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ABSTRACT

For large-scale, complex systems, both simulation and optimization methods are needed to support system

design and operational decision making. Integrating the two methodologies, however, presents a number

of conceptual and technical problems. This paper argues that the required integration can be successfully

achieved, within a specific domain, by using a formal domain specific language for specifying instance

problems and for structuring the analysis models and their interfaces. The domain must include a large

enough class of problems to justify the resulting specialization of analysis models.

1 INTRODUCTION

Increasing scale, complexity, and connectedness have accentuated a need to improve decision-making support

in Discrete Event Logistics Systems (DELS), a class of dynamic systems that create value by transforming

discrete flows through operations performed by a network of interconnected subsystems. The DELS domain

includes systems such as supply chains, manufacturing systems, transportation networks, warehouses, health

care delivery systems, etc. Decision-making support for these systems can be integrated into many aspects

of DELS from system design decisions, such as network configuration and resource selection, to online,

real-time operational control decisions, such as dispatching and routing. To simultaneously address the

complexity and scale of these systems, simulation and optimization offer complementary views of the

system model; simulation is more adept at capturing and evaluating the dynamic behavior of the system,

while optimization is more effective at tackling the scale and searching the design space of the system.

Consequently, simulation optimization methods, which in their most general form aim to efficiently use

simulation integrated with search algorithms, seem like a promising approach for providing decision

support for this domain. In fact, simulation optimization methods have been applied to solve a number

of problems in this domain; for a representative sampling see, e.g., supply chains (Truong and Azadivar

2005), manufacturing (Kapuscinski and Tayur 1999), transportation (Cheng and Duran 2004), warehouses

(Rosenblatt, Roll, and Vered Zyser 1993), healthcare (Ahmed and Alkhamis 2009), and emergency logistics

(Ng, Park, and Waller 2010).

Despite the evidence that simulation optimization is applicable, several general requirements, or

challenges, must be more fully addressed by the research community to make simulation optimization a

routine analysis. Despite more than fifteen years since the identification of this fundamental issue, the

majority of the methodological research on simulation optimization continues to focus on a single aspect

of simulation optimization (either the simulation or the optimization) without considering the subject as a

whole (Bowden and Hall 1998). The academic literature treats the optimization modeling and simulation

modeling as two different and distinct activities and often there is not an ‘equal partnership’ between the

two tools (Fu 2002). In addition to these methodological challenges, there are several practical challenges

to overcoming the gap between academic research and practical implementations (Fu 2002), including
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difficulty interfacing simulation and optimization (Azadivar 1999), generating and evaluating large scale

simulations, interfacing with data sources and execution systems.

In order to work on large and complex applications, individual researchers need to be able to focus on

their own particular research (either simulation or optimization) and trust that interoperability is available

with effective implementations of other analysis components. Creating this interoperability between the

various methodologies and their associated tools, from global optimization methods to high-performance

simulation methods remains a largely unmet challenge. To address this challenge, Industrial Strength

Compass introduces a simulation optimization platform that integrates global, local, and ranking and

selection methods through an interface that exchanges solutions and feedback with simulations (Xu,

Nelson, and Hong 2010). Several authors standardize the interface between the simulation and optimization

tools through the exchange of a generic problem definition object (Duvivier et al. 2003, Almeder et al.

2008, Hamm et al. 2011, Pasupathy and Henderson 2011). Commercially, the success of OptQuestTMcan be

partially be attributed to its integration with a multitude of popular simulation tools. However, customizing

OptQuest for each simulation platform is an expensive process that doesnt scale well in a many-solver

environment (Fu et al. 2014). Despite these advances, the challenge remains to provide a universal solution

that supports plug-and-support functionality for the broader research community.

In the research presented here, we propose utilizing formal domain modeling methods as part of a

generic solution to this interoperability problem. A formal model of the domain is an important concept

because it allows research on system design and analysis to be implemented independently of a specific

system instance model but with some guarantee of interoperability between components. Simulation and

optimization tools which are not based on any canonical description, of course, can be created and used to

model and analyze systems, but differences among the tools in terms of semantics, syntax, and organization

will create friction and obstacles to sharing, reuse, and widespread adoption. What we aim to show is that

it is possible to specify a formal model for a sufficiently large problem domain to justify the investment

in the domain model and the associated modeling infrastructure.

In this paper, we propose a simulation optimization framework for the DELS domain rooted in a

formal model of the domain. This formal domain modelling methodology uses a domain specific language

(DSL) to construct system and analysis models and the associated tools. Section 2 introduces the formal

domain modelling approach for DELS. In particular, section 2.1 briefly introduces some of the features

that need be incorporated into a formal model of the DELS domain, section 2.2 discusses the benefits

of specialized analysis methods, section 2.3 introduces the formal domain modeling method, and finally

section 2.4 highlights the desired characteristics of the formal model. Then Section 3 presents a use case

that drives the analysis modeling methodology from a formal model of the system captured in SysML.

Finally, Sections 4 and 5 conclude with discussion on applications, limitations, and future work.

2 FORMAL DOMAIN MODELING FOR DELS

2.1 Domain-Specific Features of DELS

One of the primary reasons for constructing domain specific analysis methodologies is to exploit domain

characteristics that allow the methods to be much faster, cheaper or better than their generic counterparts.

For DELS, the optimization process can be adapted to handle the multitude of sources of uncertainty and

complex system dynamics inherent to these systems, multiple objectives and categorical variables which

are prominent features of this class of problems, and multiple time scales and planning horizons which

lead to many interrelated decision problems.

In addition to opportunities to improve the simulation execution engines, there is also the need to reduce

the cost and complexity of simulation development including improving conceptual modeling methods as

well as reducing the development barrier through model and component reuse (Robinson 2005). Related

to conceptual modeling there are questions about which type of simulation is appropriate, whether it be

petri nets, agent based simulation, discrete event simulation, etc. There are also issues related to what
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information is available as well as the fidelity and level of aggregation of the simulation, including when

and how to make approximations about the system. Several examples are presented in the next section that

demonstrate methods to address these domain specific challenges and allude to modeling requirements for

domain specific modeling language for DELS.

2.2 Why Specialize?

Obviously, there is a trade-off between constructing methods that exploit specific characteristics of a

particular problem instance and developing more general methodologies capable of handling a diverse

collection of problem classes. Specialized algorithms based on an explicit model of a particular domain not

only support the development of integrated or hybrid methods for that domain, but they can also guarantee

consistency in comparing the performance of competing algorithms (Glover et al. 1995, Xu et al. 2010).

However, the specialization requires an investment in research and development.

Many optimization algorithms can be tailored to exploit domain specific characteristics. In genetic

algorithms, the domain specific structure can be exploited through specialized encoding schemes, initial-

ization, and local search operators. The structure of each chromosome is segmented to independently

represent components of the problem that reflect the network structure, the resource selection problem,

and the control policy selection and configuration; e.g. (Dengiz et al. 1997, Zhou et al. 2002, Syarif et al.

2002, Costa et al. 2010). In Tabu methods, domain specific search neighborhoods can be integrated into

the local search procedure, e.g. swaps of orders within the schedule (Yang et al. 2004), separation of the

routing and scheduling components of the job shop problem (Brandimarte 1993), and setting Kanban levels

in a production system. Finally, knowledge-based optimization methods incorporate learning modules that

integrate domain specific information to guide the optimization search process, such as selecting between

priority rules and lot sizing (Huyet and Paris 2004).

From these examples, it becomes clear that many industrial, service, and other complex systems

can be characterized by their structural designs, operational behavior, and control policies. For these

applications, these characteristics can be exploited to provide narrowly-scoped and well-structured search

neighborhoods that can correspond to modifying the network structure, resource investment, or operational

policies independently (Azadivar 1999, Azadivar and Tompkins 1999, Ding et al. 2009, Costa et al. 2010).

Furthermore, Costa et al. (2010) present evidence of a formal model that defines the network structure

separately from the set of control decisions and policies, as well as the definition of domain specific

performance indicators. Often modifying the network structure or categorical variables associated with

control policies requires making structural modifications to the simulation throughout the optimization

process thus requiring the simulation to be regenerated at each step (Azadivar and Tompkins 1999).

To achieve interoperability and consistency between domain specific algorithms, the algorithms or

at least the system that they are optimizing must be derived from an agreed-upon and explicit system

definition that not only supports methods to generate the required set of analysis models, but also is

capable of translating optimization outputs into instructions to modify or generate the desired simulation

for execution.

2.3 Formal Domain Modeling

In the research presented here, formal domain modeling methodologies are used to improve the interop-

erability between research methods. A formal model of the domain consists of an explicit language for

describing components of a system for a particular domain, a domain specific language (DSL), and rules

for assembling those components into meaningful and accurate models of the system. While the DSL

is intended to capture the syntax of a particular domain, the reference architecture for a specific domain

captures implicit knowledge that is commonly useful to stakeholders in that domain. For simulation opti-

mization methodologies, the formal domain model enables the specification of formal models of both the
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system optimization and system simulation with a common ontological base, thereby providing a critical

requirement for analysis model interoperability.

Several researchers have recognized the importance of creating object-oriented reference architecture

types of conceptual models for the supply chain domain; for an overview of many of these frameworks,

see (Grubic and Fan 2009). Many of these frameworks exclusively target the simulation analysis domain:

(Jain et al. 2001, Chatfield et al. 2006, Rossetti et al. 2008). Object-oriented models provide a flexible and

reusable framework for capturing the domain; (Narayanan et al. 1998, Biswas and Narahari 2004, Kim

and Rogers 2005). These frameworks typically lack a formal language implementation, which limits the

full realization of the benefits of developing the reference architecture, such as extensibility and reusability.

Azadivar and Tompkins (1999) present a methodology that captures the system description as a System

Model Object, which separates the network definition from the control policies. Their methodology

suggests a generalizable strategy where the optimization problem and corresponding simulation model are

both generated automatically through a transformation from the system model.

There is an outstanding need for a domain model for the class of DELS that consists of a DSL for

capturing a broad family of systems. The challenge is to develop the DSL at a sufficient level of abstraction

that it is broad enough to justify the investment in domain specific tools and methods, while also being

specific enough to drive productivity enhancements from these modelling and analysis tools and methods.

2.4 A Formal Domain Model for Discrete Event Logistics Systems (DELS)

Our formal model of the DELS domain is constructed as a multi-layer architecture which captures the

underlying network structure, the behavioral elements, and the control policies of the system. The separation

and encapsulation of the layers is important to provide multiple degrees of abstraction of the system model

to formulate specific types of analysis models. These layers of abstraction formalize some of the aspects

that are noted in the specialization section and often correspond with the sequential design strategies or

partitioning of chromosomes in genetic algorithms.

The network, or graph, is a common abstraction across operations research as an abstraction of both

system models and analysis models. The token flow network is a multi-layer architecture that starts by

formalizing basic network semantics of node and edge and then extends that architecture to support flow

semantics, such as those expected to support the description of a multi-commodity network flow abstraction

(MCFN) (Thiers 2014). Finally since DELS commonly transform these discrete flows, the flow network

semantics are augmented with behavioral semantics, such as state machines, to support the utilization of

resources to convert a set of inputs into a set of outputs (Sprock and McGinnis 2014). In addition the

underlying network definition can be extended with the additional semantics needed to specify DELS

models, including a common description of the system, addressing its structure and behavior, its owned

and shared resources, and its interaction with other systems. Specifically, extensions are needed to specify

what is being transformed (product), how is the product transformed (process), what is executing the

transformation (resource), and where do the resource live and how are they configured (facility). The

product and process descriptions are most commonly expressed as a bill of material and a process plan

(bill of process), respectively. The semantics of this layer draw inspiration from manufacturing reference

architectures, such as MASON and CMSD (Lemaignan et al. 2006, Lee et al. 2011). In addition to capturing

the structure and behavior of the system plant, the reference architecture must also include a control model

that is layered on top to provide interaction and influence over the activities executed throughout the DELS.

3 TRANSLATING MODELING METHODOLOGY INTO ANALYSIS METHODOLOGY: A USE

CASE

In this section, we demonstrate a proof of concept usage of a DSL for DELS to construct domain specific

analysis methods and tools. This demonstration is not intended to be a contribution or competitor to existing

simulation optimization implementations, but to highlight some features of a formal domain specific analysis
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methodology, such as developing robust interfaces to analysis tools that are based on the system model and

formulating analyses to exploit specific characteristics of the system model, such as its structure, behavior,

or control.

3.1 Distribution Supply Chain System Model

A distribution supply chain design problem is used to demonstrate the proposed framework (Figure 1).

Given a set of customers that seek to ship commodities to one another, the systems architect must locate a set

of depots (from a discrete set), size the fleet of trucks for each depot, and select a control policy to dispatch

the fleet of trucks. The distribution network is composed of Depots and Customers that are connected via

Transportation Channels, where the Depots can dispatch Trucks, or transportation resources, to Customers

to drop off or pick-up Shipments. There are fixed costs to opening a Depot and purchasing Trucks for each

Depot, as well as variable costs for traversing Transportation Channels. Finally, a commodity is defined for

each customer-customer relationship and shipments between customers are promised within a particular

lead-time.

Figure 1: Distribution Supply Chain System Model.

In addition to specifying the structure of the system, its behavior must also be captured in the system

model (in a set of behavioral diagrams separate from Figure 1). Once a truck is dispatched from a Depot to

service a Customer, it will both drop-off all shipments destined for that Customer and pick-up Shipments

that need to be routed through the Depot. The same is true for transportation from Depot to Depot, but

either Depot can allocate a truck to perform the Service. Each Depot is approximated as a cross-dock with

no processing requirements and simply routes each shipment to its outbound transportation queue to await

a truck. Finally, a control policy must specify how trucks are allocated to transportation channel, i.e. which

customer to service next. The routing of shipments through the system is done passively according to the

Route, a sequence of Transportation Channels, which is constructed during the optimization routines.

A useful way to think about the model presented in Figure 1 is that it presents a schema to a database

that holds all of the system data. If simulation optimization methods and tools, and analysis methods in

general, are constructed to operate and interact with the data conforming to the schema, then any system

description that conforms to the schema will be usable by those methods and tools. One challenge of this

approach is to design tools that specifically pass data conforming to the schema defined by the system

model rather than context-free arrays. The next three sections will present current efforts to design tools that

are capable of exploiting specific characteristics of the system model, specifically the underlying network

abstraction, resource investment problem, and policy selection and configuration.
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3.2 Global Search Based on a MCFN Approximation

The first stage of this analysis maps the key elements of the system model to a flow network model in

order to formulate an analysis based on a multi-commodity flow network (MCFN). This abstraction process

allows analysis tools to be constructed using the DSL presented in Figure 2, and then applied to a system

model such as the FlowNode and FlowEdge stereotypes in Figure 1. Since the system model can be

abstracted to a flow network definition, it can utilize any set of analysis tools constructed for flow network

analysis such as multi-commodity network flow models formulated for solution by CPLEX.

While the Industrial Strength Compass tool-set discussed above uses a niching genetic algorithm for

the global search stage, Osman suggests heuristics methods, including a branch and bound method from a

MIP solver, to generate feasible, diverse, and good solutions to jump-start the local optimization process

(Osman 1995). This strategy utilizes the strength of modern day commercial solvers, such as CPLEX, at

any reasonable level of approximation of the system to produce a collection of candidate backbone solutions

to the system. This approximation is useful for quickly discarding inferior solutions, such as in supplier

selection or facility location problems.

Figure 2: Flow network abstraction (Left) and results of multi-commodity flow network optimization (Right)

with depots highlighted in red circles.

In this use case, the output of this stage is a selected subset of depots, the assignment of customers

to depots, and routes for the commodities to flow through the network. While the optimal solution to the

MCFN is presented in Figure 2, the MIP can also return the last k solutions to populate an initial pool of

candidate solutions. The analysis shown here utilizes a simpler leave one out heuristic, which re-solves

the problem iteratively without one of the depots selected in the optimal solution.

3.3 Resource Investment via Genetic Algorithm

Whereas the MCFN analysis is deterministic approximation of the system model, the simulation tool

is more adept of modeling the dynamic behavior, complex interactions, and variability inherent to the

system. Therefore, it is reasonable incorporate these effects into a methodology that utilizes simulation

as its evaluation tool. However, first, the results from the MCFN approximation need to be translated

back into a set of complete system models. These system models are then used to generate discrete

event simulation in SimEvents R©(Figure 3) using an object oriented, network-based transformation engine

(Sprock and McGinnis 2014). Then each simulation is embedded within a multi-objective genetic algorithm

from the MATLAB global optimization toolbox. The multi-objective genetic algorithm in MATLAB uses

a controlled elitist GA variant of NSGA-II to converge to an optimal Pareto frontier (Deb et al. 2002).
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Figure 3: Generated Discrete Event Simulation in SimEvents (Left) and Output of Multi-Objective Genetic

Algorithm (Right).

There are two extremes for defining the interface between the simulation and optimization. The first

extreme passes a solution to a pre-defined simulation for evaluation (Pasupathy and Henderson 2011).

This requires a hard-coded, and often implicit, mapping between the solution vector and the associated

variable in the simulation. At the other extreme, the interface between the simulation and optimization is

defined by a system model object and an experiment definition and the solution is returned in the system

model object (Hamm et al. 2011). This would allow the optimization routine to utilize any attributes of

the system defined or captured in the simulation process, not necessarily only the evaluated value itself;

e.g. examining resource utilization in a system that seeks to balance the trade-off between make-span and

cost. Since this is computationally expensive, in our presented use case the evaluation function embedded

in the GA defines an interface that accepts a subset of the data that is sufficient to construct and evaluate

the candidate solution.

In this use case, the GA is tasked to evaluate the trade-off between Resource Investment, how many

trucks to purchase for each depot, and the Service Level, % of shipments completed in under 24 hours.

The result is a Pareto set of solutions that can be passed to the next optimization stage (Figure 3). The

model assumes a basic dispatch control policy that allocates trucks to pick-up and drop-off routes in a

round-robin manner, an assumption that will be isolated and evaluated in the third stage.

3.4 Control Policy Selection via Enumeration

Throughout the course of this analysis, the system has been modelled as a passive flow network. One of the

outstanding challenges in the design process remains how to design and implement the control mechanisms.

The last stage of the simulation optimization evaluates a small collection of policies that control the dispatch

of trucks to transport shipments. The most basic scenario uses a round-robin policy, which is easy to

implement due to its minimal information requirements, but risks under-utilizing the capacity of each truck.

The second scenario uses a longest queue policy, which requires the controller to gather and evaluate queue

lengths from each of its customers but still risks under-utilizing the capacity of each truck. Finally, the third

scenario sets minimum queue length before dispatching a truck to a particular customer. This improves

the utilization of each truck and reduces overall distance travelled, but may increase the cycle time for

shipments. This stage enumerates the complete set of resource investment solutions from the last stage for

each of the control policies.

Simulation languages often have a small set of modeling constructs that implement control rules; e.g.

queues that prioritize the next job to be processed or routing blocks that can decide which output port to
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send a job or resource. However, a canonical model of control for the DELS domain, especially one that

can be implemented in DES tools, remains elusive. That is, there does not exist a universally accepted

model of control decisions that can be made by a DELS or a method to implement those decisions in tools

without resorting to ad-hoc code. These challenges make defining and searching the control policy space

difficult, which often to leads to simplifications such as exploring a pre-defined set of control policies,

such as FIFO in queues or round-robin routing. Additional work is needed in the future to standardize the

specification and implementation of control policies in DELS.

3.5 Results

The output of this multi-stage simulation optimization process is a Pareto set of solutions, which can be

further refined by state of the art ranking and selection methods. However, in its current state the output

is a trade-off curve between resource investment (depots and trucks), total distance travelled to service

customers, and the service level (cycle time satisfaction). The set of solutions is projected into three

two-dimensional plots (Figure 4).

Figure 4: Candidate solutions from multi-objective simulation optimization.

3.6 Extensions to Support Additional Use Cases

Justifying the development of a formal domain methodology for simulation optimization requires demon-

strating that the domain model and associated analysis methodology can be extended to support the analysis

of a broad range of related systems. In fact the token flow network and product, process, resource, and

facility definitions (see section 2.4 for an overview) provide sufficient detail to specify any DELS. While

an exhaustive demonstration on this claim is beyond the scope of this paper, a manufacturing design case

is presented to provide some detail on the extensibility of this methodology.

In the design of a manufacturing flow line or a job shop (Figure 5), there may exist several products

with their own unique process plans, required processing capabilities, and resources in the form of fixtures,

machines, subcomponents, etc. In the first stage, the structure of the manufacturing line or shop is constructed

by extracting the underlying process and flow networks from the problem definition and allocating processing

tasks to flow nodes. This allocation can be based on the grouping of capability requirements or through an

assembly-line balancing method. Next, the design methodology seeks to trade-off the resource investment

costs against the desired service level, cycle time, throughput, etc. In this level of the hierarchy, a MCGA

evaluates resource levels for operators, required fixtures, and parallel machines at a workstation. Finally,

the last stage in the design hierarchy searches for optimal inventory policies for subcomponents at each

workstation and enumerates dispatch policies for releasing work into the system.

Therefore, by mapping the problem statement to the reference architecture, the design space can be

structured to optimize the structure, behavior, and control of the system using domain specific methods.
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Figure 5: Manufacturing Configuration Model Captured in SysML.

The next section contains discussion on the extensibility and limitations of this methodology, specifically

systems that require a different hierarchy.

4 DISCUSSION

While this methodology is used extensively in other engineering disciplines where model-based design

is more routine (Sobieszczanski-Sobieski and Haftka 1997), there remain some open questions about its

applicability and effectiveness in the DELS domain. Foremost, these questions stem from limited usage of

model-based methods in the DELS domain and consequently incomplete reference models for the domain.

While the refinement of reference models is a work in progress, there remains a need for a canonical model

of control that is uniformly applicable across each of the subdomains listed in the introduction.

Additionally, hierarchical design is a relatively unexplored method in the DELS literature beyond

bi-level optimization. Therefore, there are several related open questions that may impact the overall

applicability of the methodology, including: Is there only one, or a best design hierarchy? How are

surrogates or approximations selected, and can they be reused across sub-domains or are they sub-domain

specific? How can models be generated with varying degrees of fidelity from the same base model, such

as in (Jin 2011)? Finally, there are implementation issues, such as management of component variants and

composability among analysis components, which may prove a challenge to verifying and validating the

resulting analysis.

5 CONCLUSIONS AND FUTURE WORK

To meet the analysis requirements of next-generation discrete event logistics systems, simulation optimization

methods must be able to handle the scale, complexity, and uncertainty inherent to these systems. Integration

and interoperability between the individual methods within the simulation optimization methodology is

a key enabler to a broader effort to meet those requirements. In this paper, we have proposed a formal

domain modeling methodology to create domain specific methods and robust interfaces between those

methods. For the DELS domain, this methodology suggests the use of a domain-specific language that

supports the specification of the structural, behavioral, and control aspects of each system. This approach is

demonstrated through a distribution supply chain use case that integrates CPLEX, a multi-objective genetic

algorithm, and a discrete event simulation tool SimEvents.

Ongoing research is focused on refining the domain specific language and associated reference model

of the DELS domain. This refinement process is focused on creating a language that is broadly applicable

to the whole domain and establishes a basis for creating conforming simulation optimization tools. Future
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work will focus on tailoring this domain specific simulation optimization methodology to provide on-line

real-time control for smart operational control in DELS as well as to support design methodologies for the

domain.
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