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ABSTRACT 

A variety of metamodeling concepts, methods, and tools are available to today’s modeling and simulation 
community. The Model Driven Architecture (MDA) framework enables modelers to develop platform 
independent models which can be transformed to platform-specific models. Considering model 
development according to the MDA framework, structural metamodeling is simpler as compared to 
behavioral metamodeling. In this paper, we shed light on and introduce behavioral metamodeling for atomic 
DEVS model. Behavior specification for an atomic DEVS model is examined from the standpoint of the 
MDA framework. A three-layer model abstraction consisting of metamodel, concrete model, and instance 
model is described from the vantage point of the DEVS formalism and the Eclipse Modeling Framework 
(EMF), a realization of MDA. A behavioral metamodel for atomic DEVS model is developed in EMF 
Ecore. This metamodel is introduced to complement the EMF-DEVS structural metamodeling. Some 
observations are discussed regarding behavioral metamodeling, model validation, and code generation. 

1 INTRODUCTION 

A variety of methods may be used to represent time-based dynamics of systems. The behavior of a system, 
for example, can be modeled using set-theory, UML diagrams, and pseudo code. Each kind of model serves 
certain purposes and must ultimately be mapped to programming code suitable for execution in one or 
possibly multiple target simulators. A mathematical model is useful for defining a system’s structure and 
behavior independent of software design and simulation technologies. UML Class and Statecharts diagrams, 
among others, are useful for designing complex modeling and simulating engines which may or may not 
necessarily have mathematical grounding. Computer code can be developed and/or partially generated based 
on mathematical or certain kinds of software specifications. Each of these methods has its strengths and 
weaknesses and none is currently considered to contain all the necessary capabilities required for generating 
executable simulation code.  
 The atomic and coupled models in the DEVS formalism (Zeigler, Sarjoughian, and Au 1997) are 
“metamodels”. From the standpoint of MDA, DEVS has an abstract syntax and an execution semantics 
which together define a modeling language for discrete event systems. The set-theoretic DEVS models are 
abstract mathematical artifacts. An atomic DEVS has its elements defined, for example, as sets, functions, 
and relations. These model elements individually and collectively satisfy certain general abstract properties 
and constraints. For example, a model can receive a finite number of input events within a finite period of 
time at arbitrary time instances, process these inputs with state changes within a time period, and generate a 
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finite number of output events. It is the responsibility of the modeler to show that the developed atomic 
models for a given target simulator satisfy the properties and conform to the constraints defined for the 
DEVS atomic formal specification. 
 In the MDA framework, a concrete atomic DEVS model for a system component, relative to its 
metamodel, has specific structural (e.g., inputs and states with possible specific values) and behavioral 
elements (e.g., state transitions for specific source and target states with assigned times to next events). The 
metamodel is a language within which concrete models can be developed. Furthermore, a concrete model 
may also satisfy constraints such as state variable types and state transitions sanctioned for specific 
application domains. Full-fledge behavioral DEVS metamodeling can support automatic conformance of 
concrete models to their metamodels. This capability can significantly reduce the amount of manual effort 
required to show concrete models satisfy their metamodel properties and constraints. 

From a tool’s perspective, a simulator such as DEVS-Suite (ACIMS 2015) is designed as a collection of 
UML classifiers and relations that capture some aspects of the set-theoretic atomic and coupled parallel 
DEVS models. These models can also be collectively referred to as a DEVS UML “metamodel”. The 
inputs, states, and outputs, and internal, external, output, and time advance functions of the model are 
defined abstractly; they by themselves are not executable. For example, the data structure for input is 
defined as a pair (port-name and input-variable) where port has a string type and input variable has an entity 
type. Similarly, the external transition function is defined as a method with specific arguments, but without 
any actual implementations for the state transitions and conditions under which they are to be performed. As 
in its mathematical counterpart, a concrete atomic model must have instances of the port-name and input-
variable attributes belonging to the UML classes and interfaces. The realization of the formal DEVS models 
as UML specifications is advantageous. UML includes abstractions such as data typing, return types, and 
control structures that enrich the abstract atomic DEVS model specification. These models can be 
transformed to partial code for programming languages using professional tools dating back to the 1990s. 

Simulators such as DEVS-Suite do not explicitly account for domain-specific modeling. A modeler can 
develop domain-specific models using object-oriented modeling principles and design patterns. The 
domain-neutral contracts embodied in the DEVS UML models can be enforced in an ad-hoc manner using 
low-level techniques such as checking for data type compatibility and expected values for concrete models 
that are implemented in some specific programming languages. These contracts cannot account for domain-
specific knowledge; they must be extended. This approach becomes complicated and unwieldy as scale and 
complexity of the system to be simulated increase. Such resulting simulators lack rich capabilities to support 
and develop domain-specific metamodels and also are unable to validate basic model properties and 
constraints such as data typing and legitimate state transitions, for example. MDA-based modeling, 
however, can lend itself to develop and automatically validate behavior of any domain-specific DEVS 
concrete model against its metamodel and by extension the general-purpose atomic DEVS model. 

Given the above discussions, we can make a few observations. When concrete atomic DEVS models 
are developed using programming languages, it is difficult to ensure they conform to their abstract model. A 
substantial amount of effort is required to concretize behavioral abstractions. Therefore, it is important for 
the meta and concrete atomic models to be systematically related to each other as proposed in the MDA 
framework. This is especially important given that the challenging part of developing models of complex 
systems is specifying their behaviors. Therefore, we need an atomic DEVS metamodel which can support 
behavioral modeling (e.g., receiving sanctioned input events and legitimate state transitions with timing). 
Toward this goal, we propose behavioral metamodeling for the general-purpose and domain-specific atomic 
models using the Eclipse Modeling Framework (Steinberg et al. 2008). Consistency between these models 
can be specified and enforced (referred to as validated) with automation. Concrete models can be generated 
from their domain-specific metamodels. Behaviors contained in these metamodels can significantly reduce 
the amount of effort to create concrete models and improve their quality using automated code generation.   
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2 BACKGROUND 

In this work, our goal is to develop concepts that can enable building a framework capable of specifying 
meta-behavior for atomic DEVS models that can be used to create concrete atomic DEVS models. Toward 
this goal, we employ Model-Driven Engineering (MDE) and in particular, the MDA framework with its 
EMF realization. Although there are a variety of DEVS-based modeling and simulation tools, in this work 
we use the DEVS-suite simulator for developing the proposed behavioral DEVS metamodel. 

2.1 MDA and Model Layers 

The Model Driven Architecture (MDA) framework has been proposed for developing software systems 
(OMG 2003). Its main concept is a four-layer model abstraction hierarchy. A key abstraction concept in 
MDA is for a classifier and its instances to form a two-layer hierarchy. A classifier has an abstract 
specification that can have one or more instances. Classifiers can be said to be universal and instances can 
be said to be specific. Every classifier is at a higher level of abstraction in relation to its instance. Instances 
are related to one or more classifiers via conformance relationship. This implies having complementary 
models each of which having a certain role to play and collectively provide a disciplined roadmap for 
developing software systems. Each higher-level layer provides capabilities that are more abstract as 
compared to those provided by lower-level layers. Conversely, each layer is built using the elements 
provided in the layer above. 
 A realization of the MDA approach consists of Meta Object Facility (MOF), Unified Modeling 
Language (UML), User Model, and User Object modeling layers (OMG 2003). At the meta-metamodel 
(M3) layer, the MOF has an Ecore specification for defining metamodels in the OMG’s family of MDA 
languages. Defined using the UML metamodel, the M3 layer supports computation-independent metadata 
management, metadata services, model management, tag capability, and reflective operations among others. 
The metamodel (M2) layer can have models that conform to the M3 layer. The M2 layer is directed at 
platform-independent modeling. These models can be domain-specific. The Ecore at the M2 layer can be 
used to define concrete models at the M1 layer. The M0 layer is used to define instances of models specified 
at the M1 layer. The M3, M2, M1, and M0 layers support incremental development of models for 
component-based systems. It is useful to note that the separation of concerns in MDA is important for 
developing software system tools including simulators.  

2.2 DEVS Atomic Model 

The set-theoretic specification of parallel atomic model ܺۃ, ܵ,ܻ, ௫௧ߜ ௧ߜ, ߜ, , ,ߣ  .is domain-neutral ۄܽݐ
Its input and output are defined in terms of port names and variables. The variables can be arbitrarily 
complex. Atomic models are responsible for handling differences in the input and output variables. From 
software design, appropriate I/O type consistency is required. For any user-defined (and domain-specific) 
model, the internal, external, and confluent, time advance, and output functions can have arbitrary logic as 
long as they satisfy the abstract definitions provided in the mathematical atomic model specification. A 
restricted specification of parallel DEVS called Finite Deterministic DEVS (FD-DEVS) (Hwang and 
Zeigler 2009) has been developed. Events and states are defined to be finite sets and external and internal 
events are allowed to occur at time intervals restricted to rational numbers. No time interval between one 
event and the next can be infinitely small. This is achieved by abstracting time to be rational instead of real 
numbers. When states are simple, possible state transitions can be enumerated and unreachable states, 
identified. These restrictions can simplify model validation for the EMF-DEVS modeling described next. 

2.3 EMF-DEVS Atomic Model 

The EMF-DEVS (Sarjoughian and Markid 2012) is proposed as a metamodeling approach for the parallel 
DEVS formalism. The basic aim is to define and validate DEVS metamodels using the Eclipse EMF 
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framework. The EMF validation infrastructure is used to define the elements of DEVS models with a set of 
constraints defined according to the DEVS formalism and the target DEVS-Suite simulator which is 
implemented in the Java programming language. Structures of atomic and coupled meta-DEVS models can 
be modeled and validated. The generic capabilities provided in the EMF M3 and M2 layers are extended to 
support concrete models for the DEVS-Suite simulator. The EMF-DEVS metamodel can support input, 
output, and state sets as well as external, internal, output, and time advance functions. These abstract 
functions ߜۃ௫௧ ௧ߜ, ߜ, , ,ߣ ۄܽݐ  do not include the logic that is necessary to define behaviors. For 
example, the external transition function ߜ௫௧ does not define a generic transition from a source state to a 
target state with constraints and the output function ߣ does not define conditions for generating outputs. 
 In the context of metamodeling as in EMF-DEVS, the term validation refers to the Eclipse EMF 
validation framework and its execution engine. The Eclipse EMF has built-in validation mechanisms such 
as reflection for the metamodels at the M2 layer. Metamodels at the M2 layer can be validated for 
conformance to the meta-metamodel at the M3 layer. Concrete models at the M1 layer can also be validated 
to conform to DEVS metamodel. Here validation does not refer to execution of a metamodel over some 
period of time and determine whether or not it produces behavior per user requirements and expectation. 
Given a concrete simulation model (M1 layer), it can be verified to be specified correctly both in terms of 
M1 and M2 layers. When executed over some period of time and its behavior is recognized as acceptable 
for some defined experimental condition, the model is said to be valid. With respect to the verification and 
validation definitions for concrete models, the EMF-DEVS validation may be referred to as verification 
when a metamodel has domain knowledge (e.g., external transition function has the necessary control 
structure and other details to specify next state of a model given its current state and received input). 

3 RELATED WORK 

In this section, we primarily focus on behavioral DEVS atomic metamodeling and briefly consider the 
extent in which detailed specifications can be supported. Model-driven design approaches have been playing 
a greater role in developing complex simulation models. Focusing our attention on the OMG MDA 
framework and DEVS, we find some approaches that follow the MOF Technology Space (Bézivin and 
Kurtev 2005). In (Lei et al. 2009), a DEVS metamodel is devised for developing SMP2 (Simulation Model 
Portability standard). This metamodel is mapped to SMP2 metamodel using QVT (OMG 2003). Basic 
simple states and state transitions for atomic DEVS model are supported. In (Cetinkaya, Verbraeck, and 
Seck 2012), structural DEVS metamodeling can be supported. As in EMF-DEVS, behavior specification for 
atomic DEVS metamodel is not supported (see Section 2.3). 
 In the MOF technology space, some works have employed DEVS Natural Language (DNL), XML 
Schema, and Extended BNF for defining DEVS models. These support behavioral modeling using mostly 
the same ideas and methods. The MS4Me (Seo et al. 2013) focuses on modeling using DNL (Zeigler and 
Sarjoughian, 2012). The DNL as meta-language supports Finite-Deterministic DEVS models (Hwang and 
Zeigler 2009). MS4Me uses Xtext (Xtext 2013) to enforce DNL rules for simple inputs, outputs, states, state 
transitions, and timing. As a modern Java-like language, Xtend (Xtext 2013) supports developing FD-DEVS 
models. The MS4Me models can be augmented to become Parallel DEVS models using the full 
expressiveness of the Java language. It supports adding Java code to the model and thus developing Parallel 
DEVS models while maintaining a tight connection with the FD-DEVS models. The Java code is injected 
into slots in a structured manner using tagged code blocks. These are inserted directly into the generated 
source files. These tagged code blocks are used to specify additional behavior for initializing, internal 
transition, external transition, and output. Compared with FD-DEVS, classic or parallel DEVS models that 
have these kinds of code blocks are difficult to validate. The DEVSML (Mittal, Risco-Martín, and Zeigler 
2007) is developed to for DEVS simulation models that can be executed in net-centric computing 
environments. 
 Some works employ SysML (Nikolaidou 2008) and UML (Borland 2003) (Risco-Martín et al. 2009) 
(Mooney and Sarjoughian 2009) (Pasqua et al. 2012). A SysML profile is developed for classical DEVS. An 
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atomic model is defined as a collection of stereotype blocks. The behavior is defined by States Definition 
and Association diagrams. Atomic Internal and External diagrams are defined for the internal and external 
functions, respectively. The time advance and output functions are defined as part of the Atomic internal 
diagram. Similar to the above approaches, simple states with constraints are defined. The external diagram 
follows FSM with control elements such as choice, fork, and join elements. Time allocated to states can 
only be defined in the internal diagram. The DEVS SysML profile and DEVS MOF are intrinsically 
different due to their technology spaces. There exist other approaches that use “metamodeling” abstraction 
(Fard and Sarjoughian 2015; Ighoroje, Maïga, and Traoré 2012; de-Lara and Vangheluwe 2004). A survey 
discusses uses of some MDE approaches for DEVS (Garredu et al. 2014).  

4 ATOMIC DEVS METAMODELING  

The mathematical properties and constraints defining an atomic DEVS model can be applied to any 
implementation of it. Therefore, it is useful to have a framework that can not only capture the atomic 
model’s formal specification (i.e., a metamodel), but also enforce its syntax and semantics for domain-
specific metamodels. Another important advantage is to define models independent of any particular 
simulator—i.e., metamodels can be transformed to concrete models that can be executed in simulators that 
are implemented in specific computing platforms. This framework must (help) validate behavior of any 
concrete atomic DEVS model against its metamodel. To achieve this, we propose introducing behavioral 
metamodeling to structural metamodeling. The resulting metamodeling framework must also lend itself to 
developing metamodels for modelers’ domains of interests. This framework is also desired to support 
defining domain-specific concrete models for desired systems.  
 We intuitively define behavioral metamodeling as a set of concepts realized in a framework that 
supports specifying operational details of the internal, external, output, and time advance functions of any 
atomic DEVS model. These generic operations can be used to define behavior for any domain-specific 
DEVS metamodel. Domain-specific behavior can be specified by extending the generic DEVS metamodel 
behavior. That is, behavior of these functions are defined independent of computing platforms in which they 
can be fully implemented. The properties and constraints in the domain-neutral and domain-specific 
functions for the concrete models can be validated. The properties and constraints of the functions that are 
not satisfied in any concrete model are automatically identified and reported.  
 Figure 1 illustrates the concept of “meta” and “concrete” mathematical and UML modeling. The 
structure, unlike behavior, of mathematical atomic and coupled DEVS models can be completely specified 
both abstractly (as a metamodel) and concretely (as a concrete model). In mathematical modeling, a 
concrete model has more information relative to its metamodel. In the metamodel, ߜ௫௧ ௧ߜ, ߜ, ,  functions are abstract mathematical constructs. The abstract atomic DEVS model functions do not have  ܽݐ and ߣ
sufficient details, for example, as in Statecharts. Indeed Statecharts also does not capture the levels of detail 
in the functions that an arbitrary atomic model can have. In contrast, arbitrary concrete atomic models must 
have details including decision logics and control in the state, output, and timing functions. 
 The concept of meta and concrete models in UML are distinct as compared with the ones just described 
for a mathematical model. While UML metamodels are independent of computing platforms, concrete-
models are not. Separating models to be platform independent and platform-specific is important (see 
Section 2.1). Meta models are technology (simulator) agnostic. Concrete models include details that are 
specific to target simulators. The meta and concrete models can be related to one another. 
 Focusing on behavioral modeling, the line arrows from the concrete model and metamodel are 
conceptual. For mathematical modeling, one may construct relationships to show, for example, state 
transitions in an external transition function in a concrete model conform to the abstract external transition 
function specification. In UML modeling, one can include rules that can be applied to concrete models. The 
block arrows at the metamodel and concrete model levels involve complex modeling and software 
development tasks, requiring detailed design and code development.  
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    Considering the distinct roles mathematical and UML modeling offer, a desirable goal is to support 
both. The EMF framework (Steinberg et al. 2008) is a strong candidate as it already supports UML meta- 
and concrete modeling and it can support developing specific metamodels as in EMF-DEVS. In particular, 
the relationship between meta (M2 layer) and concrete models (M1 layer) is formalized. Furthermore, the 
EMF includes the metametamodel (M3 layer) and instance models (M0 layer). Given these, we extend the 
EMF-DEVS (Sarjoughian and Markid 2012) structural metamodeling to enable behavioral (functional) 
metamodeling. Generic and domain-specific metamodels with built-in and user-defined properties and 
constraints for the external, internal, output, and time advance functions are supported. Modelers may 
develop metamodels in a structured setting, thus leading to automation of metamodel validation as defined 
in EMF. (We note that validation is not referring to simulation validation.) Constraints defined for the 
generic and domain-specific atomic DEVS metamodels enable validating concrete atomic models. 

4.1 Meta-behavior Modeling in EMF  

We begin by sketching the basic details of the M2, M1, and M0 layers for the atomic DEVS model shown 
in Figure 1. At the M2 layer, the Ecore is an instance of the Ecore at the M3 layer. The M3 Ecore 
metamodel is at a higher level of abstraction with respect to the atomic DEVS metamodel. That is, the 
DEVS metamodel extends the instance of the M3 Ecore. The role of the M2 layer is to support developing 
concrete models at the M1 layer.  

   

 

Figure 1: From mathematical to UML to EMF modeling.  

 As noted earlier, the DEVS-Suite simulator is developed in Java, a strongly typed language. The kernel 
of the modeling engine contains data structures and operations that satisfy the DEVS modeling formalism. 
Thus, at the M1 layer, user-defined models can be generated from the DEVS metamodels. Suppose we want 
a Processor model which can receive bags of input, process one of them, and generate one or more outputs. 
Assuming we have an eProcessor metamodel, it can be used to create the concrete Processor model. This 
concrete model at the M1 layer can be created for a platform-specific simulator such as DEVS-Suite. An 
instance of the concrete model at the M0 layer can be executed by the DEVS-Suite simulator. 
  In MDA, the M0 layer refers to the instances of the user models. These can be physical objects or 
executable software objects (e.g., compiled code). Such instances can be modeled as UML Object diagrams. 
As software objects, they can exist at execution time and their states may be stored, for example, as XML or 
byte code. In contrast, for simulation, the M0 layer refers to the user’s parameterized atomic and coupled 
models. Therefore, at this layer, we have not only parameterized models but also their instances as part of 
other coupled model instances (see Figure 1).  
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 Although metamodeling is not as expressive as programming languages such as Java, it is shown to be 
useful, for example, as in the Graphical Modeling Framework (Gronback 2009). The metamodel behavior 
specification for DEVS functions is achievable using Statecharts (Harel 1987). The elements of a parallel 
atomic model at M1 can be arbitrarily complex. An example is the external transition function. It can have 
any attribute type, expressions, and control structures that a target computing platform supports. The 
signature definitions for the atomic model external and internal transition functions can be defined using 
structural metamodel as in EMF-DEVS. The abstract definitions for these two functions must include some 
operations needed to result in some appropriate state change. State changes in these functions can be defined 
as transitions amongst source and target states. A transition may have input event, condition, and actions. A 
prototypical state transition is defined to transition from a source state to a target state. Such a constraint for 
state transitions can be defined and validated at the M2 layer. The output and time advance functions can 
also be defined using operations and control structures. An operation can have attributes and statements 
(McNeill 2008). A metamodel behavior specification requires identifying abstractions for state transitions in 
the external, internal, and confluent transition functions. Similarly appropriate abstractions are needed for 
the output and time advance functions at the M2 layer. The behavior of all DEVS functions as just described 
can be validated using EMF. The definitions for the atomic model functions must be consistent with the 
abstract DEVS simulation protocol. 
 In order to model the content of EOperation, we need to extend the EMF Ecore metamodel (McNeill 
2008). Therefore, we will extend the Ecore metamodel to model DEVS functions that have been defined as 
EOperations (i.e., interface definitions) in EMF-DEVS. Our goal is not just to validate domain metamodels. 
We also aim to execute these functions after concrete models are generated for a specific simulator, DEVS-
Suite for instance. The code generation creates the corresponding code for the defined elements in the 
metamodel. In EMF, the generator model plays a significant role in how the resulting code could be 
generated and organized via some settings that may differ based on the targeted platform. Those settings can 
be configured separately to ensure that the model maintains its platform independency. The process can be 
manipulated in a way that will lead to producing concrete models. 
 Thus, the general metamodel, shown in Figure 2, extends the EMF Ecore metamodel with some 
definitions for state transitions, actions, and conditions, basic elements of the atomic DEVS model. The 
metamodel extends Ecore elements with DEVS functions and also others for defining behavior. By 
extending Ecore, we are enabling EOperation (which is used to define DEVS functions) to include some 
content which can be transformed into concrete code rather than just having operation signatures. The 
extended EOperations will be contained in the extended EClass (eAtomic in our case) since they cannot be 
contained in EClass itself. This is a reason for extending EClass and EPackage since the Ecore elements 
themselves (EClass and EPackage) will not allow adding the extended ones (Extended EClass and 
EOperation) (McNeill 2008). Therefore, we first extend EOperation as a basic step to support behavioral 
DEVS metamodeling. Second, we extend EClass to allow adding the extended EOperation. The third step is 
extending EPackage to allow adding the extended EClass. 
 The second part of the metamodel (shown in the middle of Figure 2) is specializing eDEVSOperation to 
represent external transition, internal transition, output, and time advance functions. All of these can include 
operations that have statements and local variables. They also may have return values. The eDeltExt and the 
eDeltInt represent external transition and internal transition functions. Both compose transitions defined to 
capture the concept of state transition. State transition has a name defined as an EString, source and target 
defined as an ETypedElement, input defined as an optional reference of type eInput to be used in the 
external transition function. It can also have some actions and conditions. We also added two specialized 
state transitions for the phase and sigma primary states. Source and target phase are added to the state phase 
transition (StatePhaseTransition) and defined as an EString. Source and target states for sigma are added to 
the state sigma transition (StateSigmaTransition) and defined as an EDouble. Any other specific state 
transition can be also defined in the same manner for domain specific models. The behavior is consistently 
captured at the general and domain-specific metamodeling at the M2 layer. The generic behavioral 
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metamodel is predefined for the modeler. The domain specific meta-behavior can be defined by the modeler 
as needed. The same approach is followed for the actions and conditions that are defined abstractly and then 
specialized to provide the support for developing the behavior at the concrete model. The eOutput and eTA 
elements refer to the eState in addition to the inherited composition feature from eDEVSOperation to 
support having other operations for more functionalities. 

 

 

Figure 2: A metamodel for atomic DEVS Model with state transitions.  

4.2  Constrained Meta-behavior Modeling 

The metamodel shown in Figure 2 is based on the parallel atomic DEVS model. This model has an infinite 
state-space and therefore model validation (as in model checking) is impractical. A sub-class of DEVS 
called Finite-Deterministic DEVS (FD-DEVS) (Hwang and Zeigler 2009) has finite state-space which 
makes it attractive for behavior modeling at the M2 layer. The total state of the atomic DEVS metamodel 
can be defined as {ݕݎܽ݉݅ݎ} × {ݕݎܽ݀݊ܿ݁ݏ} × Թ[,ஶ]. An atomic FD-DEVS model restricts the range of 
values for the time advance function to Է[0,∞]. Model validation is computable when the values for inputs, 
outputs, and states (including time to next event) are finite. These constraints can be validated for having 
legitimate output, time advance, and internal and external transition functions. Constraints for state 
transitions (belonging to both external and internal transition functions) can be validated. For example, 
states in any state transition can be validated to include only the states defined in the model’s state set and 
there are no unreachable states. For the external event, its input event can be checked to be included in the 
input set. State to output mappings can also be validated by checking whether or not every output belongs to 
the output set. We can also check if outputs are computed using states that belong to the state set. Time to 
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next event for every state transition must also belong to Է[0,∞]. When the time interval is infinity, three is no 
output. Validation of behavior domain-knowledge can be augmented with user-defined constraints. 
 Considering a domain-specific metamodel, they may have their own constraints on the input, output, 
and state sets as well as the atomic model functions. These constraints must be defined by the user, for 
example, by extending the EMF-DEVS metamodel. Users may specify domain-specific constraints using 
the EMF Eclipse framework and tool. Of course, user-defined constraints cannot contradict those that are 
defined for the generic metamodel. We note that the restrictions in the atomic FD-DEVS model and its 
dynamics may require complex control structures. State transitions in the external (or internal) transition 
function may have to be synthesized in complex patterns. Transitioning between external and internal 
transition functions can have many configurations. Similarly, the output and time advance functions may 
have complex structures. These considerations restrict the behavioral metamodeling describe above. 
Nonetheless, the capabilities afforded by MDA is advantageous as compared with model development 
where there is little or no means to start from metamodeling and reach executable models. Specific state 
transitions can be individually validated at the M2 layer. Behavioral metamodeling developed in this 
research aids model validation before transforming them to an M1 model and M0 simulation. Once concrete 
FD-DEVS models are generated from metamodels, they can be validated using existing techniques and tools 
(Dill 1990, Hwang, and Zeigler 2009)  

5 A PROCESSOR EXAMPLE BEHAVIORAL METAMODEL SNIPPET 

In this section, we will demonstrate the process of developing a domain specific model (eProcQ as shown in 
Figure 3), which represents a simple processor with a queue. The processor metamodel is developed using 
the definition provided at the atomic DEVS metamodel. The root element is eDEVSPackage, which can 
contain the eAtomic models such as eProcQ and any other EClass such as Entity and Queue. Entity and 
Queue EClasses are defined similarly to their definition in the DEVS-Suite GenCol library (ACIMS 2015). 
Figure 3.a shows all the model elements in the EMF editor and Figure 3.b depicts the corresponding Class 
Diagram for the eProcQ Ecore model. Detailed specifications are provided for the external transition 
function relative to other modeled elements such as model states and variables.  
 We created two transitions and gave the values associated with each one. The first transition is for the 
phase and the other one is for the sigma. Figure 3.c shows the specified properties for the state phase 
transition that complies with the state phase transition definition. The phase transition has a condition and an 
action. The condition is modeled as an inequality for the queue size and the action is modeled as a method 
call for add operation, which is defined in Queue EClass. The action allows specifying the object, an action 
name that can be any operation associated with that object, and parameters. All of them have been defined 
as EReferences to their targeted model elements (see Figure 3.d). Figure 3.e shows an inequality condition 
specified based on the queue size. It has a left hand side which is specified as an action (queue.size() as 
shown in Figure 3.f) and right-hand side which is specified as an integer value of type EInt in this case. 
Currently, the metamodel is limited for only those scenarios since they are the only scenarios defined within 
the atomic DEVS metamodel. The implementation is done on a Windows 7 Computer. The models are 
created using Eclipse Mars Milestone 6 with Eclipse Modeling Tools and EMF Ecore 2.11. 

6  CONCLUSIONS 

The term metamodel invokes different understandings since it refers to some model abstracted to another.  It 
can encompass theories, methods, tools and domains of discourse including simulation. As such, 
“metamodeling” is used by theorists, developers, and practitioners in software and simulation engineering, 
among others. In this paper, we considered the modeling formalisms, and in particular asked at what levels 
of abstraction can the behavior of a prototypical atomic DEVS model be specified. Our inquiry is to 
distinguish meta-, concrete, and instance modeling layers from the standpoint of Model Driven Architecture. 
These layers can form a basis for building a new generation of modeling and simulation frameworks and 
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tools that can help move from metamodeling to simulation code step-by-step. It is helpful to have modeling 
methods with tools that can not only represent mathematical abstractions within the MDA layers, but also 
introduce capabilities to enforce verification and validation as much as possible in the M2 before resorting 
to the M1 and M0 layers.    
  

 

 

(c) Phase change for Transition t1 

 
(d) Action for Transition t1 

 
(a) Ecore editor view for the processor  (e) Less than inequality for Transition t1 

  

(b) A class diagram for the processor (f) Left hand-side for the less than inequality for Transition t1 

Figure 3: Ecore for a processor with primary state transitions for the external transition function. 

 One of the challenges facing building such ideal modeling and simulation tools is the difficulty of 
specifying behavior of models. We focused our attention on the atomic DEVS model. We proposed defining 
meta-behavior for general and domain-specific modeling using the concept of state transition from 
Statecharts for external and internal transition functions (see Figure 3). We then extended the EMF Ecore 
operation with the external, internal, output, and time advance functions. These functions, unlike the 
mathematical counterparts, can have some of their behaviors defined. These functions can also be validated 
to a limited degree. To validate, we described the necessity of restricting DEVS to Finite-Deterministic 
DEVS. We developed an example to show behavioral metamodeling for the atomic DEVS model. We 

2797



Sarjoughian, Alshareef, and Lei 
 

focused this paper on the platform-independent metamodeling and briefly discussed its role for developing 
platform-specific tools.  

Looking further into metamodeling, we observe that a target simulator must lend itself to the behavior 
defined in terms of state transitions, output, and time advance functions. Each function can have parts that 
are arbitrary and specific to the system being modeled. Thus, mapping behavior at a higher-level abstraction 
(as in the M2 layer) to lower-level abstractions (as in M1 and M0 layers) involves execution semantics (e.g., 
simulators may handle simultaneous event and communication differently despite being consistent with the 
abstract simulation protocol). Thus, it is desirable to lift behavior modeling as much as possible to the M2 
layer with support to checking syntax and semantics with as little dependency as possible on the M1 and M0 
layers, it is necessary to account for simulator design/implementation choices.  
 Knowing the high degree of DEVS expressiveness and the MDA framework, it is easy to see 
approaches that such as FD-DEVS should simplify development of verification and validation methods and 
tools. The degree to which the behavioral meta-model may be applicable to other kinds of modeling 
formalisms also remains as future work. In particular, for models that cannot be represented as DEVS, our 
approach for specifying meta-behavior may turn out to be useful. Finally, we believe exciting, challenging 
theoretical, methodological, developmental, and practical research remain to be formulated and answered 
for achieving general and domain-specific multi-layer behavioral modeling including meta-modeling. 
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