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ABSTRACT

This work aldresseshe multiple criteria simulation optimization problem. Sagbroblem entails using

an optimization strategy to manipulate the parameters of a simulation model tattinedest possible
configurations in the presence of several performance measuresfiict. Pareto Efficiency conditions

are used in an iterative framework based on experimental design and pairwise comparison. In particular,
this work improves upon and replaces the use of Data Envelopment Analysis to determine the efficient
frontier and replaces the use of a singless algorithm previously proposed by our research group. The
results show a rapid convergence to a more precise characterization of theeffiarei solutions. In
addition, the capability of the method to deal withyfifiecision variables simultaneously is demonstrated
through a case study in the fine-tuning of a manufacturing line.

1 INTRODUCTION

The use of optimization is tigal in manufacturing to approach three decisitaiking problems: design,
control and improveent of processes and systems. The underlying optimization objective in all three can
be casted as finding values for decision variables that most competitively meet several performance
measure$PMs) or criteria simultaneoushAlthough the use of a singkeM has been a popular approach

to all three, decision models that involve multiple conflicting PMs simultaneously and explicitly more
closely reflect manufacturing reality. These latter models fall in the realm of Multiple Criteria
Optimization.

Nowadays it is a prevailing practice to rely on computer simulation to estimate the performance of
manufacturing processes and systems. Computer simulation is, obviously, a lot more convenient than
carrying out experiments with actual systems. With -@vereasiig computing power, this practice will
only become stronger in the future. The concatenation of computer simulation and the optimization
objective described previously has resulted in the field known as Simulation-Optimization. In a
manufacturing context, Simulation Optimization is commonly applied to approach the decision-making
problems of design, control or improvement of processes and systems. It follows theim ttas —
context-considering the simultaneous optimization of multiple criteria can contribute to make simulation-
optimization closer to manufacturing reality. Therefore, it is of interest to study multiple criteria
simulation optimization (MCSO) problems.

Incorporating the ability to deal with multiple criteria in conflict greatly enhances simulation-
optimization. In order to fully exploit the power of a computer simulation model, however, it becomes
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paramount that simulation optimization methods be captibhelp decide upon the values of tens of
variables at a time in a convenient manner. The contribution of these variables should be assessed not
only in their linear contribution to the PMs of interest, but also at least in their quadratic contribdtion a
their second order interactions to be more useful for decision making. Indeed, nonlinearity and interaction
are more rules than exceptions in manufacturing.

This work presents a MCSO strategy that is capable to incorporate tens of variables and tises
their linear, quadratic and second-order interactions to approach design, control and improvement of
manufacturing processes and systems. The use of the strategy is demonstrated through the fine tuning of
a theoretical simulated manufacturingdiwith 50 decision variables and 2 PMs in conflict.

2 BACKGROUND

The path to the MCSO strategy shown in this manuscript can be traced back to a series of manufacturing
papers of our research group that have built upon each other as detailed next. The first idea related to
manufacturing simulationptimization in our group is presented(®abrera-Rds, Mount-Campbell, and

Irani 2002a), wher¢he design of a manufacturing cell was approached through diseeziestochstic
simulation and the maximization of profit as the sole PM. The optimization task was not iterative, thus the
strategy in this work can be classified as a single-pass, single criterion, simulation optimization one.

The second relevantork is (Cabrea-Rios et al. 2002c), where design and process variades
included to meet multiple criteria modeled as a single composite objective function in the context of
reactive polymer processing. The simulation type in this case mtididite-element techiques, so it
was continuous and deterministic in nature. Again the stratemy singlepass, single-criterion,
simulation optimization.

The next step was to include multiple PMsparallel Using continuous physics-based simulation,
this progress was damented in (Cabrera-Rios, Castro, and MdZanpbell2002b; Castro et al. 2003;
CabreraRios, Castro, and Mount-Campbell 200dastro, Cabrer&ios, and Moun€Campbell 2004;

Castro et al. 2005). The cases under study were in the context of polymer processing ranging from in-
mold coating, to compression moldiagd injection molding. In these cases, the strategy was siagte-
multiple criteria, simulation optimization. An additional characteristic in these works was the use of Data
Envelopment AnalysisOEA) to solve the associated multiple criteria optimization problem. The DEA
model adopted for such means was based on linear optimization and could detect all solutions that were in
the convex part of the Pareto-efficient frontier of the problem; howswgkrtions that were in the non

convex part escaped it. It was, thus, deemed necessary to find an effective way to detect all solutions,
those in the convex and in the nonconvex parts of the efficient frontier.

The possibility to detect the entire sesofutions belonging to the efficient frontier came along in the
shape of a full pairwise comparison scheme reported in (Rax¥Yafez, Méndexazquez, and
CabreraRios 2014 where an injection molding process improvement was approached in apsisgle-
multiple criteria, simulation optimizatiostrategy

In (Villarreal-Marroguin, CabrereRios, and Castro 201¥illarreal-Marroguin et al. 2013)the first
iterative simulatioroptimization schemes in our group were reported for polymer injection molding
(continuous simulation) and control/improvement gdainting line for automotive parts (discrete event
simulation), respectively. These were iterative, simgierion, simulation optimization schemes. An
iterative algorithm capable to deal with multiple criteria using DEA was subsequently developed and
reported in Yillarreal-Marroquin, Cabrera-Rios, and Castro 20This is, then, anterative, multiple
criteria, simulation optimization scheme.

The presentwork introducesan iterative MCSOQstrategycapable to detect both the convex and
nonconvex parts of the efficient frontier through the adoption of the scheme reporfddifig(ez
Yafiez, MéndeXx/azquez, and CabreRios2014),so it improves and replaces the use of DEA. It also
incorporates the possibility of analyzing tens of variables through an economic experimental design
proposed by (Méndez-Vazquez et al. 2014a) whicbures the possibility of estimating full quadratic
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regression models, that is, regression models that include linear, quadratic andasdeornidteraction
terms. A collection of experimental designs with these capabilities was describechiofe@é@zquez et
al. 2014b) and can be found online in:

http://yaileenmendez.wix.com/experimentaldesignlv

3 LITERATURE REVIEW

Simulation optimization has been an active area. Several strategies can be found in the literature as
reviewed by(Carson and Maai 1997, Fu 2015). It is evident, however, that the vast majority has focused
on the use of a single criterion optimization. Regarding multiple criteria simulation optimization, a recent
review by (Andradéttir 2015) evidences how Genetic Algorithms (GA) ehdecome a popular to
approach problems ahis nature, as exemplified [fAl-Aomar 2002; Ding, Benyouceind Xie 2003;

Lin, Sir, and Pasupathy 2013). GAs is heuristic in nature, thus optimality cannot be guaranteed as a result.
It is then understandablghen, that optimality certainty be a worthy objective. The work of
(Mollaghasemi and Evans 1994), falls into the category of iterative multiple criteria optimization,
although their approach favors the definition of a preference structure among PMs a priori, which departs
from the nonparametric point of view advocated in this work. The work&akerifar, Bilesand Evans

2011; Couckuyt, Deschrijveand Dhaene 2012; Dellino, Kleijneand Meloni 2012) approach multiple
criteria simulation optimization audels using Kriging models with various degrees of success, adding
evidence to the soundness of using metamodeling strategies to support the determination of competitive
solutions in the presence of conflicting PMs. Indeed, there seems to be interastags¢ssment of
multiple criteria using simulation in different production applications such as planning and scheduling
(Duvivier et al. 2007), inventory managemgMortazavi and Arshadi khamseh 2014), as well as
scientific endeavors such as the analg§iintermolecular interactio(Stobener et al. 2014). The present

work adds to this body of literature by adding capability in iteratively dealing with tens of variables at a
time, aided by saturated secemrdier regression models, using a Pasdfwiency scheme of exact nature

to approach multicriteria simulation optimization problems.

4 PROPOSED METHOD

The proposed strategy integrates the use of experimental design, simulation and metamodelling
techniques to solve multicriteria optimization problems. In Figure 1 schematically shown the proposed
method which is described below.

The method starts with an experimental design (DOE) from which a simulation is performed at each
design point (12) and an initial incumbent solution is obtained (3). The incumbent solution here
corresponds to the Paretéficient frontier that represents thleet of best compromises between all
performance measures in the experiment. With the simulated experiment, one metamodel per
performance measure is obtained (4) and used to make predictions in the discretized experimental region
(5). Using the Pareto analysis, potentially Pareto efficient points are dete&ed [@se predicted points
are then simulated and joined with the incumbent solution to determine if a new Pareto efficient frontier
has been found (9). If the Pareto-efficient frontier does not change, then the incumbent solution is
reported and no more iterations are performed. Otherwise the incumbent solution is updated and the
newly-simulated points are added to the set available points and a new iteration begins with the
constructions of new metamodels (4). In detailed fashion, the method is as follows:
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Initialization

Setk=0

Initial DOE: Run a first design of experimeiitg with n simulation runs considering all variables
(L variables) and all objectives (J Criteria), where D stands for DeSigin controllable variable
and performance measure must be scaled tob&lveen-1 and 1 to avoid dimensionality
problems.

Select incumbent: AnalyzB, to determine which of its points are Pareto Efficiéntnow
contains the Pareto Efficient pointsi)f. I stands for incumbent.

A Pareto efficient solution will be found whémthe full pairwise comparison with the rest of the
solutions, there is no other solution that dominates it in all PMs simultaneously.

SetDéwailable = D,

Main lteration

Update counter k= k+1

UseDgv¢iable to fit all J metamodels,;yK].

Use metamodels to predict the values of all J objective functions using a g [@f; X G, X
...Xx Gy X ...G.] points whereG, is the number of equidistant discrete points forlthariable.
Store these points in a matiy with dimensionsiyy, x (L+J)], where P stands for predicted
AnalyzePy to determine which of its points are Pareto Efficient. Store ffigeat points in
PE(where P stands for predicted and E stands for Efficient).

Simulate all points ifE. Store the simulated results in a mabijx

Sethc =Ix_1 U D , where C stands for candidates and | for incumbent.

Analyze G to determine which of the points are Pareto Efficient. Store the efficient polgts in

Termination

Evaluat the stopping Criterialf I = Ix_, , then terminate the algorithmnd presenthe
incumbent solutio, . Otherwise, updatBivaable =p, | u D, and reiterate.
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5 CASE STUDY: PRODUCTION LINE WITH 50 WORKSTATIONS

This section illustrates how a multicriteria optimization problem of 50 variableé® PMss gproached

with the proposed methodConsider dictitious production line with 50 workstations in ser@mulated

with the software packageirfiio (Joines and Roberts 2013; Kelton, Smith, and Sturi33), as is
illustrated in Figure 2The simulation is run for 8 houper day with 10 replicate3he simulation model
have an interarrival entity time that follows an exgatial distribution with a mean equal to 3 minutes
The simulation parameters of interest were the mean process time on each of the workstafiombgWS
process timef each workstation was assumed to follow a normal distribution with a mean thatimaried
three levels and a constant standdediation of 0.25 minuteskigure 3 shows the ranges of values to be
explored for the process time of each workstation. It is further assumed that the nominal process time can
be chosen by a particular user, sophablem at hand involves deciding upon the nominal process time
for each of the fifty workstations. This theoretical problem was presented in (M&adgamez et al.
2014a), where it was treated with the iterative single criterion simulation optimizaggumitied in
(Villarreal-Marroquin et al. 2013).
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= @ @ G
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Figure 2: Simulation model for a production line with 50 workstations.

The PMsof interest verethe system time (ff defined as the period of time elapsed since a raw part
to be processed enters thgstem until it exits as a finished produahd the average utilization of all
workstations (E). The first one is to be minimized while the second one is to be maximized.

The proposed method begins with the initialization phase where an initial experimental dgsign (D
simulated using the simulation model described previously. The experimental design used for this case is
a D-optimal design generated using the statistical software JMP. The experimental design in this case is
for 50 variables at three levels each, and has 1327 runs. The number of runs corresponds to the minimum
number of necessary runs to estimate a second order model, as proposed in-(Méqdez et al.
2014a).
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Figure 3: Range of values for the workstations’ mean process time in simulation model.

The natural variables and the simulated values of the PMs are coded using a linear transformation to
make them fall in the range ofl}1] to avoid dimensionality problems. With these coded values the
efficient frontier was found, usg a MATLAB code available in our group to carry out the full pairwise
comparison (Camach@aceres et al. 2015) he found efficient frontier represents the initial incumbent
solution (b) as shown in Figure 4. Do notice that, for representation puwplosth PMs are shown as
minimization cases. Indeed, any maximization case can be turned into an equivalent minimization cases
through a suitable linear transformation.

With I, at hand, the iterative phase of the algorithm begins. To generate predictions within the
experimental region one second order regression metamodel per PM was constructedg. Usaah D
metamodel consisted of 1326 terms. A discretization of the experimegitan was performed with an
increment of 0.25 units in the natural values and sampled using 30,000 uniformly distributed data points.

Predictions were then obtained, using the metamodels, in these 30,000 points for both PMs. In turn,
these predicted &dions were evaluated to determine the Paedficient ones. Do notices that the
number of Pareto Efficient Solutions is expected to be considerably less than the original number of
solutions under analysis. The Pareto Efficient Solutions at this poéntpredictions so an actual
simulation must be carried out at these attractive points. With these new points, the incumbent golution |
must be revised for Paregdficiency. When the comparison was carried out, 3 new points added to the
efficient frontie and 6 points of the incumbent solutiggmiere now dominated points. Consequently,
these dominated solutions were deleted from the new incumbent solutiguire 5).The points of the
candidate set Dare added to the available pointg &1d the second iteration of the algorithm ensued.
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Figure 4: Initial pairwise comparison considering both objective functions for case of 50 variables.
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Figure 5: Pairwise comparison betwegand OO considering both objective functions.
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The secondteration follows the same structure as before, with the creation of a new set of potential
solutions 3. These combinations were then simulated and compared with the incumbent spligiiog |
Paretoconditions (Figure 6). A new point is added to thaciffit frontier to obtain a new efficient
frontier (L). The candidate set of solutiong Were then added to the available points to calculate the new
metamodels in a new iteration.

One more iteration was necessary to bring the method to a stop. It must be recalled at this point that
the method stops only when no modifications are introduced in the current efficient frontier. The solutions
for the initialization and each of the iterations are shown in Figure 7. The five solutions identified by the
methodrepresent the best possible tradeoffs between cycle time and average machine utilization. Each of
these five solutions contain the prescriptive values at which each of the 50 workstations must be set.

When looking into the progression of the method in its two PMs (Figure 7), it can be appreciated how
the method effectively explored beyond the initial experimental (simulation) samples. It is also clear that
the efficient frontier would benefit from a finer exploration in that zone. This is left for future work,
where a progressive refinement of the sampling increments in 4tedled grid of the main iteration of
the method will be investigated.
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Figure 6: Rirwise comparison betweenand B considering both objective functions.
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Figure 7: Eaclof the incumbent frontiers«l,) of the problem under study.

6 CONCLUSIONS AND FUTURE WORK

This paper presents an iterative multiple criteria simulation optimization strategy capable to handle tens of
variables at a time. In its current state, the meth@sh improvement over singpgss methods as well as

the use of Data Envelopment Analysis models as previously proposed by our group. Manufacturing
decisions regarding design, control and improvement of processes and syestegnsatly benefit from

using the proposed optimization strategy from the point of view of its capabilitrestieriteria,
multifactorial- as well as its frugality in terms of the number of simulation runs. Future work includes
assessing the method's runtime as relevant information for those cases where decision times are short.
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