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ABSTRACT 

This paper presents an application of simulation metamodeling to improve the analysis capabilities within 
a decision support tool for Critical Infrastructure network evaluation.  Simulation metamodeling enables 
timeliness of analysis, which was not achievable by the original large-scale network simulation due to long 
set-up times and slow run times.  We show through a case study that the behavior of a large-scale simulation 
for Critical Infrastructure analysis can be effectively captured by Neural Network metamodels and 
Stochastic Kriging metamodels. Within the case study, metamodeling is integrated into the second step of 
a two-step analysis process for vulnerability assessment of the network.  This consists first of an algorithmic 
exploration of a power grid network to locate the most susceptible links leading to cascading failures.    
These links represent the riskiest links in the network and were used by the metamodels to visualize how 
their failure probabilities affect global network performance measures.  

1 CRITICAL INFRASTRUCTURE MODEL-BASED VUILNERABILITY ASSESSMENT  

Risk analysis is a well-established systems engineering discipline that includes risk assessment and risk 
management as components. Risk assessment is concerned with how extrinsic and intrinsic events lead to 
vulnerabilities, both at the component and system levels. In the analysis of Critical Infrastructure (CI) 
networks, vulnerabilities are discovered through design of experiments using simulations of CI networks. 
All CIs of interest can be represented as a network of connected components (nodes and links). These 
components can be described mathematically in terms of their spatial (topological) and/or functional 
properties.  For this study, we have examined the Power Grid where the nodes are the generators, 
substations, and loads. The links are the transmission lines connecting the generators to the substations and 
loads. Network connectivity is a topological property while power flow is a functional property. Both 
properties are viewed as equally important.   
 A Model-Based Vulnerability Assessment (MBVA), (Lewis 2006) for a Critical Infrastructure (CI) 
involves the application of models and decision support tools to quantify the vulnerabilities, uncertainties, 
and risks associated with mitigation strategies. Within this framework, CIs are decomposed into a network 
of connected components, critical node and links. As shown in Fig. 1, vulnerabilities are examined and 
quantified through the use of simulation models and translated into fault trees, where the fault probabilities 
are enumerated using event trees.   Component faults or system failures are then examined and associated 
risks are assessed. A set of tradeoffs then determine the best policies and/or resources for risk mitigation 
based on optimal resource allocation.  
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Figure 1: Model-based Vulnerability Assessment (MBVA) Components. 

 A key component for CI risk analysis and assessment is the identification of the costs and associated 
system risks as well as the optimal investment strategies required to reduce risk in the most effective manner 
(Lewis 2006).   This step involves both risk assessment and risk management. In risk assessment, there is 
a determination of what can go wrong, the likelihood of something going wrong, and the consequences of 
something going wrong (Kaplan 1997). In risk management, various risk-mitigating strategies are 
considered, tradeoffs are evaluated in terms of risks, costs, impacts, and other factors, and current 
decisions/policies are assessed with respect to their future impacts 
 The methodology for CI risk analysis and assessment involves identifying and modeling 
interdependencies through network analysis methods, i.e., determining shared system states and the 
synergistic/pernicious couplings between systems. As such, the risk analysis tools are both functionally and 
operationally coupled to the following three logical frameworks: Model-based Network Generation and 
Analysis, Dynamic Model Experimental Design and Execution, and Metamodel Formulation and 
Execution.  The Dynamic Model Experimental Design and Execution component is described in the next 
section of the paper.  This component is utilized to develop the Metamodel Formulation and Execution 
component.  A case study is also provided in this paper to illustrate the development and implementation 
of the Metamodel Formulation and Execution component. 

2 DYNAMIC MODEL EXPERIMENTAL DESIGN AND EXECUTION 

MBVA consists of a framework for Dynamic Model Experimental Design and Execution that provides 
plug-and-play support for application-specific dynamic models while providing the capability to define and 
execute experiments of interest based on a selected list of Design of Experiment (DOE) parameters and 
Measure-of-Effectiveness (MOE) model outputs. A robust visualization interface provides an intuitive 
method of understanding network performance within the context of associated risks, vulnerabilities, and 
resiliencies.   Although we incorporated two dynamic power grid models: Cascading Failure Simulation 
(CFS) and ORNL-PSERC-Alaska (OPA) (Carreras 2004), the study presented in this paper focuses on the 
CFS model. 

The CFS model is a slightly modified version of the cascading failure simulator from Korkali et al. 
(2014) which is used to model the physics of the electrical grid. An algorithm flow chart for the CFS model 
is shown in Fig. 2. Due to the uncertainties associated with system parameters and operator’s strategy to 
avoid system instability, real grid dynamics are simplified with DC power-flow approximations in this 
simulator. A triggering event (e.g. random or targeted attack) leads to an initial failure of some power 
system components (substations, transmission lines, etc.) that changes the balance of the power flows within 
the grid. This imbalance leads to a redistribution of power flow in the grid via generator ramping or load 
shedding that can result in further local overloads initially and potential blackouts of various sizes.  The 
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triggering event might then cause an overload in other parts of the network; thus, the protection system trips 
the overloaded components, and the power flow is rerouted, possibly inducing further overloads. If an 
islanding (parts of the power grid becoming separated from each other) occurs, cascading failures may 
persist in each island in which individual generators or loads are shed in order to achieve a balance of 
power. The cascade of failures continues until no further components are overloaded or the power grid 
operation has degraded past a pre-defined level. After the cascading subsides, the robustness of the grid 
against failures is quantified either in terms of the fraction of the served power or the size of the largest 
portion of the grid that continues to operate with power.  

 

 

Figure 2: Algorithm Flow Diagram for the CFS Model. 

 The CFS model is utilized in the Dynamic Model Experimental Design and Execution framework to 
locate the set of blackout-causing contingencies within a power grid network: for any size  we are 
interested in the set of  െ  contingencies where n is the number of links in the original network and k is 
the number of failed links.  Blackout contingencies are combination sets of network links that lead to a 
cascading failure in the network.  Not all   െ -sets of links will result in a blackout. Locating the blackout 
causing contingencies is a critical step in understanding overall network vulnerability and assessing and 
managing risk.  Fewer blackout contingencies indicate greater power grid robustness and this is an objective 
when considering alternatives for system design.  

2.1 Graph Exploration for n-k Contingencies 

The biggest challenge in using metamodeling to expedite the analysis of CI networks is in identifying the 

blackout causing contingencies. Given that there are ݊ branches in the network, there are ቀ݊݇ቁ possible 

contingencies.  For example, in the Polish Power Grid, described in Section 4, there are 2896 links, so there 

are ቀ݊ʹቁ  = 4,191,960 different possible combinations to search across for ݊ െ ʹ  contingencies alone, 

making the location of susceptible branch combinations of size ͳǡʹ ǥ ǡ ݇  a computationally intensive search 
problem. The main approach suggested in literature to locate blackout-causing contingencies is based on 
the Random Chemistry algorithm.  See Buzas (2013) and Rezaei (2014) for more information. Random 
Chemistry is essentially a sequential bifurcation type of factor screening procedure that starts each trial of 
its search with a large set of branches (80 has been suggested in the literature). Given that this large subset 
produces a cascading blackout, a successive subset of half the size is randomly generated. If the reduced 
subset is found to result in a cascading blackout, it is reduced in half randomly again to generate another 
subset. If it does not produce a cascading blackout, then other randomly generated subsets are continued to 
be constructed until one that generates a cascading blackout is discovered or a predetermined number of 
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subsets have been attempted without a cascading blackout result.  In a Random Chemistry application from 
Eppstein and Hines (2012), when a ݊ െ ͷ blackout contingency is found, then all possible 2, 3, and 4 link 
combinations are tested for cascading blackouts.  Eppstein and Hines defined a blackout contingency to 
occur whenever the giant component (largest connected subgraph) of the network was less than 90% of the 
original network size. 

For the Polish Power Grid, we were able to perform an exhaustive search of all ݊ െ ʹ contingencies 
and found 594 contingencies that resulted in cascading blackouts, based upon Eppstein and Hines 
definition. There were 340 distinct links in the 594 contingencies.  Some links were more critical than 
others; for example, link 169 occurred in 169 of the blackout contingencies.  The eight most frequent links 
were involved with 466 of the contingencies.  Because the number of blackout contingencies is small, they 
are difficult to find.   Eppstein and Himes (2012) used 735,500 successful Random Chemistry trials, 
resulting in over 33 million simulation runs to find 336 of the blackout contingencies in the Polish Power 
Grid network.  Because a few links are found in most blackout contingencies, they can be discovered with 
far fewer trials.  We executed 300 trials and found 109 blackout contingencies.  These contingencies had 
91 distinct links.  When we paired each of the 91 links with each of the remaining links, we found 593 
blackout contingencies using 263,445 simulation runs.  Only one blackout contingency had two links that 
were not involved with some other contingency. 

2.2 Analysis of Risk due to Link Failures 

Acquiring the set of ݊ െ ݇ contingencies expands the scope of analyses that can be performed on the critical 
infrastructure network and is the first step to risk analysis.  Initially, these sets of contingencies can be 
examined to determine repeating links that are involved in cascading failures.  Those links that are 
repeatedly involved in the set of cascading failures are the focal points for network vulnerability studies 
and, ultimately, network repair.  An analyst would first want to study how the links most frequently involved 
in initiating cascading failures are coupled to the overall performance of the network as characterized by 
the number of broken links, the power loss, size of the giant component after a failure, and the number of 
non-working nodes.  Additionally, the analyst would want to know how the failure probabilities associated 
with these critical links affect global network performance measures.  This provides an understanding of 
how repairing an individual link to improve failure probability improves the overall network performance 
with respect to these performance measures.  This analysis can support acquisition decisions germane to 
network repair in critical areas to determine where the most significant improvements exist within the 
network. 
 Simulation can support these decisions, but the slow set-up times and run times associated with the 
CFS simulation hinder deep analysis.  Simulation metamodeling is introduced here as a critical step in 
enabling this type of analysis.  Simulation metamodeling provides a means for real-time analysis and easy 
scenario configuration, which leads to achieving the types of analyses discussed above. 

3 SIMULATION METAMODELING FOR EXPEDITED ANALYSIS 

Simulation metamodeling is recognized as the key to achieving more rapid analysis capabilities inside a 
decision support tool for critical infrastructure network evaluation. Simulation metamodels are 
essentially models of simulation models that capture the input / output relationships of a large-scale 
simulation for the purpose of generating model observations in real-time.  A simulation metamodel is 
constructed from sampling the simulation model at discrete points in the design space and fitting a model 
through the observations generated at these sample points.  It can be configured as a closed-form 
mathematical expression, but can also be inclusive of rule-based artificial intelligence (AI) approaches.   
Metamodels are best understood as mathematical functions with the relationship ݕ ൌ ݂ሺݔሻ ൌ ݃ሺݔሻ  ߳, 
where ݕ and ݔ are  scalar output and vector valued inputs to the simulation model, respectively.  Moreover, 
consider ݂ሺݔሻ  to be an implicit function representing the mapping between input parameters of the 
simulation model and the output performance measures of the simulation.   The simulation metamodel ݃ሺݔሻ 
is an approximation of ݂ሺݔሻ with an error term ߳.     
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 There is good body of literature on the topic of simulation metamodeling; see Barton and Meckesheimer 
(2006) for a recent review of techniques. A few key techniques are highlighted here, which have all been 
applied to simulation metamodeling:  

 
(a) Response Surface techniques (Myers 1976; Box and Draper 1987; Myers et al. 2009),  
(b) Splines (Eubank 1988; Deboor 1978; Myers et al. 1996), 
(c) Radial Basis Functions (Shin et al. 2002; Dyn et al. 1986; Meghabghab 2001; Hussain et al. 

2002), 
(d) Stochastic Kriging (Sacks et al. 1989; Kleijnen 2000; Staum 2009; Kleijnen 2009; Ankenman et 

al. 2010), 
(e) Neural Networks (Lippman 1987; Fonseca 2003; Al-Hindi 2004), Inductive Learning (Michalski 

1983), and 
(f) Genetic Programming (Koza 1992). 

 
 The best metamodel technique is dependent on the characteristics of the simulation under 
experimentation, such as, the complexity of the response surface, the number of input parameters, and the 
prevalence of input parameters, which are discrete. A comprehensive definition of a metamodel technique 
must entail several factors including the form of the underlying basis functions, how they are integrated 
together, and  the fitting strategy that leads to  the smallest errors.  But in the metamodeling literature, a 
metamodeling technique is often defined by one attribute, which can cause confusion. Radial basis 
functions serve as an example of this as they do not fully define the metamodel technique itself or fully 
classify it into a unique family as the basis functions can be expanded or mapped together in a variety of 
ways.   
 When addressing large scale simulations of Critical Infrastructures, basis functions of complex shapes 
are needed along with a flexible and complex structure for piecing together these basis functions.  The most 
intuitive method that provides this feature is the metamodel family of Neural Networks.  In our past research 
on applying simulation metamodeling for cases with a high input parameter space, we have observed Neural 
Networks to provide very high fidelity and a superior goodness-of-fit to simulations relative to other 
metamodel families (Rosen et al. 2014).   In addition Stochastic Kriging appears to be another candidate 
metamodel technique that can be used to capture the very complex response surface of the Critical 
Infrastructure simulation.  See Rosen et. al (2015) for more information on the selection and application of 
metamodel techniques.  Both of these methods will be applied to this problem in a case study, which is 
described in the next section. 

4 CASE STUDY: POLISH POWER GRID 

In this section we demonstrate how simulation metamodeling can be used to analyze network vulnerability 
resulting from susceptible links within the Polish Power Grid.   The motivation for applying metamodeling 
here is to enable this analysis capability to be contained within a real-time decision support toolkit for key 
decision makers.  Simulation metamodeling is applied through a structured approach (Rosen et al. 2014) 
that guides the selection of the best metamodeling techniques to apply, an experimental design for 
calibration, and validation statistics.   There are four network metrics of interest for global risk: power loss, 
number of non-working nodes, size of the giant component, and the number of broken links.   The size of 
the giant component is a measure of power grid degradation.  What has been found through previous 
experimentations was that the network tends to break down into subnets where most nodes are still powered.  
Even with a small giant component size, most loads are satisfied.  Power loss and non-working nodes appear 
to be more important than the size of the giant component, but that is subjective to the decision maker.  
Total links failed is also important because it gives an indication of the cost to repair.  All four performance 
measures can be assessed in different ways by different decision makers. 

A simulation metamodel is calibrated for each expected value of each of the four network performance 
measures stated in the paragraph above.  After the metamodels are calibrated and validated, we provide 
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illustrations of the expedited analysis that can be performed with these metamodels.  The input-output 
relationship of the simulation captured by metamodel consisted of mapping the failure probabilities of eight 
critical links in the network to the four network performance measures listed above.  There was one 
additional simulation input, which was the initial event size or the number of failed links at the start of the 
simulation.  The eight links selected as inputs represent links that were the most representative in the set of 
n-k contingencies discovered through the network search algorithm discussed in Section 2.1.  The 
vulnerability analysis is a two-step process: locating the most malignant links through expiration on the 
CFS model and then developing metamodels to determine the sensitivity that these eight links have on the 
global network performance measures.  

Based on Rosen et al. (2014) it was concluded that a Neural Network and Stochastic Kriging metamodel 
were the best techniques to try for this particular problem.  To calibrate these metamodels, an experiment 
consisting of a Latin Hypercube design was used across the design component consisting of the eight failure 
probabilities.  A 100 replications of the simulation were each performed at varying values of the initial 
event size: 10, 50, 100, 150, 200, 250, and 300 were used.  This totaled 80,000 simulation runs.  For the 
Neural Network metamodel, a multiple layer feed-forward Neural Network was applied as shown in Figure 
3 where m is the number of hidden nodes and  and represent the connection weights of the network.  
The input layer is the column of nodes on the left-hand side of the network with each node pertaining to a 
single input parameter of the simulation. The hidden layer is contained in the middle column of nodes, 
which constitute a transformation from some subset of the input nodes in the network through weight terms ߚǡwith the first subscript referring to the hidden layer of the Neural Network and the second subscript 
referring to the node within the hidden layer.  Within each node in the hidden layer is a threshold transfer 
function  ൌ ǡߚሺߠ ǡݔ ߶ሻ of sigmoid form (Lippman 1987) by a threshold ߶. The network then maps each 
of the function outputs  to a single-valued output ݕ, which is targeting the value of the simulation model 
under a vector of inputs ݔ.    

 

 

Figure 3: Neural network for simulation metamodeling with multiple layers. 

In Stochastic Kriging, the metamodel assumes the simulation response surface ݕሺݔሻ to be a realization 
of a Gaussian random field where the simulation outputs ܻሺݔሻ ൌ ܾሺݔሻܤ  ሻݔሺܯ . Here the b(x)B 
component of the metamodel is analogous to a trend model and ܯሺݔሻ represents a mean-zero Gaussian 
random field with a covariance matrix derived by spatial correlation to measure deviation from the trend ܾሺݔሻܤ .   The uncertainty captured by ܯሺݔሻ is the uncertainty extrinsic to the simulation model.  In 
Stochastic Kriging, the intrinsic uncertainty within the simulation model is also captured with the addition 
of an additional error term to Y(x) that is estimated through performing multiple replications with the 
simulation model.  Standard Kriging was applied in this case study using a linear trend and structuring ܯሺݔሻ through a Gaussian covariance function. 
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4.1  Comparison of Metamodel Results 

The most important question prior to the implementation of a simulation metamodel involves its accuracy.   
If the metamodel is not an accurate representation of the original large-scale simulation then it is of no value 
for analysis.  Therefore, for this power grid network problem, testing needed to be performed to determine 
the goodness of fit of the metamodels with respect to the CFS simulation.   

Again, Neural Network and Stochastic Kriging metamodels were calibrated for each of the four 
network outputs of interest (number of broken links, the number of non-working nodes, the power loss, and 
the size of the largest giant component) using 80,000 simulation runs.  Validation tests using root mean 
squared error (RMSE) and R-values are promising with the number of broken links and number of non-
working nodes responses showing the best fit.   The R-values and RMSE values are shown below (Table 
1) for the Neural Network metamodels and Stochastic Kriging metamodels for each of the four network 
outputs of interest.  These R-values and RMSE values were computed using testing points that were not 
involved in the fitting of any of the metamodels.  Neural Network metamodels appear to have a slightly 
better goodness of fit, but Stochastic Kriging performs adequately and even quite well for the broken links 
and non-working nodes performance measures.  One possible reason for Stochastic Kriging’s inferior 
performance was the inability to utilize all 80,000 simulation runs for its calibration.  Under nine input 
variables, our Stochastic Kriging code cannot handle all of those data points.  This is due to the significantly 
large computations from the repeated flops necessary to do the covariance matrix inversions in the 
calibration procedure.  Therefore, for Stochastic Kriging, a smaller subset consisting of 25% of the 
simulation data was used. 

Table 1: R-values and RMSE for the Neural Network and Stochastic Kriging Metamodels. 

 
 

In addition to RMSE and R-values for each of the Stochastic Kriging and Neural Network metamodels, 
goodness of fit plots are also provided below (Fig. 4).  These plots are regression plots, plotting the results 
of the CFS simulation (x axis) to the results generated from the metamodel (y axis).  These observations 
were obtained through design points that were not used to train the simulation metamodel.  These regression 
plots reinforce visually that the Neural Networks had a slightly superior fit for all performance measures 
and are more reliable for analysis.   The y axis of the plots below give insight into the numerical ranges 
involved for each of the performance measures and a better appreciation for the RMSE values listed above 
in Table 1. 
 

 

Broken Links Powerloss Size_Giant_Component Non-working Nodes

RMSE 8.123 1220.574 956.841 0.925

R-value 0.994 0.804 0.745 0.998

RMSE 6.036 635.123 57.833 0.549

R-value 0.998 0.962 0.951 0.998

Stochastic Kriging

Neural Network
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Figure 4: Comparison of Goodness of Fit Results Between Neural Network (NN) Metamodels and 
Stochastic Kriging (SK) Metamodels for All Four Global Network Performance Measures. 

4.2 Visualizations with Metamodeling 

In this section we showcase charts for network risk assessment that depict the distribution of the four global 
network performance measures: number of broken links, size of the giant component, powerloss and 
number of non-working nodes.   The distribution spans across cases where 2-300 links are initially removed 
from the power grid at the start of the simulation.     Each chart is generated through the metamodel and 
through the simulation model under a specific level of failure probabilities for the eight susceptible links 
discovered in the Random Chemistry search procedure.  The vector of failure probabilities for the eight 
critical links are [0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8] and are also the inputs to the metamodel.  In building these 
charts, the metamodels were integrated into a Monte Carlo sampling script to generate each of these points.  
This was accomplished by also fitting metamodels for the variance of each of these four performance 
measures.  Sampling was done through a Gaussian process utilizing the expected value generated through 
the metamodels shown in 4.1 as well as additional metamodels developed specifically for the variance. 

The charts presented for the specific instance of failure probabilities are box-whisker plots where each 
vertical line represents the distribution over 1000 replications across varying initial event sizes of link 
removals from 2-300. The dark lines demarcate the first and third quartiles with the black dotted line 
indicating the median value. Lighter lines represent outliers. Furthermore, near and far outliers are depicted 
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as dark and gray points, respectively. As expected, the four global performance measures of the network 
degrade on average as more lines are initially removed. However, the variability in network performance 
as a function of the initial event size emphasizes the fact that not all line combinations are created equal 
and only a small set of line combinations that result in large blackouts.     

 

 

 

Figure 5: Metamodel Generated and Simulation Generated Box-Whisker Plots for Broken Links and 
Number of Non-Working Nodes as a Function of the Initial Event Size for the Polish Power Grid. 
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 In Figure 5 box-whisker plots from both the simulation model and metamodel are compared side by 
side to examine the amount of information that is captured by the metamodel.   The number of broken links 
charts are shown in the top while the non-working nodes box-whisker plots are shown at the bottom.  The 
expected value and trend is captured very nicely by the metamodel for both the number of non-working 
nodes and the number of broken links.  For powerloss and the size of the giant component performance 
measures, a slight deviation in the expected value can be observed, but the trend is still captured.  The 
variability is captured nicely in the number of non-working nodes and broken links box-whisker plots, but 
not as nicely with the other two performance measures.  For these performance measures the metamodel 
output is providing a 20% higher variability across each event size, which is due to a poorer fit with these 
component metamodels for variance.  However, the metamodel provides these visualizations in real-time 
and provides a very similar risk assessment to that of the simulation for all of these performance measures.   
This is a vast improvement compared to the original simulation model, which requires about 30 seconds to 
execute a single simulation replication, resulting in about 2500 hours of computing time to generate a single 
box-whisker plot.  When distributing across the 500 nodes in our clustered computing environment, that 
still translates to 50 clock hours per chart.  

5 CONCLUSIONS AND FUTURE DIRECTIONS 

The case study presented in this paper demonstrates how simulation metamodeling can be used effectively 
in a decision support toolkit for the analysis of Critical Infrastructure networks.  We showed that both the 
Neural Network and Stochastic Kriging metamodels developed for the global network performance 
measures have an adequate goodness of fit with respect to the original simulation.  Metamodeling was 
utilized as part of a two-step analysis process in this study.  The first step consisted of an exploration of a 
power grid network to locate the most malignant links in the network by identifying the set of (n-2) blackout 
causing contingencies and then determining the most frequently occurring ones across the set.  The 
metamodels are then applied to assess how their failure probabilities affect global network performance 
measures, such as, size of the giant component, power loss, number of non-working nodes, and the number 
of broken links.  An example of a box-whisker plot was shown to illustrate how the visualizations can be 
produced through the fitted metamodels in real-time.   

This study revealed that metamodel performance for the size of the giant component and power loss 
performance measure could be improved.  Future research involves investigating other metamodeling 
techniques that could provide a better fit to those performance measures.  More research is also being done 
to integrate more visualizations with the metamodels to aid decision making as well as to develop more 
visualizations to help with the validation of the metamodels in this decision making environment.  In 
addition, future research involves investigating other system input to output mappings that can be captured 
effectively by metamodeling to assist risk assessment and risk management practices for critical 
infrastructure networks.  
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