
Proceedings of the 2015 Winter Simulation Conference
L. Yilmaz, W. K. V. Chan, I. Moon, T. M. K. Roeder, C. Macal, and M. D. Rossetti, eds.

BEHAVIORAL DEVS METAMODELING

Hessam S. Sarjoughian
Abdurrahman Alshareef

Yonglin Lei

Arizona Center for Integrative Modeling & Simulation Simulation Engineering Institute

School of Computing, Informatics and Decision Systems
Engineering

School of Information Systems and
Management

Arizona State University National University of Defense Technology
699 S. Mill Avenue 109 Yanwachi Rd

Tempe, AZ, 85281, USA Changsha, Hunan, CHINA

ABSTRACT

A variety of metamodeling concepts, methods, and tools are available to today’s modeling and simulation
community. The Model Driven Architecture (MDA) framework enables modelers to develop platform
independent models which can be transformed to platform-specific models. Considering model
development according to the MDA framework, structural metamodeling is simpler as compared to
behavioral metamodeling. In this paper, we shed light on and introduce behavioral metamodeling for atomic
DEVS model. Behavior specification for an atomic DEVS model is examined from the standpoint of the
MDA framework. A three-layer model abstraction consisting of metamodel, concrete model, and instance
model is described from the vantage point of the DEVS formalism and the Eclipse Modeling Framework
(EMF), a realization of MDA. A behavioral metamodel for atomic DEVS model is developed in EMF
Ecore. This metamodel is introduced to complement the EMF-DEVS structural metamodeling. Some
observations are discussed regarding behavioral metamodeling, model validation, and code generation.

1 INTRODUCTION

A variety of methods may be used to represent time-based dynamics of systems. The behavior of a system,
for example, can be modeled using set-theory, UML diagrams, and pseudo code. Each kind of model serves
certain purposes and must ultimately be mapped to programming code suitable for execution in one or
possibly multiple target simulators. A mathematical model is useful for defining a system’s structure and
behavior independent of software design and simulation technologies. UML Class and Statecharts diagrams,
among others, are useful for designing complex modeling and simulating engines which may or may not
necessarily have mathematical grounding. Computer code can be developed and/or partially generated based
on mathematical or certain kinds of software specifications. Each of these methods has its strengths and
weaknesses and none is currently considered to contain all the necessary capabilities required for generating
executable simulation code.
 The atomic and coupled models in the DEVS formalism (Zeigler, Sarjoughian, and Au 1997) are
“metamodels”. From the standpoint of MDA, DEVS has an abstract syntax and an execution semantics
which together define a modeling language for discrete event systems. The set-theoretic DEVS models are
abstract mathematical artifacts. An atomic DEVS has its elements defined, for example, as sets, functions,
and relations. These model elements individually and collectively satisfy certain general abstract properties
and constraints. For example, a model can receive a finite number of input events within a finite period of
time at arbitrary time instances, process these inputs with state changes within a time period, and generate a

2788978-1-4673-9743-8/15/$31.00 ©2015 IEEE

Sarjoughian, Alshareef, and Lei

finite number of output events. It is the responsibility of the modeler to show that the developed atomic
models for a given target simulator satisfy the properties and conform to the constraints defined for the
DEVS atomic formal specification.
 In the MDA framework, a concrete atomic DEVS model for a system component, relative to its
metamodel, has specific structural (e.g., inputs and states with possible specific values) and behavioral
elements (e.g., state transitions for specific source and target states with assigned times to next events). The
metamodel is a language within which concrete models can be developed. Furthermore, a concrete model
may also satisfy constraints such as state variable types and state transitions sanctioned for specific
application domains. Full-fledge behavioral DEVS metamodeling can support automatic conformance of
concrete models to their metamodels. This capability can significantly reduce the amount of manual effort
required to show concrete models satisfy their metamodel properties and constraints.

From a tool’s perspective, a simulator such as DEVS-Suite (ACIMS 2015) is designed as a collection of
UML classifiers and relations that capture some aspects of the set-theoretic atomic and coupled parallel
DEVS models. These models can also be collectively referred to as a DEVS UML “metamodel”. The
inputs, states, and outputs, and internal, external, output, and time advance functions of the model are
defined abstractly; they by themselves are not executable. For example, the data structure for input is
defined as a pair (port-name and input-variable) where port has a string type and input variable has an entity
type. Similarly, the external transition function is defined as a method with specific arguments, but without
any actual implementations for the state transitions and conditions under which they are to be performed. As
in its mathematical counterpart, a concrete atomic model must have instances of the port-name and input-
variable attributes belonging to the UML classes and interfaces. The realization of the formal DEVS models
as UML specifications is advantageous. UML includes abstractions such as data typing, return types, and
control structures that enrich the abstract atomic DEVS model specification. These models can be
transformed to partial code for programming languages using professional tools dating back to the 1990s.

Simulators such as DEVS-Suite do not explicitly account for domain-specific modeling. A modeler can
develop domain-specific models using object-oriented modeling principles and design patterns. The
domain-neutral contracts embodied in the DEVS UML models can be enforced in an ad-hoc manner using
low-level techniques such as checking for data type compatibility and expected values for concrete models
that are implemented in some specific programming languages. These contracts cannot account for domain-
specific knowledge; they must be extended. This approach becomes complicated and unwieldy as scale and
complexity of the system to be simulated increase. Such resulting simulators lack rich capabilities to support
and develop domain-specific metamodels and also are unable to validate basic model properties and
constraints such as data typing and legitimate state transitions, for example. MDA-based modeling,
however, can lend itself to develop and automatically validate behavior of any domain-specific DEVS
concrete model against its metamodel and by extension the general-purpose atomic DEVS model.

Given the above discussions, we can make a few observations. When concrete atomic DEVS models
are developed using programming languages, it is difficult to ensure they conform to their abstract model. A
substantial amount of effort is required to concretize behavioral abstractions. Therefore, it is important for
the meta and concrete atomic models to be systematically related to each other as proposed in the MDA
framework. This is especially important given that the challenging part of developing models of complex
systems is specifying their behaviors. Therefore, we need an atomic DEVS metamodel which can support
behavioral modeling (e.g., receiving sanctioned input events and legitimate state transitions with timing).
Toward this goal, we propose behavioral metamodeling for the general-purpose and domain-specific atomic
models using the Eclipse Modeling Framework (Steinberg et al. 2008). Consistency between these models
can be specified and enforced (referred to as validated) with automation. Concrete models can be generated
from their domain-specific metamodels. Behaviors contained in these metamodels can significantly reduce
the amount of effort to create concrete models and improve their quality using automated code generation.

2789

Sarjoughian, Alshareef, and Lei

2 BACKGROUND

In this work, our goal is to develop concepts that can enable building a framework capable of specifying
meta-behavior for atomic DEVS models that can be used to create concrete atomic DEVS models. Toward
this goal, we employ Model-Driven Engineering (MDE) and in particular, the MDA framework with its
EMF realization. Although there are a variety of DEVS-based modeling and simulation tools, in this work
we use the DEVS-suite simulator for developing the proposed behavioral DEVS metamodel.

2.1 MDA and Model Layers

The Model Driven Architecture (MDA) framework has been proposed for developing software systems
(OMG 2003). Its main concept is a four-layer model abstraction hierarchy. A key abstraction concept in
MDA is for a classifier and its instances to form a two-layer hierarchy. A classifier has an abstract
specification that can have one or more instances. Classifiers can be said to be universal and instances can
be said to be specific. Every classifier is at a higher level of abstraction in relation to its instance. Instances
are related to one or more classifiers via conformance relationship. This implies having complementary
models each of which having a certain role to play and collectively provide a disciplined roadmap for
developing software systems. Each higher-level layer provides capabilities that are more abstract as
compared to those provided by lower-level layers. Conversely, each layer is built using the elements
provided in the layer above.
 A realization of the MDA approach consists of Meta Object Facility (MOF), Unified Modeling
Language (UML), User Model, and User Object modeling layers (OMG 2003). At the meta-metamodel
(M3) layer, the MOF has an Ecore specification for defining metamodels in the OMG’s family of MDA
languages. Defined using the UML metamodel, the M3 layer supports computation-independent metadata
management, metadata services, model management, tag capability, and reflective operations among others.
The metamodel (M2) layer can have models that conform to the M3 layer. The M2 layer is directed at
platform-independent modeling. These models can be domain-specific. The Ecore at the M2 layer can be
used to define concrete models at the M1 layer. The M0 layer is used to define instances of models specified
at the M1 layer. The M3, M2, M1, and M0 layers support incremental development of models for
component-based systems. It is useful to note that the separation of concerns in MDA is important for
developing software system tools including simulators.

2.2 DEVS Atomic Model

The set-theoretic specification of parallel atomic model ܺۃ, ܵ,ܻ, ௫௧ߜ ௧ߜ, ߜ, , ,ߣ .is domain-neutral ۄܽݐ
Its input and output are defined in terms of port names and variables. The variables can be arbitrarily
complex. Atomic models are responsible for handling differences in the input and output variables. From
software design, appropriate I/O type consistency is required. For any user-defined (and domain-specific)
model, the internal, external, and confluent, time advance, and output functions can have arbitrary logic as
long as they satisfy the abstract definitions provided in the mathematical atomic model specification. A
restricted specification of parallel DEVS called Finite Deterministic DEVS (FD-DEVS) (Hwang and
Zeigler 2009) has been developed. Events and states are defined to be finite sets and external and internal
events are allowed to occur at time intervals restricted to rational numbers. No time interval between one
event and the next can be infinitely small. This is achieved by abstracting time to be rational instead of real
numbers. When states are simple, possible state transitions can be enumerated and unreachable states,
identified. These restrictions can simplify model validation for the EMF-DEVS modeling described next.

2.3 EMF-DEVS Atomic Model

The EMF-DEVS (Sarjoughian and Markid 2012) is proposed as a metamodeling approach for the parallel
DEVS formalism. The basic aim is to define and validate DEVS metamodels using the Eclipse EMF

2790

Sarjoughian, Alshareef, and Lei

framework. The EMF validation infrastructure is used to define the elements of DEVS models with a set of
constraints defined according to the DEVS formalism and the target DEVS-Suite simulator which is
implemented in the Java programming language. Structures of atomic and coupled meta-DEVS models can
be modeled and validated. The generic capabilities provided in the EMF M3 and M2 layers are extended to
support concrete models for the DEVS-Suite simulator. The EMF-DEVS metamodel can support input,
output, and state sets as well as external, internal, output, and time advance functions. These abstract
functions ߜۃ௫௧ ௧ߜ, ߜ, , ,ߣ ۄܽݐ do not include the logic that is necessary to define behaviors. For
example, the external transition function ߜ௫௧ does not define a generic transition from a source state to a
target state with constraints and the output function ߣ does not define conditions for generating outputs.
 In the context of metamodeling as in EMF-DEVS, the term validation refers to the Eclipse EMF
validation framework and its execution engine. The Eclipse EMF has built-in validation mechanisms such
as reflection for the metamodels at the M2 layer. Metamodels at the M2 layer can be validated for
conformance to the meta-metamodel at the M3 layer. Concrete models at the M1 layer can also be validated
to conform to DEVS metamodel. Here validation does not refer to execution of a metamodel over some
period of time and determine whether or not it produces behavior per user requirements and expectation.
Given a concrete simulation model (M1 layer), it can be verified to be specified correctly both in terms of
M1 and M2 layers. When executed over some period of time and its behavior is recognized as acceptable
for some defined experimental condition, the model is said to be valid. With respect to the verification and
validation definitions for concrete models, the EMF-DEVS validation may be referred to as verification
when a metamodel has domain knowledge (e.g., external transition function has the necessary control
structure and other details to specify next state of a model given its current state and received input).

3 RELATED WORK

In this section, we primarily focus on behavioral DEVS atomic metamodeling and briefly consider the
extent in which detailed specifications can be supported. Model-driven design approaches have been playing
a greater role in developing complex simulation models. Focusing our attention on the OMG MDA
framework and DEVS, we find some approaches that follow the MOF Technology Space (Bézivin and
Kurtev 2005). In (Lei et al. 2009), a DEVS metamodel is devised for developing SMP2 (Simulation Model
Portability standard). This metamodel is mapped to SMP2 metamodel using QVT (OMG 2003). Basic
simple states and state transitions for atomic DEVS model are supported. In (Cetinkaya, Verbraeck, and
Seck 2012), structural DEVS metamodeling can be supported. As in EMF-DEVS, behavior specification for
atomic DEVS metamodel is not supported (see Section 2.3).
 In the MOF technology space, some works have employed DEVS Natural Language (DNL), XML
Schema, and Extended BNF for defining DEVS models. These support behavioral modeling using mostly
the same ideas and methods. The MS4Me (Seo et al. 2013) focuses on modeling using DNL (Zeigler and
Sarjoughian, 2012). The DNL as meta-language supports Finite-Deterministic DEVS models (Hwang and
Zeigler 2009). MS4Me uses Xtext (Xtext 2013) to enforce DNL rules for simple inputs, outputs, states, state
transitions, and timing. As a modern Java-like language, Xtend (Xtext 2013) supports developing FD-DEVS
models. The MS4Me models can be augmented to become Parallel DEVS models using the full
expressiveness of the Java language. It supports adding Java code to the model and thus developing Parallel
DEVS models while maintaining a tight connection with the FD-DEVS models. The Java code is injected
into slots in a structured manner using tagged code blocks. These are inserted directly into the generated
source files. These tagged code blocks are used to specify additional behavior for initializing, internal
transition, external transition, and output. Compared with FD-DEVS, classic or parallel DEVS models that
have these kinds of code blocks are difficult to validate. The DEVSML (Mittal, Risco-Martín, and Zeigler
2007) is developed to for DEVS simulation models that can be executed in net-centric computing
environments.
 Some works employ SysML (Nikolaidou 2008) and UML (Borland 2003) (Risco-Martín et al. 2009)
(Mooney and Sarjoughian 2009) (Pasqua et al. 2012). A SysML profile is developed for classical DEVS. An

2791

Sarjoughian, Alshareef, and Lei

atomic model is defined as a collection of stereotype blocks. The behavior is defined by States Definition
and Association diagrams. Atomic Internal and External diagrams are defined for the internal and external
functions, respectively. The time advance and output functions are defined as part of the Atomic internal
diagram. Similar to the above approaches, simple states with constraints are defined. The external diagram
follows FSM with control elements such as choice, fork, and join elements. Time allocated to states can
only be defined in the internal diagram. The DEVS SysML profile and DEVS MOF are intrinsically
different due to their technology spaces. There exist other approaches that use “metamodeling” abstraction
(Fard and Sarjoughian 2015; Ighoroje, Maïga, and Traoré 2012; de-Lara and Vangheluwe 2004). A survey
discusses uses of some MDE approaches for DEVS (Garredu et al. 2014).

4 ATOMIC DEVS METAMODELING

The mathematical properties and constraints defining an atomic DEVS model can be applied to any
implementation of it. Therefore, it is useful to have a framework that can not only capture the atomic
model’s formal specification (i.e., a metamodel), but also enforce its syntax and semantics for domain-
specific metamodels. Another important advantage is to define models independent of any particular
simulator—i.e., metamodels can be transformed to concrete models that can be executed in simulators that
are implemented in specific computing platforms. This framework must (help) validate behavior of any
concrete atomic DEVS model against its metamodel. To achieve this, we propose introducing behavioral
metamodeling to structural metamodeling. The resulting metamodeling framework must also lend itself to
developing metamodels for modelers’ domains of interests. This framework is also desired to support
defining domain-specific concrete models for desired systems.
 We intuitively define behavioral metamodeling as a set of concepts realized in a framework that
supports specifying operational details of the internal, external, output, and time advance functions of any
atomic DEVS model. These generic operations can be used to define behavior for any domain-specific
DEVS metamodel. Domain-specific behavior can be specified by extending the generic DEVS metamodel
behavior. That is, behavior of these functions are defined independent of computing platforms in which they
can be fully implemented. The properties and constraints in the domain-neutral and domain-specific
functions for the concrete models can be validated. The properties and constraints of the functions that are
not satisfied in any concrete model are automatically identified and reported.
 Figure 1 illustrates the concept of “meta” and “concrete” mathematical and UML modeling. The
structure, unlike behavior, of mathematical atomic and coupled DEVS models can be completely specified
both abstractly (as a metamodel) and concretely (as a concrete model). In mathematical modeling, a
concrete model has more information relative to its metamodel. In the metamodel, ߜ௫௧ ௧ߜ, ߜ, , functions are abstract mathematical constructs. The abstract atomic DEVS model functions do not have ܽݐ and ߣ
sufficient details, for example, as in Statecharts. Indeed Statecharts also does not capture the levels of detail
in the functions that an arbitrary atomic model can have. In contrast, arbitrary concrete atomic models must
have details including decision logics and control in the state, output, and timing functions.
 The concept of meta and concrete models in UML are distinct as compared with the ones just described
for a mathematical model. While UML metamodels are independent of computing platforms, concrete-
models are not. Separating models to be platform independent and platform-specific is important (see
Section 2.1). Meta models are technology (simulator) agnostic. Concrete models include details that are
specific to target simulators. The meta and concrete models can be related to one another.
 Focusing on behavioral modeling, the line arrows from the concrete model and metamodel are
conceptual. For mathematical modeling, one may construct relationships to show, for example, state
transitions in an external transition function in a concrete model conform to the abstract external transition
function specification. In UML modeling, one can include rules that can be applied to concrete models. The
block arrows at the metamodel and concrete model levels involve complex modeling and software
development tasks, requiring detailed design and code development.

2792

Sarjoughian, Alshareef, and Lei

 Considering the distinct roles mathematical and UML modeling offer, a desirable goal is to support
both. The EMF framework (Steinberg et al. 2008) is a strong candidate as it already supports UML meta-
and concrete modeling and it can support developing specific metamodels as in EMF-DEVS. In particular,
the relationship between meta (M2 layer) and concrete models (M1 layer) is formalized. Furthermore, the
EMF includes the metametamodel (M3 layer) and instance models (M0 layer). Given these, we extend the
EMF-DEVS (Sarjoughian and Markid 2012) structural metamodeling to enable behavioral (functional)
metamodeling. Generic and domain-specific metamodels with built-in and user-defined properties and
constraints for the external, internal, output, and time advance functions are supported. Modelers may
develop metamodels in a structured setting, thus leading to automation of metamodel validation as defined
in EMF. (We note that validation is not referring to simulation validation.) Constraints defined for the
generic and domain-specific atomic DEVS metamodels enable validating concrete atomic models.

4.1 Meta-behavior Modeling in EMF

We begin by sketching the basic details of the M2, M1, and M0 layers for the atomic DEVS model shown
in Figure 1. At the M2 layer, the Ecore is an instance of the Ecore at the M3 layer. The M3 Ecore
metamodel is at a higher level of abstraction with respect to the atomic DEVS metamodel. That is, the
DEVS metamodel extends the instance of the M3 Ecore. The role of the M2 layer is to support developing
concrete models at the M1 layer.

Figure 1: From mathematical to UML to EMF modeling.

 As noted earlier, the DEVS-Suite simulator is developed in Java, a strongly typed language. The kernel
of the modeling engine contains data structures and operations that satisfy the DEVS modeling formalism.
Thus, at the M1 layer, user-defined models can be generated from the DEVS metamodels. Suppose we want
a Processor model which can receive bags of input, process one of them, and generate one or more outputs.
Assuming we have an eProcessor metamodel, it can be used to create the concrete Processor model. This
concrete model at the M1 layer can be created for a platform-specific simulator such as DEVS-Suite. An
instance of the concrete model at the M0 layer can be executed by the DEVS-Suite simulator.
 In MDA, the M0 layer refers to the instances of the user models. These can be physical objects or
executable software objects (e.g., compiled code). Such instances can be modeled as UML Object diagrams.
As software objects, they can exist at execution time and their states may be stored, for example, as XML or
byte code. In contrast, for simulation, the M0 layer refers to the user’s parameterized atomic and coupled
models. Therefore, at this layer, we have not only parameterized models but also their instances as part of
other coupled model instances (see Figure 1).

2793

Sarjoughian, Alshareef, and Lei

 Although metamodeling is not as expressive as programming languages such as Java, it is shown to be
useful, for example, as in the Graphical Modeling Framework (Gronback 2009). The metamodel behavior
specification for DEVS functions is achievable using Statecharts (Harel 1987). The elements of a parallel
atomic model at M1 can be arbitrarily complex. An example is the external transition function. It can have
any attribute type, expressions, and control structures that a target computing platform supports. The
signature definitions for the atomic model external and internal transition functions can be defined using
structural metamodel as in EMF-DEVS. The abstract definitions for these two functions must include some
operations needed to result in some appropriate state change. State changes in these functions can be defined
as transitions amongst source and target states. A transition may have input event, condition, and actions. A
prototypical state transition is defined to transition from a source state to a target state. Such a constraint for
state transitions can be defined and validated at the M2 layer. The output and time advance functions can
also be defined using operations and control structures. An operation can have attributes and statements
(McNeill 2008). A metamodel behavior specification requires identifying abstractions for state transitions in
the external, internal, and confluent transition functions. Similarly appropriate abstractions are needed for
the output and time advance functions at the M2 layer. The behavior of all DEVS functions as just described
can be validated using EMF. The definitions for the atomic model functions must be consistent with the
abstract DEVS simulation protocol.
 In order to model the content of EOperation, we need to extend the EMF Ecore metamodel (McNeill
2008). Therefore, we will extend the Ecore metamodel to model DEVS functions that have been defined as
EOperations (i.e., interface definitions) in EMF-DEVS. Our goal is not just to validate domain metamodels.
We also aim to execute these functions after concrete models are generated for a specific simulator, DEVS-
Suite for instance. The code generation creates the corresponding code for the defined elements in the
metamodel. In EMF, the generator model plays a significant role in how the resulting code could be
generated and organized via some settings that may differ based on the targeted platform. Those settings can
be configured separately to ensure that the model maintains its platform independency. The process can be
manipulated in a way that will lead to producing concrete models.
 Thus, the general metamodel, shown in Figure 2, extends the EMF Ecore metamodel with some
definitions for state transitions, actions, and conditions, basic elements of the atomic DEVS model. The
metamodel extends Ecore elements with DEVS functions and also others for defining behavior. By
extending Ecore, we are enabling EOperation (which is used to define DEVS functions) to include some
content which can be transformed into concrete code rather than just having operation signatures. The
extended EOperations will be contained in the extended EClass (eAtomic in our case) since they cannot be
contained in EClass itself. This is a reason for extending EClass and EPackage since the Ecore elements
themselves (EClass and EPackage) will not allow adding the extended ones (Extended EClass and
EOperation) (McNeill 2008). Therefore, we first extend EOperation as a basic step to support behavioral
DEVS metamodeling. Second, we extend EClass to allow adding the extended EOperation. The third step is
extending EPackage to allow adding the extended EClass.
 The second part of the metamodel (shown in the middle of Figure 2) is specializing eDEVSOperation to
represent external transition, internal transition, output, and time advance functions. All of these can include
operations that have statements and local variables. They also may have return values. The eDeltExt and the
eDeltInt represent external transition and internal transition functions. Both compose transitions defined to
capture the concept of state transition. State transition has a name defined as an EString, source and target
defined as an ETypedElement, input defined as an optional reference of type eInput to be used in the
external transition function. It can also have some actions and conditions. We also added two specialized
state transitions for the phase and sigma primary states. Source and target phase are added to the state phase
transition (StatePhaseTransition) and defined as an EString. Source and target states for sigma are added to
the state sigma transition (StateSigmaTransition) and defined as an EDouble. Any other specific state
transition can be also defined in the same manner for domain specific models. The behavior is consistently
captured at the general and domain-specific metamodeling at the M2 layer. The generic behavioral

2794

Sarjoughian, Alshareef, and Lei

metamodel is predefined for the modeler. The domain specific meta-behavior can be defined by the modeler
as needed. The same approach is followed for the actions and conditions that are defined abstractly and then
specialized to provide the support for developing the behavior at the concrete model. The eOutput and eTA
elements refer to the eState in addition to the inherited composition feature from eDEVSOperation to
support having other operations for more functionalities.

Figure 2: A metamodel for atomic DEVS Model with state transitions.

4.2 Constrained Meta-behavior Modeling

The metamodel shown in Figure 2 is based on the parallel atomic DEVS model. This model has an infinite
state-space and therefore model validation (as in model checking) is impractical. A sub-class of DEVS
called Finite-Deterministic DEVS (FD-DEVS) (Hwang and Zeigler 2009) has finite state-space which
makes it attractive for behavior modeling at the M2 layer. The total state of the atomic DEVS metamodel
can be defined as {ݕݎܽ݉݅ݎ} × {ݕݎܽ݀݊ܿ݁ݏ} × Թ[,ஶ]. An atomic FD-DEVS model restricts the range of
values for the time advance function to Է[0,∞]. Model validation is computable when the values for inputs,
outputs, and states (including time to next event) are finite. These constraints can be validated for having
legitimate output, time advance, and internal and external transition functions. Constraints for state
transitions (belonging to both external and internal transition functions) can be validated. For example,
states in any state transition can be validated to include only the states defined in the model’s state set and
there are no unreachable states. For the external event, its input event can be checked to be included in the
input set. State to output mappings can also be validated by checking whether or not every output belongs to
the output set. We can also check if outputs are computed using states that belong to the state set. Time to

2795

Sarjoughian, Alshareef, and Lei

next event for every state transition must also belong to Է[0,∞]. When the time interval is infinity, three is no
output. Validation of behavior domain-knowledge can be augmented with user-defined constraints.
 Considering a domain-specific metamodel, they may have their own constraints on the input, output,
and state sets as well as the atomic model functions. These constraints must be defined by the user, for
example, by extending the EMF-DEVS metamodel. Users may specify domain-specific constraints using
the EMF Eclipse framework and tool. Of course, user-defined constraints cannot contradict those that are
defined for the generic metamodel. We note that the restrictions in the atomic FD-DEVS model and its
dynamics may require complex control structures. State transitions in the external (or internal) transition
function may have to be synthesized in complex patterns. Transitioning between external and internal
transition functions can have many configurations. Similarly, the output and time advance functions may
have complex structures. These considerations restrict the behavioral metamodeling describe above.
Nonetheless, the capabilities afforded by MDA is advantageous as compared with model development
where there is little or no means to start from metamodeling and reach executable models. Specific state
transitions can be individually validated at the M2 layer. Behavioral metamodeling developed in this
research aids model validation before transforming them to an M1 model and M0 simulation. Once concrete
FD-DEVS models are generated from metamodels, they can be validated using existing techniques and tools
(Dill 1990, Hwang, and Zeigler 2009)

5 A PROCESSOR EXAMPLE BEHAVIORAL METAMODEL SNIPPET

In this section, we will demonstrate the process of developing a domain specific model (eProcQ as shown in
Figure 3), which represents a simple processor with a queue. The processor metamodel is developed using
the definition provided at the atomic DEVS metamodel. The root element is eDEVSPackage, which can
contain the eAtomic models such as eProcQ and any other EClass such as Entity and Queue. Entity and
Queue EClasses are defined similarly to their definition in the DEVS-Suite GenCol library (ACIMS 2015).
Figure 3.a shows all the model elements in the EMF editor and Figure 3.b depicts the corresponding Class
Diagram for the eProcQ Ecore model. Detailed specifications are provided for the external transition
function relative to other modeled elements such as model states and variables.
 We created two transitions and gave the values associated with each one. The first transition is for the
phase and the other one is for the sigma. Figure 3.c shows the specified properties for the state phase
transition that complies with the state phase transition definition. The phase transition has a condition and an
action. The condition is modeled as an inequality for the queue size and the action is modeled as a method
call for add operation, which is defined in Queue EClass. The action allows specifying the object, an action
name that can be any operation associated with that object, and parameters. All of them have been defined
as EReferences to their targeted model elements (see Figure 3.d). Figure 3.e shows an inequality condition
specified based on the queue size. It has a left hand side which is specified as an action (queue.size() as
shown in Figure 3.f) and right-hand side which is specified as an integer value of type EInt in this case.
Currently, the metamodel is limited for only those scenarios since they are the only scenarios defined within
the atomic DEVS metamodel. The implementation is done on a Windows 7 Computer. The models are
created using Eclipse Mars Milestone 6 with Eclipse Modeling Tools and EMF Ecore 2.11.

6 CONCLUSIONS

The term metamodel invokes different understandings since it refers to some model abstracted to another. It
can encompass theories, methods, tools and domains of discourse including simulation. As such,
“metamodeling” is used by theorists, developers, and practitioners in software and simulation engineering,
among others. In this paper, we considered the modeling formalisms, and in particular asked at what levels
of abstraction can the behavior of a prototypical atomic DEVS model be specified. Our inquiry is to
distinguish meta-, concrete, and instance modeling layers from the standpoint of Model Driven Architecture.
These layers can form a basis for building a new generation of modeling and simulation frameworks and

2796

Sarjoughian, Alshareef, and Lei

tools that can help move from metamodeling to simulation code step-by-step. It is helpful to have modeling
methods with tools that can not only represent mathematical abstractions within the MDA layers, but also
introduce capabilities to enforce verification and validation as much as possible in the M2 before resorting
to the M1 and M0 layers.

(c) Phase change for Transition t1

(d) Action for Transition t1

(a) Ecore editor view for the processor (e) Less than inequality for Transition t1

(b) A class diagram for the processor (f) Left hand-side for the less than inequality for Transition t1

Figure 3: Ecore for a processor with primary state transitions for the external transition function.

 One of the challenges facing building such ideal modeling and simulation tools is the difficulty of
specifying behavior of models. We focused our attention on the atomic DEVS model. We proposed defining
meta-behavior for general and domain-specific modeling using the concept of state transition from
Statecharts for external and internal transition functions (see Figure 3). We then extended the EMF Ecore
operation with the external, internal, output, and time advance functions. These functions, unlike the
mathematical counterparts, can have some of their behaviors defined. These functions can also be validated
to a limited degree. To validate, we described the necessity of restricting DEVS to Finite-Deterministic
DEVS. We developed an example to show behavioral metamodeling for the atomic DEVS model. We

2797

Sarjoughian, Alshareef, and Lei

focused this paper on the platform-independent metamodeling and briefly discussed its role for developing
platform-specific tools.

Looking further into metamodeling, we observe that a target simulator must lend itself to the behavior
defined in terms of state transitions, output, and time advance functions. Each function can have parts that
are arbitrary and specific to the system being modeled. Thus, mapping behavior at a higher-level abstraction
(as in the M2 layer) to lower-level abstractions (as in M1 and M0 layers) involves execution semantics (e.g.,
simulators may handle simultaneous event and communication differently despite being consistent with the
abstract simulation protocol). Thus, it is desirable to lift behavior modeling as much as possible to the M2
layer with support to checking syntax and semantics with as little dependency as possible on the M1 and M0
layers, it is necessary to account for simulator design/implementation choices.
 Knowing the high degree of DEVS expressiveness and the MDA framework, it is easy to see
approaches that such as FD-DEVS should simplify development of verification and validation methods and
tools. The degree to which the behavioral meta-model may be applicable to other kinds of modeling
formalisms also remains as future work. In particular, for models that cannot be represented as DEVS, our
approach for specifying meta-behavior may turn out to be useful. Finally, we believe exciting, challenging
theoretical, methodological, developmental, and practical research remain to be formulated and answered
for achieving general and domain-specific multi-layer behavioral modeling including meta-modeling.

REFERENCES

ACIMS. 2015. DEVS-Suite Simulator. Vers. 3.0.0. http://devs-suitesim.sourceforge.net/.
Bézivin, J., and I. Kurtev. 2005. "Model-based Technology Integration with the Technical Space Concept."

In Proceedings of the Metainformatics Symposium. New York, NY.
Borland, S. 2003. Transforming Statechart Models to DEVS. McGill University.
Cetinkaya, D., A. Verbraeck, and M. Seck. 2012. "Model Transformation from BPMN to DEVS in the

MDD4MS Framework." In Proceedings of the Theory of Modeling and Simulation - DEVS Integrative
M&S Symposium. Orlando, FL.

de-Lara, J., and H. Vangheluwe. 2004. "Defining Visual Notations and Their Manipulation Through Meta-
Modelling and Graph Transformation." Journal of Visual Languages and Computing 15 (3-4): 309-330.

Dill, D. L. 1990. "Timing Assumptions and Verification of Finite-state Concurrent Systems." In
Proceedings of the International Workshop on Automatic Verification Methods for Finite State Systems.
197-212. New York: Springer-Verlag.

Fard, M. D., and H. S. Sarjoughian. 2015. "Visual and Persistence Modeling for DEVS in CoSMoS." In
Proceedings of the Theory of Modeling and Simulation - DEVS Integrative M&S Symposium. 962-969.
Washington DC.

Garredu, S., E. Vittor, J. Santucci, and B. Poggi. 2014. "A Survey of Model-Driven Approaches Applied to
DEVS - A Comparative Study of Metamodels and Transformations." International Conference on
Simulation and Modeling Methodologies, Technologies and Applications. 179-187. Vienna, Autria.

Gronback, R. C. 2009. Eclipse Modeling Project: A Domain-Specific Language (DSL) Toolkit. Addison-
Wesley Professional.

Harel, D. 1987. "Statecharts: A Visual Formalism for Complex Systems." Science of Computer
Programming (Elsevier) 8 (3): 231-274.

Hwang, M. H., and B. P. Zeigler. 2009. "Reachability Graph of Finite and Deterministic DEVS Networks."
IEEE Transactions on Automation Science and Engineering 6 (3): 468-478.

Ighoroje, U., O. Maïga, and M. Traoré. 2012. "The DEVS-driven Modeling Language: Syntax and
Semantics Definition by Meta-modeling and Graph Transformation." In Proceedings of the Theory of
Modeling and Simulation - DEVS Integrative M&S Symposium. Orlando, FL.

Lei, Y., W. Wang, Q. Li, and Y. Zhu. 2009. "A Transformation Model from DEVS to SMP2 based on
MDA." Simulation Modelling Practice and Theory (Elsevier) 17 (10): 1690-1709.

2798

http://devs-suitesim.sourceforge.net/

Sarjoughian, Alshareef, and Lei

McNeill, K. 2008. "Metamodeling with EMF: Generating Concrete, Reusable Java Snippets."
http://www.ibm.com/developerworks/library/os-eclipse-emfmetamodel/.

Mittal, S., J. L. Risco-Martín, and B. P. Zeigler. 2007. "DEVSML: Automating DEVS Execution Over SOA
Towards Transparent Simulators." In Proceedings of the DEVS Integrative M&S Symposium. 287-295.
Norfolk, VA.

Mooney, J., and H. S. Sarjoughian. 2009. "A Framework for Executable UML Models." In Proceedings of
the DEVS Integrative M&S Symposium. San Diego, CA.

Nikolaidou, M., Dalakas, V., Mitsi, L., Kapos, G.D. 2008. "A SysML Profile for Classical DEVS
Simulators." The Third International Conference on Software Engineering Advances. 445-450. Sliema,
Malta.

OMG. 2003. MDA Guide. http://www.omg.org/cgi-bin/doc?omg/03-06-01.
Pasqua, R., D. Foures, V. Albert, and A. Nketsa. 2012. "From Sequence Diagrams UML 2.x to FD-DEVS

by Model Transformation." In Proceedings of the European Simulation and Modelling Conference.
463-471. Essen, Germany.

Risco-Martín, J. L., J. M. Cruz, S. Mittal, and B. P. Zeigler. 2009. "eUDEVS: Executable UML with DEVS
Theory of Modeling and Simulation." Simulation Transactions 85: 750-777.

Sarjoughian, H. S., and A. M. Markid. 2012. "EMF-DEVS Modeling." In Proceedings of the Theory of
Modeling and Simulation - DEVS Integrative M&S Symposium. Orlando, FL.

Seo, C., B. P. Zeigler, R. Coop, and D. Kim. 2013. "DEVS Modeling and Simulation Methodology with
MS4 Me Software Tool." In Proceedings of the Theory of Modeling & Simulation - DEVS Integrative
M&S Symposium. San Diego, CA.

Steinberg, D., F. Budinsky, M. Paternostro, and E. Merks. 2008. EMF: Eclipse Modeling Framework.
Pearson Education.

Xtext. 2013. Xtext 2.4. http://www.eclipse.org/Xtext/documentation/2.4.0/Documentation.pdf.
Zeigler, B. P., and H. S. Sarjoughian. 2012. Guide to Modeling and Simulation of Systems of Systems.

Springer.
Zeigler, B. P., H. S. Sarjoughian, and V. Au. 1997. "Object-oriented DEVS." AeroSense'97. 100-111.

Orlando, FL.

AUTHOR BIOGRAPHIES

HESSAM S. SARJOUGHIAN is an Associate Professor in the School of Computing, Informatics, and
Decision Systems Engineering at Arizona State University (ASU), Tempe, AZ, and co-director of the
Arizona Center for Integrative Modeling & Simulation (ACIMS). His research interests include model
theory, poly-formalism modeling, collaborative modeling, simulation-based science, and simulation tools.
He is the director on the ASU Online Masters of Engineering in Modeling & Simulation. He can be
contacted at <sarjoughian@asu.edu>.

ABDURRAHMAN ALSHAREEF is a Computer Science PhD student in the School of Computing,
Informatics, and Decision Systems Engineering at Arizona State University (ASU), Tempe, AZ, USA. He
can be contacted at <alshareef@asu.edu>.

YONGLIN LEI is an Associate Professor of Simulation Engineering Institute at the National University of
Defense Technology, Changsha, China. His research interests include model composability, model driven
architecture, domain specific modeling, and their applications in defense simulations. He can be contacted at
<yllei@nudt.edu.cn>.

2799

http://www.ibm.com/developerworks/library/os-eclipse-emfmetamodel/
http://www.omg.org/cgi-bin/doc?omg/03-06-01
http://www.eclipse.org/Xtext/documentation/2.4.0/Documentation.pdf

