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ABSTRACT

This paper presents an integrated approach for enhancing the performance of stochastic optimization

processes by incorporating techniques from statistical experimental designs, such as response surface

methodology. The two-stage process includes an “exploratory” phase, during which a fraction of the finite

time budget is reserved for conducting informative measurements to best approximate the stochastic loss

function surface, followed by execution of the optimization process for the remaining time. We formulate a

representative stochastic optimization problem for the case of multiple distributed mobile sensors engaged

in surveillance for one or more objects of interest. We show via simulation studies that the employment of

such an exploratory phase, with the use of screening experimental designs to provide local approximations

to the response surface, improves the stochastic optimization process.

1 INTRODUCTION

Many challenging problems in multi-agent systems involve optimization of an objective function in the

presence of uncertainty, as evidenced by the increasing interest in the field of stochastic optimization.

One such area of continued interest that intersects the optimization, controls, and operations research

communities is the use of stochastic optimization techniques for resource allocation models, such as

informing efficient surveillance of an area of operations with distributed mobile sensors. Such problems are

not only challenging due to the spatially and temporally dynamic and stochastic environments, the difficulty

in identifying universally robust and stable optimization methodologies often requires problem-specific

solution approaches. Furthermore, the sensitivity to initial conditions of the optimization performance, as

well as working within constraints on computational feasibility, can also hinder one-size-fits-all approaches.

The work presented in this paper investigates a framework for initialization of the stochastic optimization

process that is shown through simulation studies to enhance the performance of the optimization. As

an operationally relevant application, we investigate the efficient and effective employment of a team

of autonomous mobile sensors performing an information-gathering mission, i.e., the coordinated state

estimation of an object of interest.

1.1 Related Works

Multi-agent optimization, particular in the context of autonomous systems, has been extensively studied

in numerous contexts, ranging from coverage control (Cortés, Martı́nez, Karatas, and Bullo 2004) to

surveillance and patrolling (Bazzan and Labidi 2004) to distributed target tracking (Chung, Burdick, and

Murray 2006, Yang, Freeman, and Lynch 2007) applications. The objectives in these works are nominally

formulated as (stochastic) optimization problems, often addressing the minimization of a measure of
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uncertainty, such as entropy or estimate error covariances (Caiti, Calabro, Di Corato, Meucci, and Munafo

2013). Analogously, in recent literature, much work has been done to maximize the (expected) information

gain obtained by one or more coordinated agents (Schwager, Dames, Rus, and Kumar 2011, Dames,

Schwager, Kumar, and Rus 2012). However, despite recognition of computational concerns, most of these

works do not address how best to efficiently allocate a computation budget, so as to limit the number of

stochastic objective function calculations or measurements.

Related to this concern, various stochastic optimization techniques address the task of optimizing an

objective in the presence of noise, e.g., only noisy measurements of the objective function are available,

which impacts the convergence to and guarantees of optimal solutions (Spall 2003). Statistical methods

to estimate the objective function (or its gradient) as a way to address the noise usually require repeated,

often expensive, measurements, further impeding efficiencies. Despite these challenges, much interest

in stochastic optimization, coupled with the advent of greater computational resources and broadening

domain applications, have led to the development of methods such as stochastic approximation (Spall 2003)

or simulation-based approaches (e.g., simulated annealing (Van Laarhoven and Aarts 1987), evolutionary

computation (Back, Fogel, and Michalewicz 1997)), to include those designed for decentralized optimization

problems (Bertsekas and Tsitsiklis 1989). An emerging area of research, however, remains the development

of rigorous methods for the initialization of the stochastic optimization process, which often can significantly

impact, sometimes quite adversely, the overall optimization performance.

Identifying the most informative collection of measurements, which could refine the stochastic opti-

mization process and improve its performance, is well suited for the application of statistical experimental

design theory. These methods for the efficient design of experiments generate the most statistically relevant

observations (Montgomery 2009), and have increasingly been incorporated in numerous engineering areas,

to include robotics, controls, and optimization. Though early works have explored the role of experimental

design in defining, for example, optimized sensor placements in an environment (Ucinski 2009), further

integration with multi-agent systems research and stochastic optimization, such as via the use of response

surface methods (Myers, Montgomery, and Anderson-Cook 2009), highlight numerous potential benefits

in intelligently reducing the number of measurements executed while still providing measurably good

statistical models of the stochastic objective function.

The objective of the presented approach can thus be stated to be: Given a budget on the number

of measurements the system can use, identify an appropriate fraction of the total budget that should be

allocated between “exploratory” sampling, that is, using an experimental design-like approach to minimize

uncertainty in the loss function, and “exploitative” sampling, which is seeking to minimize the loss function

itself.

1.2 Summary of Contributions

Given the breadth of these previous works, the main contributions of this paper include the development

of a framework that integrates statistical experimental design, namely response surface methodology

(RSM), with the stochastic optimization of a noisy loss function designed to represent the collective sensor

fusion performance of a team of distributed mobile sensors conducting a target tracking task. In this

paper, we present characterization of the trade-offs between conducting “exploratory” measurements (via

experimental design techniques) to better estimate the loss function and executing “exploitative” control

actions to optimize the noisy loss function itself. Simulation studies provide some insights into the benefits

and penalties associated with two-phase approach which seeks to address the problems in the initialization

of the optimization process.

Having motivated the problem in the context of previous works in this section, Section 2 describes

statistical experimental design approaches for highlighting ideal initial conditions for the optimization

process. Section 3 presents a formulation of a stochastic optimization model framework for the multi-

agent information-gathering scenario of interest. Simulation model development and numerical studies are
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presented in Section 4, including relevant results and insights. Section 5 concludes the paper and highlights

future avenues of research.

2 INTEGRATING STATISTICAL EXPERIMENTAL DESIGN

In many cases, due to both real-world operational considerations and computational expense, the cost of

obtaining a measurement, that is, sampling the stochastic loss function, may be both high and constrained.

For example, given a budget of the number of measurements allowable, one common but naı̈ve approach

for addressing the noise in such stochastic optimization problems is to take and average more measurements

at fewer points in the domain, while simultaneously attempting to optimize the loss function.

However, the expense of taking many arbitrary measurements at a given point could be minimized by

more intelligent selection of sampling locations to be most informative, thereby reducing the number of

measurements necessary to achieve statistical confidences. This very topic is the subject of the field of

statistical design of experiments.

Instead of directly optimizing the stochastic loss function initially, the approach proposed in this paper

reserves a budget of k measurements (one per time step) for the application of “exploratory” observations,

and using these few but well chosen observations to develop a statistical regression model to provide a

model of the shape of the stochastic loss function, also known as the response surface in experimental

design literature (Spall 2010).

2.1 Response Surface Methodology

Response surface methodology has been used in a variety of applications to experimentally optimize a

response surface, i.e., a sampled loss function. The general concept, as summarized in, e.g., (Spall 2010),

is to sample the loss function in the neighborhood of a given initial point in the factor space, and by locally

approximating the surface at that point, one can compute an estimate of the gradient that can assist in

finding optima.

More rigorously, consider the choice of a screening design that admit no more than k experiments (a.k.a.

design points). Some canonical options include (fractional) factorial or central composite designs, with

alternatives for more complex designs such as optimal (e.g., D-optimal) or space-filling designs (Montgomery

2009, Kleijnen, Sanchez, Lucas, and Cioppa 2005).

For a first-order model that captures only the main effects (i.e., no interactions between the factors),

where main effects may collectively represent physical coordinates of the team of mobile sensing robots,

one can construct a regression model based on the responses from these screening experiments that takes

the form

y = β0 +β1x1 + · · ·+βnxn = β0 +βββ
T

xxx,

where βββ ∈ R
n is the column vector of all coefficients corresponding to main effects. Then the gradient

direction of steepest descent (in the case of trying to minimize the loss function) is given simply by

−βββ (Spall 2010).

One can conduct additional experiments for factor variations in the direction of this steepest descent,

continuing until no additional statistically significant reduction in the response surface is obtained. Additional

tests, such as evaluation of the Hessian at these points of nearly zero gradient, can be conducted to

identify the nature of the fixed point. Nominally, the response surface methodology procedure is repeated,

potentially employing more complex experimental designs, such as central composite designs, at each

subsequent iteration that might include higher-order terms or additional center points to capture any

possible nonlinearities (Myers, Montgomery, and Anderson-Cook 2009).

However, as will be discussed in the following section, the allowable budget of experiments to be

conducted may not allow for repeated application of this experimentally driven optimization process. Rather,

given a fixed allotment of experiments that can be conducted in this manner, with the remaining sampling
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opportunities reserved for direct use in specific stochastic optimization routines, one must identify not only

which class of experimental designs to select from but also how many experiments (within the budget of

k measurements) to employ in the design and how many to leverage to progress in the steepest descent

direction of the response surface.

2.2 Application of RSM to Multi-Agent Control

Recall that the presented approach seeks to improve the overall optimization performance by initially allotting

a fraction of the total observation budget to perform exploratory samples of the loss function, leveraging

statistical experimental design techniques to identify which samples are likely to be most informative.

In the context of the multi-agent optimization to improve target tracking performance, in keeping with

response surface methodology procedures, we can apply the notion of identifying a set of locations in the

neighborhood of mobile sensors’ initial positions. A first-order model, which can be adequately found by

use of a screening design, offers an initial approximation of the response surface. For M sensing agents in

R
2, the factor space has dimensionality 2M, that is, deviations about the initial locations for all sensor agents

in x,y directions. A number of simple experimental designs may provide adequate resolution; consider the

use of a two-level, fractional factorial design, such that a subset of high and low levels of both x and y

deviations are considered. For M agents, the total number of resulting design points is eight, noting that

a full factorial design (for two-levels) requires 22M = 16 experiments. Having selected a simple model to

motivate the proposed approach, one can easily recognize that the number of such measurements increases

exponentially with increasing numbers of sensor agents and/or state variables (e.g., velocities, headings)

that might also be considered decision variables.

A number of different design approaches for screening are possible, each with potentially different

number of required experiments. The trade off between reduction of the number of experiments and the

ability to isolate which factors are likely to be most informative is of interest to our characterization.

See Montgomery (2009) for an introductory overview.

Suppose we are able to collect samples according to the specified design. What remains is to generate

a simple first-order linear regression model that can provide some insights into the response surface. In

particular, consider the first-order regression model, with four factors (for M = 2 case)

y = β0 +β1x1 +β2x2 +β3x1x2 + · · ·

The idea is then to use the collected response data and fit the best possible linear fit. Note that the gradient

of this model as a function of a given factor can be computed analytically as well.

Consider, for example, the use of a fractional factorial design, highlighting only the direct impact

(a.k.a. main effects) of the factors, that is, the sensor agent positions, and not any correlations between

their respective positions. Then a minimalist experiment design can be generated, such as in Table 1, in

the case of two mobile sensors, where −1 corresponds to the low level and 1 denotes the high level for

the corresponding factor. For example, a 1 entry for x1 indicates sampling at x1 +∆x, or a −1 entry for y2

suggests sampling at y2 −∆y.

From the responses (i.e., measurements results) arising from such a design matrix, we can construct a

regression model of the form:

L̂ = β0 +βx1
x1 +βy1

y1 +βx2
x2 +βx2

y2,

where (x1,y1) and (x2,y2) are considered the factors and represent the location of the two sensor robots,

and the coefficients βxi
and βyi

define the significance of their associated factors in impacting the response.

In the context of the measurement budget, k, allocated for locally exploring the current sensor robot

locations, any remaining available measurements after completing the samples according to the experimental

design can be conducted while moving in the gradient direction determined by the regression model

coefficients. For example, as will be seen, if k = 25 and there are eight nearby locations, i.e., design points,

2466



Chung and Spall

Table 1: Four-factor, two-level fractional factorial design, generated using MATLAB’s fracfact

command.

x1 y1 x2 y2

−1 −1 −1 −1

−1 −1 1 1

−1 1 −1 1

−1 1 1 −1

1 −1 −1 1

1 −1 1 −1

1 1 −1 −1

1 1 1 1

=⇒

x1 y1 x2 y2

x1 −∆x y1 −∆y x2 −∆x y2 −∆y

x1 −∆x y1 −∆y x2 +∆x y2 +∆y

x1 −∆x y1 +∆y x2 −∆x y2 +∆y

x1 −∆x y1 +∆y x2 +∆x y2 −∆y

x1 +∆x y1 −∆y x2 −∆x y2 +∆y

x1 +∆x y1 −∆y x2 +∆x y2 −∆y

x1 +∆x y1 +∆y x2 −∆x y2 −∆y

x1 +∆x y1 +∆y x2 +∆x y2 +∆y

then after completing these eight measurements and computing the response surface gradient, the remaining

17 observations are taken along the trajectories corresponding to each sensor’s respective gradient direction.

3 MULTI-ROBOT TARGET TRACKING FORMULATION

Consider the multi-robot surveillance scenario in which a team of M mobile sensing agents, modeled as

autonomous robots with single integrator dynamics, must cooperatively maneuver in a two-dimensional

area of operations to gather, share, and fuse state information regarding one or more objects present in the

environment. Let us first consider an illustrative case of a single stationary object of interest, such as an

aircraft’s black box or a misplaced cellphone, whose state is x ∈ R
2.

To illustrate a representative stochastic optimization loss function, consider the multi-agent sensor

fusion and target tracking formulation presented in Chung, Burdick, and Murray (2006), for which stability

analysis is performed in Yang, Freeman, and Lynch (2007), in which the loss function, L, represents the

fused target state estimate error covariance, denoted Pfused, with all M robots assumed to have range and

bearing sensors to sense the relative location of the object:

L
△
= Pfused =

(

M

∑
i

(

TiR̄iT
T
i

)−1

)−1

, (1)

R̄i ∈ R
2 represents the ith sensor robot’s uncertainty, i.e., measurement covariance matrix, in the robot’s

body-fixed reference frame. Ti ∈ R
2 is the rotation matrix to transform from the local to global reference

frame, given as:

R̄i
△
=

[

fr(ri) 0

0 fb(ri)

]

, Ti
△
=

[

cos(φi) −sin(φi)
sin(φi) cos(φi)

]

,

where ri and φi are the relative distance and bearing measurements from the ith robot to the object. The

standard deviations of measurement errors in range and bearing, denoted fr(ri) and fb(ri), respectively, are

assumed to depend on the relative distance, ri (Chung, Burdick, and Murray 2006).

Derived in Chung, Burdick, and Murray (2006) is a gradient-based control law that provides a decen-

tralized motion control strategy for each robot to individually maneuver to collectively minimize the loss

function, given by Equation 2:

ui (ri,φi) =
[ (

∂L
∂ ri

) (

∂L
∂φi

) ]T

, (2)
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where qi represents either the range, ri, or bearing, φi, between the ith robot and the target, such that we

have

∂L

∂qi

= |Pfused| tr

[

R−1
i

∂Ri

∂qi

(

R−1
i

)T
Pfused

]

,

and

∂Ri

∂ ri

= Ti

∂ R̄i

∂ ri

TT
i = Ti

[

∂ fr

∂ ri
0

0
∂ fb

∂ ri

]

TT
i

∂Ri

∂φi

=

[

0 −1

1 0

]

TiR̄iT
T
i +TiR̄iT

T
i

[

0 1

−1 0

]

We present this previous analytic work so as to provide background and a means of comparison with

the phased stochastic optimization solution strategy presented in this paper. For example, we want to

investigate the difference between the perceived loss function (with errors due to, e.g., sensing errors) and

the true loss function (which requires perfect knowledge of the true locations of targets). The closed-form

expressions provides a means to perform this baseline comparison to validate the proposed methodology,

with application to more complex formulations left for near-term study.

Returning to the illustrative example to be considered throughout the paper of M = 2 mobile sensor

agents and a single stationary target, employment of the gradient-based control law leads to Figure 1, with

the absence and presence of measurement noise highlighting the difficulty of the stochastic optimization

problem. In this example, the range and bearing uncertainty functions, fr(ri) and fb(ri), respectively, are

given by a quadratic dependence on range to the target, i.e.,

fr(ri) = a2 (ri −a1)
2 +a0,

fb(ri) = α fr(ri),

with coefficients a0 = 0.1528, a1 = 15.625, and a2 = 0.0008, and scaling factor α = 5.0 for the illustrative

example. While the approach described in this paper does not depend on the specific form or value of

these uncertainty functions, these parameter values represent a range-dependent error with a minimal error

sensing range at 15.625 units from the target. Such a model would be appropriate for sensors, such as

underwater sonar, for which its ideal sensing location is neither too close or too far from the target.

Naturally, the focus of much stochastic optimization literature is to apply methods for determining

optimal values of the stochastic loss function, such as the model formulated above. The work presented in

this paper, however, highlights the value of also optimizing the initial phases of the optimization process,

and is driven by techniques to efficiently sample the stochastic loss function to improve the resulting

optimization. The general idea is to mitigate the stochasticity of the loss function by allocating some of

the available sensing budget, in the form of k time steps, to perform exploratory sampling prescribed by

an experimental design, as was discussed previously in Section 2.

4 ANALYSIS AND RESULTS

We investigate whether there is indeed any advantage to enabling an “exploratory” period by employing

experimental design techniques for computing an initial direction for all sensor agents. Several key elements

of this initial study are the focus, including assessing the role of different types of screening designs, the

allocation between exploratory samples, sampling along the vector indicated by the local approximation,

and transitioning to standard stochastic optimization approaches, as well as ultimately the fraction of the

time spent in “exploratory” versus “exploitative” phases of optimization.

We first consider the impact of varying the measurement budget (k) of the “exploratory” phase as well

as that of different screening designs, to include full factorial, fractional factorial, D-optimal (Montgomery
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(a) (b)

Figure 1: Example output of the gradient-based control law. Trajectories shown are two sensor agents in

the (a) absence and (b) presence of measurement noise in range and bearing.

2009), and other space-filling designs such as the Nearly-Orthogonal Latin Hypercube (Kleijnen, Sanchez,

Lucas, and Cioppa 2005, Sanchez 2011). These alternatives are constructed, for example, using MATLAB’s

fracfact and rowexch functions for fractional factorial and D-optimal designs, respectively, which

can all be compared against the cases of perfect (i.e., in the absence of noise) gradient calculations using

Equation 2 as well as the case where the gradient-based control law is executed immediately, that is, no

budget for exploration is provided.

For the illustrative two-sensor, single-target example, we investigate the value of the loss function

achieved after 1000 time steps in Monte Carlo simulation studies, with summary statistics from 500 runs

shown in Table 2. With the given sensing parameters in this example, the true minimum loss function value

can be computed to be 0.0162. These simulations highlight that the median stochastic loss function value for

nearly all variations that involve an exploratory phase prior to commencing direct stochastic optimization

techniques (in this example, via the gradient-based control law) is lower than the studies without exploration

of the response surface. In particular, the simple fractional factorial with only eight design points and

a modest budget of 50 measurements total for the exploratory phase results in the minimized value, as

highlighted in Table 2.

Table 2: Summary of loss function value statistics at the end of 1000 time steps in Monte Carlo simulation

(500 runs) for different screening designs and configurations.

Design name kkk # DPs med max

truth (no noise) n/a n/a 0.0162 0.0162

no exploration 0 n/a 0.0208 0.0293

full factorial 50 16 0.0200 0.0294

frac factorial 25 8 0.0201 0.0294

frac factorial 50 8 0.0196 0.0297

frac factorial 100 8 0.0207 0.0293

frac factorial 200 8 0.0210 0.0295

D-optimal 50 25 0.0204 0.0293

D-optimal 100 50 0.0210 0.0296

D-optimal 150 100 0.0206 0.0294

NOLH 25 17 0.0204 0.0296

NOLH 50 17 0.0201 0.0294
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From the visualization of the evolution of the two-sensor trajectories illustrated in Figure 2, the effect

of conducting exploratory measurements in the direction of the gradient as estimated by the RSM-based

procedure can be seen. For the same number of design points for a given screening design (e.g., fractional

factorial with eight design points), an increasing measurement budget, k, leads to a longer exploratory

trajectory.

(a) (b)

(c) (d)

Figure 2: Evolution of the multi-sensor target tracking trajectories for (a) k = 0, (b) k = 25, (c) k = 50,

and (d) k = 100, using a fractional factorial screening design (using a common pseudo-random number

seed value for consistency). As annotated, the initial portions of the trajectories are in the direction of

the estimated gradient from the screening measurements, followed by computation of the gradient-based

motion control laws directly for the remainder of the tracking mission.

Further, by inspecting the initial evolution of the loss function values as computed by the two-sensor

team tracking the target, the effect of the exploratory measurements can further be investigated, as shown

in Figure 3. In particular, plotted against the ideal case of using the gradient-based control law given

by Equation 2 without any measurement noise, measurements during the exploratory phase provide little

improvement to the loss function value. However, as evidenced in Table 2, this initial “delay” in cost

reduction still can lead to achieving a more favorable steady-state loss function value, as appears to be true

for k = 50 in the fractional factorial case.

In addition to showing asymptotic approach to the optimal loss function value, an additional measure

of performance of interest is the number of time steps (i.e., measurements) necessary to converge to within
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(a) (b)

(c) (d)

Figure 3: Cost evolution traces for varying exploratory measurement budgets, (a) k = 0, (b) k = 25, (c)

k = 50, and (d) k = 100, using a fractional factorial screening design. For cases where the screening design

is executed (b-d), the eight design points correspond to the first eight time steps, after which exploratory

measurements in the direction of the estimated gradient extend for the remaining measurement budget.

a tolerance of the optimal solution. The objective is to identify any dependence on experimental design

of the speed at which the sensors first arrive at their minimal cost configurations. We see that over 1000

Monte Carlo simulation runs, the summary statistics of each alternative’s convergence time distributions

are provided by Table 3, with the case of using a fractional factorial design with a budget of k = 50

measurements illustrated in Figure 4.

From these results, interestingly, the average time until the two-sensor team arrives as the minimal

loss function value is generally higher when incorporating an exploratory phase to the integrated stochastic

optimization problem. However, the minimum time to reach this minimum does depend on the choice of

design and allotment of exploratory measurements; in some cases, it is possible to arrive at the minimum

faster, even accounting for time spent performing the exploratory measurements, than if no exploration

was conducted. This interesting relationship highlights the trade-off between exploration and exploitation

precisely of interest in this study.

5 CONCLUSIONS AND FUTURE WORK

This paper proposes an approach that integrates multi-disciplinary methods for enhancing the performance

and outcome of stochastic optimization procedures, showcasing an application of a state estimation task

of an object of interest by a team of mobile sensor agents. The presented approach leverages fundamental
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Table 3: Summary of loss function value statistics for convergence times to the minimal loss function value

(0.0162) over 1000 Monte Carlo simulation runs for different screening designs and configurations.

Design name kkk # DPs min mean std

truth (no noise) n/a n/a 127 127 n/a

no exploration 0 n/a 184 280 49

frac factorial 25 8 189 296 55

frac factorial 50 8 166 306 75

frac factorial 75 8 155 325 96

frac factorial 100 8 141 344 133

frac factorial 150 8 151 404 154

frac factorial 200 8 210 474 146

D-optimal 100 25 168 295 88

D-optimal 100 50 201 292 52

Figure 4: Frequency distribution of convergence times to within a given tolerance of the optimal loss

function value, shown for the case of using a fractional factorial design possessing eight design points with

a budget of k = 50 measurements (c.f. Table 3)

principles of statistical experimental design, namely, response surface methods and screening experimental

designs to inform the trade-offs between expending measurements in support of “exploring” the stochastic

loss function versus directly proceeding with the stochastic optimization in the presence of performance-

degrading uncertainty. We show, through simulation studies and modeling of a stochastic optimization

problem representing a multi-robot target tracking application, that employing an exploratory phase as the

initial phase of the optimization process can lead to improved convergence to the optimal solution. Further,

the modeled loss function representing target tracking uncertainty has a gradient that can be analytically

derived, and by using it for rigorous baseline comparisons, a canonical fractional factorial design is found

to be sufficient to approach the optimal minimal value.

Given the breadth of mathematical tools employed from different disciplines, there are many avenues of

future research to expand upon this initial study. In particular, different classes of stochastic loss functions

may benefit from different screening design methodologies. We investigate a number of the canonical

designs; however, further investigation into the possible benefit from customized designs will highlight

whether automated procedures are feasible. Also related is the issue of the step size used to define the

neighborhood of the initial starting points of the sensors. Initial investigation of ∆x = ∆y equal to 0.5 or

2.0 (vice a step size of 1.0 studied in this paper) indicates that there is little dependence on step size, but

more extensive study is warranted.
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Further, this work assumed that the initial locations of the sensor agents were dictated due to operational

or other considerations; one can likely incorporate one of the many sensor deployment algorithms in the

literature that may address specific requirements, potentially accounting for prior information regarding the

object location within the search area. Sensor deployment models, such as in Martinez and Bullo (2006),

may provide additional advantage in these integrated stochastic optimization scenarios.

Additionally, demonstration of the presented methods on more complex stochastic optimization functions,

such as that presented in Peterson, Newman, and Spall (2014), would better highlight the strengths and

limitations of the proposed approach.
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