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ABSTRACT 

We introduce an effort to create prototype capabilities to enable the Analysis of Mobility Platform (AMP) 
to produce airlift schedules for the Agile Transportation for the 21st Century (AT21) program at the 
United States Transportation Command (USTRANSCOM) that are more robust and flexible to real world 
changes.  AMP currently uses a deterministic simulation-based process to produce schedules, effectively 
assuming that execution occurs under expected conditions.  We have designed robustness and flexibility 
heuristics that generate different candidate schedules, and a stochastic simulation that varies departure 
delays using a probabilistic model based on real-world Global Decision Support System (GDSS) data.  
Through stochastic simulated executions of candidate schedules and several robustness/flexibility 
measures, including a schedule content comparison metric, our approach seeks the candidate schedule 
that best balances solution quality with robustness/flexibility.  We present our heuristics, stochastic model 
and measures, and summarize our initial findings and next steps for robust and flexible AT21 scheduling. 

1 INTRODUCTION 

The Analysis of Mobility Platform (AMP) has been a Department of Defense (DoD) model of record for 
programmatic analysis for the past two decades. AMP models all modes of travel (air, land, and sea) to 
execute the delivery of cargo specified in Time-Phased Force and Deployment Data (TPFDDs).  This is 
essentially a large, multi-faceted Vehicle Routing Problem with Pickup and Delivery and Time Windows.  
AMP is based on a planning and scheduling algorithm that operates over time as part of a deterministic 
discrete-event simulation.  Traditionally, AMP has been used for large-scale simulations up to several 
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years in duration in order to explore programmatic analyses, such as the impact of different asset 
acquisitions.  A recent program at the United States Transportation Command (USTRANSCOM) called 
Agile Transportation for the 21st Century (AT21) has been focused on introducing more optimization 
technology into day-to-day operations at USTRANSCOM and its components. To aid in developing a 
process to solve the strategic airlift scheduling problem, USTRANSCOM decided to modify AMP to 
model this operational problem using the current state of the world and to schedule thirty to forty-five 
days of real cargo requirements that will move beginning in 10 to 14 days out.  During an earlier initial 
phase of effort (Sommer et al. 2014), a novel schedule optimization capability was developed and 
deployed that used column generation and set covering approach to generate globally cost-optimal 
missions for a given problem.  This new capability demonstrated a very large reduction in cost and 
lateness when compared against the existing AMP heuristics for an acceptable increase in planning time 
by the combined optimizer and AMP process. However, the AT21 use case requires more than schedules 
that just minimize cost and lateness.  It also requires schedules that can effectively accommodate the 
typical issues that arise during real-world execution of a complex schedule – either by building in enough 
robustness to enable accommodation of minor changes to a mission’s execution with no (or limited) 
impact on other missions, or by building in enough flexibility to enable operational users to repair more 
significant changes to a mission’s schedule with minimal impact on other missions. 

We introduce work underway in a second phase of effort that seeks to prototype new schedule 
optimization capabilities to enable AMP to produce schedules that are quantifiably more robust/flexible.  
To accomplish this, we have designed and performed early prototyping of three key capabilities:   

 
1. Candidate Generation: The generation of multiple candidate schedules that can potentially vary 

in their robustness/flexibility in order to support a search-based algorithm.  A key method is to 
apply heuristics to incorporate robustness and/or flexibility properties into schedules, such as 
incorporating different types of slack (Ahmadbeygi, Cohn, and Lapp 2009; Carey 1994; Lan, 
Clarke, and Barnhart 2006) into the schedules or using network isolation methods (Rosenberger, 
Johnson, and Nemhauser 2004) to minimize ripple effects. 

2. Stochastic Simulation: The stochastic variation of different operational delay values in the AMP 
discrete-event simulation in a manner that models delay variations in real-world Global Decision 
Support System (GDSS) data.  Within the simulation, a schedule is adaptively executed using the 
schedule’s robustness/flexibility properties while obeying all constraints enforced by AMP. 

3. Robustness/Flexibility Assessment: The quantitative assessment of the robustness/flexibility of a 
given candidate schedule based on how it executes in stochastic simulations.  This enables the 
comparison of different candidate schedules to determine their relative robustness/flexibility. 
 

We introduce the methods we have designed and prototyped for each of these capabilities, as well as 
our approach to integrating these capabilities into a single prototype system that generates more 
robust/flexible schedules.  The effort, which began in 2014 and will complete in 2016, continues to refine 
our approach to achieving prototype robust and flexible AT21 scheduling using AMP. 

2 APPROACH 

Figure 1 illustrates our approach for creating robust/flexible schedules.  It is a search-based method in 
which a variety of candidate schedules Ci are first generated for a given scenario using an enhanced 
version of the AMP Schedule Optimizer (SO).  A candidate schedule represents a moderate-fidelity 
representation of how cargo should move within the system on each day of the scenario, and does not 
capture all the detailed timing of a complete schedule.  Each of these candidates is expected to show some 
differences in how it executes in the face of real-world events, and the goal of the approach is essentially 
to test out each of those schedules in a number of stochastic simulation runs to gain an empirical estimate 
of each candidate’s robustness/flexibility. 
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 The first step in assessing each candidate is to establish its baseline scheduling performance.  This is 
accomplished by executing the AMP detailed scheduler and discrete-event simulation using its traditional 
deterministic approach, which essentially provides typical, average values for execution variables, such as 
the amount of time taken to service, load or unload a given type of aircraft at a given port.  In creating this 
baseline schedule (Si), all timing details are worked out to the minute level, and all constraints of a legal 
schedule are enforced, such as not exceeding available service resources, crew duty limits or port 
congestion limits.  That baseline schedule also establishes a baseline performance against the scheduling 
objective functions, such as the amount of cargo successfully moved, total cost and average lateness. 
 

 

Figure 1: End-to-end approach for producing robust/flexible schedules. 

 Once a baseline is established, each candidate schedule is then executed multiple times using an 
enhanced AMP simulation that stochastically varies the values of certain execution variables.  The result 
of each stochastic run is a fully-instantiated schedule, and for each original candidate schedule, a set of 
instantiated schedules is obtained (S’

ij).  To measure only robustness, the scheduler is run in a mode where 
it makes no repairs to the schedule when random variations result in a conflict.  To measure flexibility 
and robustness, the scheduler performs minor repairs of the schedule when needed. 
 Finally, to obtain an assessment of the overall robustness/flexibility of the original candidate 
schedule, each instantiated schedule is compared to the baseline schedule, both in terms of its difference 
in performance, as well as in terms of how different the specific schedules are.  A particular measure, 
termed the schedule content comparison metric, quantifies differences between the content of baseline 
and instantiated schedules (denoted | Si – S’

ij  | ) by assigning “cost” values to the individual changes made 
during schedule repair. The statistical pattern of performance differences and schedule content 
comparison measures across the entire set of instantiated schedule is used to compute a single overall 
measure of the robustness/flexibility of the original candidate schedule. After assessing each candidate, 
the highest scoring candidate (Sbest) is chosen as the most robust/flexible solution. 

3 CANDIDATE GENERATION 

Several methods are used to generate candidate schedules in order to support enhanced robustness and 
flexibility , including capturing opportunistic candidates along the way to optimal, inserting slack along a 
route to absorb system delay when needed, and isolating subnetworks to minimize cascading disruptions. 

3.1 Opportunistic Candidates  

Within AMP, the Schedule Optimizer (SO) uses a series of Mixed Integer Program (MIP) solves to 
generate medium-fidelity schedules that are globally optimized against several performance criteria 
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(Sommer et al. 2014) using the classical technique of branch and bound.  Within branch and bound, 
interim integer solutions are found along the way to optimal (it is these solutions that are compared to the 
current bound to determine optimality) as part of the solution process.  One approach we have used to 
generate different candidate schedules is to have the solver export some of these interim solutions. 

There are a few drawbacks to relying upon capturing these solutions along the way.  Primarily, there 
is no guarantee that the incremental solutions will be of sufficient quality.  For example, it is not 
uncommon for the MIP to find a solution that is 20% from optimal and then jump to a solution that is 2% 
from optimal that stops the search.  Further, there is no particular guarantee that a given set of these 
solutions along the way will vary meaningfully from the final solution in terms of their robustness.  For 
example, it is not uncommon for the MIP to find many highly similar solutions as it approaches optimal. 
Because of these limitations, additional heuristic approaches to candidate generation are also used. 

3.2  Slack Insertion 

Slack insertion is the purposeful addition of less-than-efficient delays in a schedule in order to improve 
the realized execution of the schedule which is subject to unexpected delays due to weather, unexpected 
closings, over-capacitated airports, and so on.  It is also a technique to reduce churn later in the 
scheduling process where new requirements or changes to existing missions are necessary due to real-
world constraints as execution time approaches.  Slack can provide flexibility for planners to adjust to the 
inevitable changes that occur as a schedule is taken from initial planning to eventual execution. 

The motivation for including slack in the planning stage rather than relying solely on ad-hoc solutions 
is that the SO creates efficiency in the entire system. Planning for such delays allows the optimizer to 
organize the schedule often much better than only accounting for the true delays ad-hoc, even if the 
planned schedule has unnecessary delays. Another motivation for including slack is that the SO only 
plans on the day level. The simulation creates the instantaneous plan from that schedule which can result 
in even more delay if the instantaneous airport capacity used is greater than expected. As these delays 
propagate, the simulation must deviate more and more from the optimized plan, as the constraints become 
more violated – likely causing cascading delay.  

Figure 2 illustrates the delay propagating through a system that was planned without slack. In this 
schedule, the delay impacts the arrival and departure times at all future stops on the route.  These delays 
will also impact all other traffic at the airports along the route. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

Figure 3: (a) Schedule without slack; (b) Schedule with slack. 
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 In our enhanced SO, the schedules produced add slack along the route.  Figure 3 illustrates the same 
notional stop sequence as in Figure 2, but with slack added at each ground stop.  A delay at a particular 
node impacts the departure time at the first stop along the route as well as the arrival time at the following 
stop.  However, because of the slack inserted the disruption ends there - the departure time at the second 
stop remains within the scheduled window and all subsequent stops are unaffected. 

The resulting SO schedules will necessarily be less effective/efficient with added slack because of 
additional lateness; however, the detailed end solutions from the stochastic simulations may be more 
effective.  A key goal of our enhanced SO is to determine how much slack to add without making the 
solution less efficient overall than necessary. The optimal solution without slack is often too tight.  
However, adding too much slack or adding it naively will cause unnecessary lateness and increases in 
cost. We have created several different slack heuristics in order to explore different approaches (based on 
different intuitions) to determining where to insert slack and how much slack to insert, including: 

 
1. Even slack:  Our simplest heuristic adds the same amount of slack to every stop along the route.  

This approach captures the intuition that many types of delays (such as weather or equipment 
failure) can occur at any time and as such are equally likely across the route. 

2. End-of-route delay: While even slack can be effective at accommodating delays wherever they 
may occur, another intuition is that the need for slack may occur more toward the end of the route 
(e.g., as network congestion is encountered or as execution-delay effects accumulate). Our second 
heuristic adds no slack in the beginning of the route, but gradually increases the amount of slack 
in the middle of the route, and adds a larger amount of slack for stops toward the end of the route.  

3. Congested-forward slack: The intuition behind the congested-forward slack heuristic is that 
unexpected delays, and therefore propagated delays, tend to occur after congested locations on a 
route. The heuristic has several implementations. One is to only add slack to stops on a route that 
occur after a congested location.  A second (called congested-forward-scaled) is to increase the 
amount of slack at stops after each successive congested location the route visits. A third (called 
congested-forward-tapered) reduces the amount of slack after consecutive non-congested stops.  
A fourth implementation uses the scaled and tapered policies together. 

4. Slack budget: All the previous heuristics have the SO determine specific slack amounts at specific 
nodes along the route.  However, a different intuition is that this imparts a certain amount of 
rigidity to the medium-fidelity SO schedule that may not be appropriate given the extra 
knowledge that is available to the detailed AMP scheduler.  Our fourth key approach is to identify 
a certain total amount of slack to insert in an SO schedule, but then allow the detailed AMP 
scheduler to vary where along the route to place that slack when computing the baseline schedule.  
This allows, for example, instantaneous estimates of congestion computed in AMP to influence 
where the slack is placed.  This slack budget approach is implemented an additional constraint in 
the MIP, and as an enhancement to the AMP detailed scheduler. 

 
These heuristics have been prototyped to demonstrate feasibility.  However, while they provide 

approaches to varying the amount of slack along the route, work continues on determining the actual 
amounts of slack to apply.  Our plan is to leverage historical data on average delays at different locations, 
as well as to empirically test out the impact of different slack values on our robustness/flexibility 
assessments, in order to find an appropriate balance between robustness and inefficiency.  

3.3  Network Isolation 

Our third approach to generating candidate schedules is to isolate the locations into distinct networks, 
assigning a set of aircraft to fly only to/through a subset of locations, rather than allowing any aircraft to 
go to any base.  This approach is much like an airline with a hub-and-spoke network assigning aircraft to 
only a single hub and having as few aircraft as possible travel between different hubs. 
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Sometimes an entire airport becomes either unavailable, such as due to weather or an insurgent attack, 
or heavily congested.  The more aircraft scheduled to use that airport, the more routes are impacted by the 
closure/delay, and the worse the final result becomes.  By isolating bases into separate networks, we 
reduce the impact to the overall schedule.  Only the few aircraft using that base are affected, with no 
effect on the rest of the schedule.   

There is a trade-off involved here.  By enforcing this segmentation, we disallow possible route 
combinations.  As a result, the overall schedule will not be the “optimal” deterministic one.  However, we 
expect that when real-world events interfere with the planned schedule, this approach will perform better 
than one optimized for a perfect world. 

Our network isolation method begins with the set of pickup-drop off pairs and builds a connectivity 
graph (matrix) showing which bases are linked to each other.  We make a connection between two bases 
if there is a requirement for a pickup at one to be delivered to the other.  This graph may not be fully 
connected.  When it isn’t, the separate fully-connected portions make up our initial sub-networks.  Figure 
4 shows an example of this.  The different colors highlight the “natural” sub-networks from the 
requirements set.  Depending on the requirements, one or more of these “natural” sub-networks may 
contain an undesirably large number of bases.  When that happens, we can subdivide them further, having 
only one or two bases overlapping and being assigned to more than one sub-network. 

Figure 4: Requirements graph. 

The next step is to assign a home base and an en-route base to each sub-network.  A pair of bases is 
selected based on the average route distance for each requirement, with some internal logic to balance the 
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generation flexibility and get a better solution while still keeping the most important aspects of the 
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The final phase involves generating the routes used by the MIP within the Schedule Optimizer.  
During route generation, the network isolation restricts which missions can be joined into a single route.  
When prepending the aircraft home base to a requirement mission, the only route generated is the one 
from the home base assigned to that requirement’s sub-network.  This restriction results in an immediate, 
massive reduction in the number of routes generated.  When appending pickup-drop off pairs to the 
growing route, the network isolation again restricts which routes can be generated, in several ways.  First, 
regardless of the network isolation option, new missions are limited to those that can be reached via the 
restricted set of en-route bases.  Second, the specific network isolation option limits which potential 
pickup-drop off pairs can be appended.  Finally, the return trip home is limited to certain en-route stops. 

We have prototyped the network isolation capability to demonstrate its feasibility, and plan to 
empirically explore the degree to which different sub-network consolidation approaches impact the 
robustness and flexibility of our solutions. 

4 STOCHASTIC SIMULATION 

AMP currently contains a deterministic simulation that executes scheduled missions over time in tandem 
with the scheduling process.  Specifically, during the run of AMP, the simulation clock moves forward 
one day at a time.  Scheduling decisions are made each day and those decisions, as well as any earlier 
ones, are simulated as appropriate for that day.  To create an effective stochastic simulation capability, we 
designed an efficient enhancement of the current AMP scheduling approach, where a single AMP run 
becomes a single stochastic run.  In this “Stochastic AMP” approach, the core scheduling process of AMP 
is used to apply and enforce the myriad of constraints built into that process.  Rather than using only the 
deterministic values of the current code, however, the scheduler randomly determines certain key 
variables for each mission, such as the ground time spent by a particular aircraft at a particular airport on 
a particular day.  These random values are used within the AMP algorithm to schedule all the specific 
details of the mission, which are then simulated as usual by AMP.   

To generate and keep track of the random values, we integrated a Drools rule engine with AMP.  The 
Drools rules specify the types of random factors to apply at particular points in the code, and enable the 
simulation to draw from the appropriate probability density functions for those factors.  This approach 
applies an important consistency rule to ensure that the stochastic simulation is meaningful: The AMP 
constraint scheduler is currently designed to perform a search over multiple possible ways to schedule a 
mission. To ensure that the search is not simply choosing the best set of random variables, all random 
draws for that mission are recorded.  If a particular draw has been made for that mission at a particular 
port on that particular scheduling day, then the exact same value is used for that mission on that day at 
that port every time the search explores that option (e.g., when considering different routes that overlap at 
that port, or when exploring alternative scheduling decisions for the same route).. 

This approach enables the entire AMP scheduling process itself to introduce stochasticity while 
producing a valid scheduling solution.  An important additional requirement of this approach is the ability 
for AMP to accept a partial or fully defined schedule and then seek to match it as best as possible during 
the stochastic scheduling process.  A single “Stochastic AMP” run will accept a prior schedule, 
schedule/simulate it one day at a time while determining stochastic events and computing stochastic 
values (particularly certain ground times and en-route times) based on a Drools fact base.  The fact base is 
a separate component that contains the stochastic modeling rules to apply and the current stochastic state 
across all missions, ports and days. The final schedule produced is a complete schedule where the specific 
scheduling decisions (e.g., how long spent at each port) reflect the stochastic events. 

4.1 Modeling Underlying Factors 

At the simplest level, a stochastic simulation merely requires that certain elements in the simulation be 
randomly varied.  In a scheduling problem as complex as the AMP problem, however, there are a number 
of elements that are meaningfully inter-related, and hence should be meaningfully inter-related in a 
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stochastic simulation.  Within our approach, certain random variations are based, where appropriate, on 
underlying stochastic factors rather than solely as independent random events.   

The easiest-to-understand example of an underlying stochastic factor is weather.  Say the simulation 
“rolled the dice” and determined that there was a delay – due to weather – of a certain length for a given 
mission at a given airport on a given day.  Consider now the next mission at the same airport on the same 
day.  A naïve stochastic simulation might randomly roll the dice with no regard for the previous roll and 
come up with no delay due to weather.  While the overall effect of the rolls might capture the random 
variability at the large scale based on the underlying probability density functions, that naïve simulator 
would not provide meaningful insights into the effect of weather on a planned schedule.  A more 
sophisticated stochastic simulator, by contrast, would instead “roll the dice” to determine if there was 
weather at that port on that day, and then randomly determine the impact of that weather on all missions 
flying through that port on that day.  This approach enables the analyst to more easily see the impact of 
weather-related effects on a schedule, as well as provide a more meaningful assessment of how robust a 
schedule was to realistic weather events.  However, it does not require a complete model of weather 
around the world to be created – just a consistent treatment of related stochastic draws at shared locations. 

4.2 Stochastic Model 

We have developed a stochastic simulation that uses the underlying-factor approach based on a stochastic 
model derived from real-world data. There are two high-level types of variability that typically occur in 
the real world – changes in requirements and delays during mission execution.  Data on the former may 
be obtained from the Joint Operation Planning and Execution System (JOPES), but understanding and 
incorporating this type of variability into a stochastic simulation is a significantly complex problem.  
Much more tractable to understand and model is the data on mission delays, which is available from the 
Global Decision Support System (GDSS).  Hence, we focused on modeling delays. 

A GDSS data set was collected containing a large number (~260) of departure delay codes – each 
specifying a different reason for a delay (e.g., equipment issues, weather, crew issues) – for over 170,000 
missions.  For every stop at which a mission is delayed more than 15 minutes in its departure beyond 
what was initially planned, GDSS in principle contains a delay code and delay amount corresponding to 
the primary reason for that delay. A detailed analysis and logical grouping of this data was performed to 
produce an ontology (see Table 1) for interpreting the diverse delay codes into an actionable framework. 

Table 1: Mission delay ontology. 

Components Attributes 

Number of Aircraft /Missions Affected One / Many 

Relation to Aircraft/Mission Internal / Environmental 

Disruption Process Probabilistic / Deterministic 

Causality Direct / Indirect 

Service Delay (or Shift) Yes/Yes (shift)/ No 

Maintenance Delay Yes/ No 

Location Delay Occurred Local/ En-Route/ Destination 

 
An important aspect of this ontology is that it enables multiple delay codes with the same 

classifications to be grouped together to determine a single common probability density function.  In this 
way, specific delay codes can be abstracted out of the stochastic simulation.  Instead, common types of 
random variations can be modeled instead. This approach provides significant flexibility in both the data 
analysis and the stochastic modeling method.  Another important aspect of this ontology is that it can be 
used to filter out data that will not be of specific use in the stochastic simulation approach we are using.   
In our current model, three key types of delays codes are not included: 
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 • “Deterministic” delays effects are ignored since they are already computed by AMP. For 

instance, the AMP automatically computes the crew rest times so that they obey constraints.  So, 
if there are certain random delays in a mission that result in the need for the crew to rest, then 
AMP will already automatically insert that rest. • Delays that occur at “Destination” locations are ignored since the current AMP scheduling 
algorithm sequentially makes all decisions at the current node independently of the next node. • “Indirect” delay effects are ignored since they are already computed within AMP (e.g., a delay 
caused by another aircraft’s delay will already propagate in AMP). 

 
 Further, we used only data for the first delayed sorties on each mission to avoid double-counting 
delays and excluded sorties for which the delay codes were ambiguously defined.  This ontology was 
used to compute initial probability density functions (PDFs) representing the stochastic variability for six 
different delay variables: 
 

1. The delay in the start of service for a plane at a port. 
2. The increase in service duration for a plane at a port. 
3. The total ground delay for a plane at a port. 
4. The total ground delay for multiple planes at a port due to weather. 
5. The total ground delay for multiple planes at a port due to non-weather factors. 
6. The departure delay for a plane flying between two ports due to en-route non-weather factors. 
 

 The resulting PDFs for each delay type are shown in Figure 5a.  These PDFs were generated using 
only the 50 most frequently-occurring delay codes in the data set.  Each PDF is drawn as a cumulative 
distribution function (CDF).  All of these six distributions are statistically different distributions, which is 
a valuable result since it means that it is meaningful to distinguish these variables from each other in our 
model.  Together, these distributions account for 62% of the non-propagated delay (matching our criteria 
above) in the data set, and form a strong basis for our initial stochastic model of delay.  As we continue 
our work in our second year, the remaining codes will be classified and added to our model. 

 
 
 
 
 
 
 
 
 
 
 
   
 

         (a)             (b) 

Figure 5: (a) Cumulative distribution functions for the six stochastic delay variables within our model;  
(b) Breaking up a PDF into portions that can be drawn from separately. 

 Several of the PDFs have a multi-modal nature (see Figure 5b).  Our model uses these modes to 
further break up the overall distribution into portions that can be randomly drawn from in an independent 
manner (e.g., the “Good”, “Bad”, “Ugly” portions shown in Figure 5b).  This is of particular use for delay 
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factors that affect many aircraft since it enables us to ensure that different aircraft experience an 
underlying delay issue of similar magnitude (e.g., if the weather at a port on a given day is “Bad”, all 
affected aircraft at that port experience delays drawn from the “Bad” portion of the distribution). 

5 ROBUSTNESS/FLEXIBILITY ASSESSMENT 

The ultimate goal of our assessment approach is to provide a value that indicates the “goodness” of the 
original baseline schedule so that it can be meaningfully compared against other baseline schedules and 
the “best” one chosen.  “Good” and “best” will ultimately reflect a tradeoff between the quality of the 
solutions on the primary performance criteria (e.g., lateness, cost) and ability of a baseline schedule to 
appropriately (i.e., robustly and flexibly) handle realistic stochastic events.  We use several measures for 
assessing the quality, robustness and flexibility of a given baseline schedule.   
 Measuring solution quality is straightforward using statistical measures of key performance variables 
(e.g., timeliness of delivery, amount of cargo moved, and cost) across the set of stochastic schedules.  
However, measuring the ability of a schedule to handle stochastic events may be done in several ways: 
 • Pre/post differences: Computing the difference between the baseline (“pre” stochasticity) 

schedule and the instantiated schedules (“post” stochasticity) to get an estimate of how much has 
to change in the former to produce the latter.  The schedule content comparison measure (see next 
section) can be viewed as an estimate of “the number of phone calls” that would be needed by 
human schedulers in real life to handle corresponding delay events.    • Stochastic dial: Determining how much stochasticity can be applied to the baseline schedule 
before solution quality deteriorates below an acceptable level.  We can vary this “stochastic dial” 
by increasing or decreasing the number and magnitude of the variations allowed.  A baseline 
schedule that produces better quality stochastic solutions under high stochasticity is deemed more 
robust than one that produces worse ones.  • Repairability: Estimating the scale of repairs that must be made to the baseline schedule in order 
to produce a high quality solution.  While performing the stochastic scheduling, multiple 
alternative scheduling choices may be considered (e.g., different ways to handle an issue that 
arises where the schedule needs some type of repair).  Given a particular repair algorithm, a 
baseline schedule that tends to require more, extensive repairs is deemed less flexible than one 
that requires fewer, simpler repairs. The key to this measure is deriving an estimate of repair 
complexity from the actions of the repair algorithm itself.   The measure is effectively a direct 
measure of “the number of phone calls” needed to handle the random events, and is related in 
principle to the schedule content comparison metric. 

 
We have primarily focused on creating the schedule content comparison measure and demonstrating 

its initial feasibility.  As we proceed, we will explore the correlation between the repair measure and the 
schedule content comparison measure. 

5.1 Schedule Content Comparison 

A key concept in the assessment of robustness is the quantification of differences between baseline 
schedules and the stochastic schedules resulting from simulation of disruptions and replanning.  That is, a 
robust schedule is one that can preserve quality (lateness, resource utilization efficiency, etc.) while 
requiring a minimal number of changes from the planned baseline. While metrics for schedule quality are 
widely known and employed in airlift planning, metrics for schedule content difference are less 
commonly used. 

Techniques for quantifying the difference between a pair of entities often assign abstract “cost” 
values to operations by which one can be “edited” to resemble the other. The technique is most often used 
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to quantify differences between character strings (Levenshtein 1966) or graphs (Gao et al. 2010), but the 
notion can be made to apply to airlift schedules as well. That is, the difference between a baseline and 
stochastic schedule can be seen as resulting from a series of three types of “edit” operations: (1) 
modifications to mission parameters, (2) deletion of planned missions, and (3) insertion of new missions. 
A logically consistent cost scheme would assign lower costs to less impactful changes, for example a 
slight mission delay relative to a complete mission cancellation.  Specific cost values for operations 
affecting scheduled missions are best defined in consultation with subject matter experts, to assure that 
the resulting measures of schedule differences capture intuition about the severity or impact of different 
types of mission changes. 

Given a scheme for assigning costs to mission changes, differences in schedule content can be 
associated with the “edit distance” arising from the sequence of changes by which the baseline schedule is 
realized within the simulation.  So, for example, a schedule with slack inserted using the techniques of 
Section 3.2 tends to absorb unexpected delays, resulting in fewer mission failures related to asset 
unavailability. Since fewer missions would need to be modified or cancelled, the content comparison 
measure would tend to be lower, capturing the benefit of that particular robust scheduling approach. 

6 CONCLUSIONS 

We have presented an effort to develop prototype capabilities to enable the Analysis of Mobility Platform 
(AMP) to support the generation of schedules that are more robust and flexible to real-world execution 
events.  Our approach leverages stochastic simulation as the basis for assessing the robustness/flexibility 
of schedules, and applies several different methods for generating potentially-robust candidate schedules, 
as well as several methods for assessing that robustness/flexibility using the stochastic simulation results.  
In our first year of effort, we have demonstrated the feasibility of the component capabilities of our 
process.  Our goal for our second year is to build out those capabilities and integrate them in a prototype 
system that produces reliable assessments of robustness and flexibility to support AT21 scheduling.   
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