F, T} Flag to indicate whether receive and send distribution should

be inverted. If it is set to True: the highest-indexed entity sends

the most messages.

Memory Parameters

ment 1 1, . . . ,∞ Average memory footprint per entity, modeled as the average

linear list size (8 byte units). Each entity has a local list as a

data structure that uses up memory.

plist 0 [0,1] Parameter for geometric distribution of linear list sizes. Set to

0 for uniform distribution; Set to 1.0 to make entity 0 the only

entity with a list.

qavg 1 1, . . . ,∞ Average number of events in the event queue per entity at a

point in time. For individual entities, this is made proportional

to the number of total events that the entity needs to send.

Default value is 1. Higher values will stress-test the event

queue mechanism of the DES engine

Computation Parameters

opsent 1 1, . . . ,∞ Average number of operations per handler per entity. Com-

putational cycle use is implemented as a weighted subset sum

calculation of the first k elements of the list with randomly

drawn weights. Each entity linearly scales down the number of

operations based on its local list size as determined by plist .

opsσ 0 [0,1] Variance of number of operations per handler per entity, as a

fraction of opsent , drawn from gaussian distribution.

cache f riendliness 0.5 [0,1] Determines the way to access elements in the list Li. Setting to

p to accesses the first p fraction of list elements; Setting to 0.0

to accesses only the first list element; Setting to 1.0 to accesses

all the elements. We set to 0.5 if no other value is known.
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Upon being called for the kth time, the SendHandler of entity Ei first picks a destination entity E j by

drawing a random index j, where j ∈ {0, . . . ,nent −1} according to a geometric distribution with parameter

preceive. It then sends the message to the ReceiveHandler of entity E j with a time delay of MinDelay, where

we set MinDelay to 1.0. Finally, the SendHandler determines the inter-send time τ
k
i between sending the

kth and the k +1th event by drawing a value randomly from an exponential distribution with mean value

τi and schedules its own next execution at time τ
k
i in the future.

The concept of having send and receive events distributed according to a geometric distribution is

intended to mimic the observed behavior that a minority of the entities become bottlenecks in DES

computations (Pooch and Wall 1992), as these entities handle large shares of the traffic. This behavior

usually becomes more pronounced when the simulation model has a number of different types of entities.

In standard mode, the lower-indexed entities both send and receive the highest volumes of communication

traffic. However, by using the boolean invert parameter, La-pdes allows users to reverse the ordering for

the number of send events, such that the high-index entities send the most traffic. To avoid this behavior,

we set preceive to 0 to ensures all the entities receive an equal number of events, namely sent . On the other

hand, setting preceive to 1 ensures entity E0 is the only entity to receive all S, which is the total number of

messages in the simulation. The same settings apply for controlling psend .

Setting the endTime parameter only has an effect on performance while running in parallel mode, as

it does not change the total number of events. However, a shorter endTime will compress the scheduling

time frame, thus allows La-pdes and users to stress-test the underlying message passing system.

3.2 MEMORY CONTROLS

Memory allocation plays a crucial role in parallel discrete event simulation. Large memory requirements

are often the main reason to move from a serial DES to parallel DES engine, trumping even CPU cycle

concerns. In particular, this is often the case in communication network simulation, where large memory-

hungry routing tables need to be maintained. La-pdes allows its user to control the quantity of memory

allocated by each entity. We again define an average value of memory allocated per entity ment , thus

resulting in a total memory allocation of M := mentnent for the entire simulation. In our Python-based

La-pdes implementation, we count memory requirements in units of eight bytes because a float element

stored in a Python list is eight bytes. Memory allocation is in the form of a Python list composed of with

random float elements. The list Li = {li
0, . . . , l

i
mi
} is of length mi and consists of fixed, but random valued

floating point elements. At initialization, each entity Ei computes the number of elements mi in its list as

follows: mi := M× [plist(1− plist)
i] where plist is the input parameter of a geometric distribution. Similar

to the other geometric distributions: if plist = 0, all entities have a list of equal length, specifically ment . If

plist = 1, only entity E0 has a list of length M.

In addition to the memory allocated by entities to execute their event handlers, memory is also used

by the simulation engine itself in maintaining the event queue. La-pdes controls the average event queue

length by defining an input parameter qavg, which is the average number of SendHandler events in the

queue at any given time that has been generated by an entity. Thus, if run in serial mode, the number of

SendHandler events in the queue should be qavgnent . Each entity Ei schedules a number qi of SendHandler

events into the future, where qi is a version of qavg proportional to the total number of send events si that Ei

generates: qi =
qavg

sent
si. Setting qavg = 1 results in the classic timer behavior, where the entity just schedules

its own SendHandler. If setting qavg = k, the SendHandler generates the kth SendHandler event into the

future. Making k very large will cause all events to be scheduled at the beginning of the simulation.

3.3 COMPUTATIONAL CONTROLS

Control over the time spent in computation is the third element of La-pdes. Let opsi be the number of

floating point operations that entity Ei needs to execute per received message. To compute opsi, we need

to return to looking at a global system view, rather than a per-entity view. The input parameter opsent
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is the average number of float operations per entity per received message. Let OPS := opsentnent be the

total number of operations across all entities for their first received messages. We make the number of

operations for an entity Ei proportional to its list length mi as follows: opsi := OPS
M

×mi In order to allow

for computational load differences among the entities (even on a per received message basis), we actually

construct the number of operations as a random variable that we draw from a normal distribution with

a mean of opsi as defined above and a variance of opsσ opsi, where opsσ is an input parameter. For

convenience, we define opsl = OPS
M

as the number of operations per list element, making it easy to mimic

algorithms that traverse every list element. If cache f riendliness is set to 1.0, the float operations are

performed as a double nested-loop over all mi list elements each with an inner loop over opsl iterations,

where in each inner loop iteration, a term r · li
j is added to an aggregate prefix sum. Variable r is a random

float weight and li
j is the float value of the list element. This computation is shown in Figure 1.

m_i = {active elements in the list}; ops_l = {number of ops per active element};

r = random float weight; sum = 0

for i in range(m_i):

for j in range(ops_l):

sum += list[i][j] * r

Figure 1: A Pseudo Code for ReceiveHandler.

The choice of a randomly-weighted prefix sum computation is due to the fact that such a doubly-nested

loop cannot be optimized away by advanced compilation techniques. On the other hand, it does lend itself

nicely to hardware acceleration techniques (such as GPGPU processing elements or vectorized processing

units). Since we require an additional floating point random number for each step, our actual FLOP count

is at least twice as large and we should perhaps declare the unit of the input parameter opsent as two floating

point operations if the user cares about absolute correctness.

4 STATISTICAL ANALYSIS OF PDES APPLICATIONS

As a first step in validating the La-pdes, we instrumented a set of applications for Simian, and measured their

empirical distributions to demonstrate that the provided distribution parameters for La-pdes are realistic

and typically found in real PDES applications. The metrics we chose to collect included the following

data:

• nsent/nrecvd: The number of events sent/received per entity,

• memuse: The memory usage per entity,

• event inter-send time: The time between each send event,

• handling time: The time spent in the communication and computation handlers,

• queue depth: The number of elements enqueued at every certain time stamps.

We performed our instrumentation using ActivitySim and Filesim. ActivitySim simulates a large-scale

graph algorithm based on independent agents performing both independent and interactive activities (Galli

et al. 2009). ActivitySim is representative of computationally intensive algorithms, and thus is representative

of many computationally intensive simulation workloads. FileSim, which simulates the complex I/O behavior

at scale for parallel file systems (Erazo et al. 2012), exists at the opposite end of the spectrum, and its

execution time is dominated by extensive communication traffic between entities.

Figure 2-(a) shows the empirically collected measurements of the time spent in handlers (which are

almost exclusively responsible for determining the time spent in computation) overlaid with a gaussian

distribution using the empirically observed mean, and the observed standard deviation for ActivitySim.

Similarly, Figure 2-(b) shows the event inter-send times overlaid with a exponential distribution. For FileSim,

we plotted the observed nsent and nrecvd and the geometric distribution with parameter pest = 1
1+E(X) ,

where X are the observed nsent or nrecvd as shown in Figure 3. We observed that nsent and nrecvd data in
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Figure 2: This figure plots the histograms and fitting curves for the observed handling times and event

inter-send times for the ActivitySim application. The fitted curve overlaid on each histogram is based on

a gaussian distribution for handling time and a exponential distribution for inter-send time, respectively.
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Figure 3: This figure plots the observed nsent/nrecvd and fitting curves for the FilsSim application. The

fitted curve overlaid on each line graph is based on a geometric distribution with parameter Pest , where Pest

is 0.048 for nsent and 0.042 for nrecvd, respectively.

the instrumented applications best fit a geometric distribution. Based on the empirical distributions found

in our selected applications, we configured the distribution parameters for La-pdes benchmark.

5 THE BENCHMARK PROCESS WITH LA-PDES

In order to effectively use the La-pdes benchmark to stress a simulation engine, we have identified eight

important parameter configurations that each stress a specific aspect of a PDES system as summarized

in Table 5. For our purposes, a PDES engine must provide efficient implementations for the message

passing infrastructure (e.g. MPI middleware running on a high performance interconnection network), the

computational hardware (including the memory hierarchy, main memory size, and processor frequency),

and the simulation engine. The first column of Table 5 describes the PDES aspect emphasized for evaluation

in that respective configuration. The second column describes whether the configuration requires an MPI

environment to run. That is, the second column describes whether the parallel aspect of the PDES system

is stressed. The final column shows the La-pdes input set values used during the benchmark invocation.

Any value not shown in the table uses the default values described earlier in Table 3.
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Table 2: Eight validation configurations for La-pdes.

Evaluation Category Test Object MPI Configuration

Efficiency of Event Queue Management DES No qavg = 1,0.2×sent ,0.8×sent ,0.8×sent ,sent

Computationally Intensive Loads H/W No opsent = 102
, . . . ,105

H/W Memory Hierarchy Utilization H/W No ment = 106, opsent = 106,

cache-friendliness= 0, .5, 1.0

Synchronization Mechanisms PDES,MPI Yes MPI rank = 1,4,8,16

Load Balancing PDES Yes preceive = 0.5, opsent = 104

Load Balancing with Unevenly Dist. Ops. PDES,H/W Yes opsent = 104, plist = 0.5

Quality of Message Buffering PDES,MPI Yes endTime = 3,5,10,102
, ...,106

Agglomerative Evaluation PDES, Both preceive=.5, psend=.5, inverse=T,

H/W, endTime=100, ment=103, plist=.5,

MPI qavg = .4× sent , opsent = 1000,opsσ = .3

For each of the eight configurations La-pdes reports the number of events per second as the metric for

evaluating performance. Fundamentally, the number of simulation events per second of wallclock time is the

single best description of the performance for a PDES engine. Events per second is fundamentally analogous

to the general computation speed, which is defined as the wall clock time divided by the simulation time.

For these measurements, we only seek to observe the steady state behavior, thus long-running executions

are typically not necessary to assess the speed of simulation.

Finally, we have identified four of the eight validation configurations as requiring MPI (i.e. executing

the PDES in parallel rather than in serial). In order to examine the parallel simulator scalability we evaluate

the simulator using 1, 4, 8 and 16 MPI processes. Our validation hardware platform, an Intel Xeon E5-based

desktop with 12 cores operating at 2.7 GHz running Apple OSX, had 64GB of main memory and an L3

cache size of 30MB. Because the system has only 12 cores, we are not able to provide a dedicated core

in the 16 process MPI configuration. Thus, across all of the multi-process configuration, we are able to

assess the PDES scaling in the case where dedicated compute cores exist, and in the case where the total

number of compute cores is over-subscribed by the number of simulation processes.

Figure 4 and Figure 5 show the resulting events per second for each of the benchmarking configuration

executions La-pdes on the Simian PDES engine. In Figure 4-(a),(b),(c) and Figure 5-(d), the x-axis is the

pair (nent ,sent), which describes the number of entities in the benchmark configuration and the number of

events sent per entity. That is, the axis label (10,10) indicates that 10 total entities sent 10 events each. The

x-axis values range from (10,10) to (1000,1000). The total number of sent events then scales from 100 to

1000000; however, how these events are distributed among the entities is a key criteria for exploring the

simulator performance. In Figure 4-(d) and Figure 5-(a),(b), x-axis represents the number of MPI processes

and each pair of the number of entities and the number of events sent per entity are shown as a legend.

Figure 5-(c) has a similar format except that it has different values for endTime in x-axis.

Efficiency of Event Queue Management: The benchmarking results shown in Figure 4-(a) demon-

strates the efficiencies associated with how the simulation engine manages the event queue. This evaluation

does not require MPI, and all parameters are set to their default values except qavg. We configured qavg

to each of 1, 0.2sent , 0.5sent , 0.8sent , and sent . We observe that irrespective of queue sizes, as the number

of events sent per entity increases, the total events per second decreases. This is expected because each

entity is servicing a larger number of events, leading to longer insertion times. However, we also note that

as the queue size increases from 1 to sent entries, the events per second metric improves. Thus Simian is

able to efficiently leverage a larger queue size to achieve a higher overall event rate.

Computationally Intensive Loads: Figure 4-(b), shows the benchmarking configuration we use

to determine how well the PDES performs with computationally intensive loads. MPI does not need to

be enabled for this configuration, as this type of computation is embarrassingly parallel. In La-pdes, we

vary opsent from 102 to 105. We limit the upper bound to 105 because the time required to complete

benchmark simulation run was excessive. We observe that Simian’s performance in terms of events per
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(a) Efficiency of Event Queue Management
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(b) Computationally Intensive Loads
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(c) H/W Memory Hierarchy Utilization
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(d) Synchronization Mechanisms

Figure 4: This figure plots the events/second for the first four configurations shown in Table 5.

second decreases as we increase the computational load (however, the performance is largely independent of

the number of entities and events). This is natural, as we are increasing the quantity of computational work

performed for each event per entity. However, we can observe that Simian’s computational performance

scaling is very similar send-event scaling demonstrated in the first figure.

H/W Memory Hierarchy Utilization Our third benchmarking configuration measures how efficiently

the simulation engine takes advantage of a given memory hierarchy. For this scenario, we evaluated Simian

with ment = 106, opsent = 106, and three different cache f riendliness parameters: 0.0, 0.5, and 1.0. Recall

that a value of 0.0 causes only the first list element to be repeatedly access, while a value of 1.0 results in

iteration over the entire list of floating-point elements. Figure 4-(c) then demonstrates that Simian is able

to use the available cache independently of the number of entities or events. Further, Simian’s performance

is highly correlated to the cache f riendliness parameter, thus Simian does an excellent job simulating both

cache-friendly and cache-unfriendly workloads.

Synchronization Mechanisms In order to explore the quality of the synchronization mechanisms

used within the Simian PDES, we explore the simulator’s performance as we vary the number of processes,

and the number of entities and events. In Figure 4-(d) we can see that Simian is leveraging the hardware-level

parallelism well, as when we over-subscribed the number of processes per core (a degenerative workload),

performance falls dramatically as we add entities and events.

Load Balancing Because Simian provides powerful mechanisms for partitioning the entities among

the logical processes, it is critical to examine the quality of the load balancing achieved by the PDES. To

measure the load balancing effectiveness, we enable MPI during these runs and configure La-pdes such that

preceive = 0.5 and opsent = 104. This results in each entity receiving an equal proportion of the work, thus

Simian must partition the workload so that entities are well balanced across each of the MPI processes.

The results shown in Figure 5-(a) demonstrate that as the number of entities and events are increased,
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(b) Load Balancing with Unevenly Distributed Operations
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(c) Quality of Message Buffering
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(d) Agglomerative Evaluation

Figure 5: This figure plots the events/second for the last four configurations shown in Table 5.

Simian is able evenly divide the work, and provides stable performance. Even in the degenerative case,

where there are more processes than cores, Simian is able to provide stable performance.

Load Balancing with Unevenly Distributed Operations While partitioning an evenly distributed

load is critical, it is also not a very difficult benchmark on which to excel. We also wish to examine

the load balancing aspect of PDES engines when the entity workload is unevenly distributed, a workload

that is hard to simulate with existing simulation benchmarks. We achieve this in La-pdes by configuring

opsent = 104 and plist = 0.5. Figure 5-(b) shows that again, Simian is able to achieve a stable performance

even while the work per entity is unevenly distributed. We attribute this to Simian’s ability to perform

entity migration between processes, a critical performance optimization for parallel simulation engines

simulating unbalanced workloads.

Quality of Message Buffering La-pdes also allows us to benchmark the message buffering capabilities

of the PDES engine. We scaled the benchmark input parameters, so that the endTime ranged from 3, 5, 10,

102
, . . . ,106 with 12 MPI tasks. In Figure 5-(c) we see that the results fall into two categories. The smaller

simulations decrease in performance as the endTime is increased because a subset of the entities finish

their processing before the endTime is reached. On the other hand, larger simulations initially exhibit low

performance under the extreme communication workload, however, performance increases as the endTime

is increased and the entities are able to balance the load effectively. Even so, given an extreme endTime,

subsets of the entities complete processing prior to the endTime and reduce the overall events/second metric.

This means that, in general, large simulations will take time proportional to the growth in the population

of events and entities, rather than exhibiting a negative scaling factor as the number of processes increases.

Agglomerative Evaluation We created this benchmark configuration as a general-purpose/wildcard

test. The agglomerative evaluation seeks to the all aspects of the PDES engine simultaneously, boiling

all the previous results into a single evaluation metric. Thus, for this test we examined Simian with both
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MPI enabled and disabled. When we enabled MPI, we used 16 MPI ranks (the most challenging parallel

configuration since the physical compute cores are over-subscribed), and used the final configuration shown

in Table 5. Figure 5-(d) depicts how Simian performed with this configuration. Unlike many of the earlier

tests, we see that as the number of entities and events are increased, Simian’s performance is reduced

drastically. However, if we focus only on the 3 smallest size evaluations, we note that the parallel Simian

invocation is trending higher, whereas, in the sequential invocation the events per second is trending lower.

Exploring the large knee apparent in these measurements is our next task in improving the performance of

Simian’s parallel implementation.

6 CONCLUSION

This paper introduces La-pdes, a benchmark for PDES systems. The La-pdes benchmark emphasizes the

use of probability distributions in its input parameter set so that message inter-arrivals, memory use, and

time spent in computation are governed by random variables, rather than simple fixed values or ratios. We

demonstrated that probability distributions are an effective way to mimic real simulation applications by

noting the similarity of the distributions generated La-pdes and those created by the real simulation codes

ActivitySim and FileSim. We then demonstrated the effectiveness of La-pdes at evaluating simulation

engines, by describing how eight different input parameter sets can be used to stress a simulation engines

management of event queues, computational efficiency, use of the memory hierarchy, the efficiency of

its message passing infrastructure, and load balancing. Finally, we used La-pdes with these input sets to

evaluate Simian, a Python parallel simulation engine that implements several advanced parallel optimizations.

This publication has been assigned the Los Alamos National Laboratory identifier LA-UR-15-22468.
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