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ABSTRACT

Flexible capacity of production system gets in times of dimog working and economic crisis an
increasingly important status. Therefore, models to handle flexible capacity of production systems are
necessary. In production planning queuing theory is a widely applied modeling approach. Since classical
M/M/1 queuing models neglect flexible capacity this work implements two production rateMiividh

gueuing model. Whenever the queue length is more than k, the system runs at high speed otherwise low
speeds used. The aim of this paper is the calculation of the state probabilities of the Markov chain. The
state probabilities are the basis for developing an approximation for the production lead time which is
dedicated to further researchinally, a simulation study for the evaluation of state probabilities for
flexible capacity with one and two switching points is conducted.

1 INTRODUCTION

On the one hand the due dates of the customers can be negotiated to create a smoother capacity demand
(Corti et al. 2006; Hegedus and Hopp 2001; Hopp and Roof Sturgis 2000; Keskinocak and Tayur 2004)

On the other hand the capacity can be adjusted to the fluctuations of the customer demand (Altendorfer et
al. 2014; Bradley and Glynn 2002; Defregger and Kuhn 2006; Kok 2000; Li et al. 2009; Mincsovics and
Dellaert 2009; van Mieghm and Rudi 2002). The methods discussed inptigierare based on capacity
adjustment literature

2 MODEL DESCRIPTION

A simple M/M/1 queue is assumed where two different production rates are possible. For solving this
problem queuing theory is applied for a M/Mjieue with a WIP and FGI (see Figure 1). In literature
only a constant production ratds usedAltendorfer and JodIbauer 2011; Altendorfer and Minner 2011;
Buzacott and Shanthikumar 1993; Medhi 1991). Therefore, literature is extended by applying two
different production rateg, andu;. Whenever more thalorders are in the WIP of the production
system, it runs at spegg otherwisey; is used. (Altendorfer and JodIbauer 20d&monstrated how a
customer required lead time distribution can be implemented in a Mj\Mging model with constant
u for service level, FGI, FGI lead time and tardiness.

Figure 1shows the basic model where ordés stated by a customer with ratelf the machine is
idle, the order is released into production, otherwise the order is wiaitiihg buffer for processing. Only
one order can be processed at a time. The production unit consists of a buffer for waiting orders and a
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processing step that requires a random processing time. Whenever marettiers are in the WIP of
the production system, it runs at spagdotherwise ig; used.

2.1

Customer |«
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Buffer L
—P Machine
Mo
WIP =Y
Production leadtime = W
-

Figure 1: M/M/1Production syste with switching capacity

MODEL ASSUMPTIONS

The following assumptions are taken into consideration to create the model:

2.2

M/M/1 model is assumed with two levelsof> { pp, uy }

Processing times are exponentially distributed and only one order can be processed at time.
Whenever more than k orders are in the \W}Fotherwisqy;, is used as production rate and no
transientbehaviorat the switching point is assumed

Customer orders for single items are stated piecewise from many different customers which
supports the exponentially distributed customer order interarrival times with fatesingle

items i

Customer orders are not chadgonce they are stated and have be accepted and released into the
production system

Nothing is produced without a customer order (MTO system)

FIFO is applied as dispatching rule after the customer orders are released

Machine capacity cannot be stored

STATE PROBABILITES FOR SWITCHING PROCESSING RATES

As described above, a simplified M/Mfiroduction system is applied in this paper and whenever the
gueue length is more than the system runs at speed and at speedy otherwise. Fok = 2 the
following derivation of the state probabiliti8s of the Markov chain holds:
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Which can be generalized to:

min(k,n) max( 0n-k)
P=R (i} [i] (2)
H Hy

And thereforeP, can be calculated as:
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Further simplifyingthe state probabilities leads to:

forn<k:
Y p (= 2) (=2 Y
Ansig= [ £ | -l Al t) (1)
H He (#H_ﬂ')_ﬂ' (IUH_,UL) He
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(4)
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forn>k:
o 8] s,
. in(/“L /1) ) in ﬂHk(ﬂL_ﬂ)(ﬂH _/1)

W (e (- i)—ik”(ﬂH—ﬂL)) (ﬂHj i (g = A) = 2 (g = 1)

Which can be applied to identif}; the percentage of time the production system is running at flexible
overcapacityuy:

—ﬂk”')

o gn 2 0] 2 ey

7
n (/UL _ﬂv)(/‘H —ﬂ,) (/uLkJrl_/lkﬂ) . (,UH —/At)(,ul_kﬂ—ﬂ.kH)
(g = 2) =AM (g =) (e =2) (= A) =2 (e — 1)
_ AN (= A)
o (g = A) = A (- )

3  SIMULATION STUDY

In the simulation widy the state probabilities are analyZ€derefore, 10 replications for each parameter
combination are conducted. The simulation time is set to 100,000 periods. For all results a confidence
interval of 99% holds trué.he following parameters are set:

=1 (6)

e Arrival rate 1 €{0.8; 0.9}
e Switching pointk = 12
o uy=u+d;yu, = u—d;de{0;0.050.1;0.15}

3.1 BASIC SCENARIO

Figure 2 and Figure 3 illustrate the evolution of state probabilities under flexible capacity scenarios.
When noflexible capacity is availablel(= 0) then state probabilities decrease exponentially since only

one capacity level is available. For the high utilization scenario (Figure 2) it is shown that increase
flexibility in capacity leads to an change in the sgatbabilities. In this simulation study the switching

point is set tdc = 12. In the states assuming low WIP the probability deceases when more flexible
capacity is available compared to the constant capacity scenario. After reaching the switching point th
probability decreases and the production system is able to decrease the WIP in the system due to
providing more capacity.
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Figure 2: Evolution of state probabilities under flexible capacity for high utilization sceénarid9.

In the low capacity scenario flexible lead on all twé € {0.05;0.1}) to a decrease of state
probabilities. For the states assuming low WIP again the probability decrease when more flexible capacity
is provided and the probability increases when reactiiagswitching point compared to the constant
capacity scenario.
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Figure 3: Evolution of state probabilities under flexible capacity for low utilization scehario.8.
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3.2 TWO SWITCHING POINTS

In order to get amore realistic situation two switching points are also implemented in the simulation
study. If more tharky, orders are in the system the production rate fugrto uy is increased. The
production rate is decreased from o y; when less or equal tha&np orders are in the system. For testing

these cases the following relationships hold tkye= k —i; ky =k +i;i € {0;1;2;3;4}. If i is two

then the production system produces at high capacity when the WIP is greater than 13 and the system
switches back to low capacity when the WIP reaches 11 units. Fotvibestvitching points situation

also both utilization scenarios are tested for evaluating the state probabilities and are presented in Figure 4
and Figure 5.

PO P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 P17 P18 P19 P20

Figure 4. State probabilities for the low utilization scenario for differend i=a0.1.

For the low and high utilization scenario one can observe for state probabilities up to 12 that for setting up
two switching points i(> 0) the state probability decreases the greater i gets. For state in which the
observed scenario reachlesg leads to the highest probability. Also for the “two switching points”
situation, the above observed influence of utilization can be determined on the evolution of state
probabiliies.
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Figure 5. State probabilities for the high utilization scenario for different a0.1.

4 CONCLUSION

In this paperthe state probabilities of BI/M/1 queuing system with two production ratesd one
switching point when reaching a certain Wélke calculatechnalytically In a simulation study the
evaluation of the state probabilities is observed by providing flexible capacity of the production system.
Moreover, a “two switching point” produon system is introduced where the system uses high capacity
when the WIP reachés;. Unlike previously, the high capacity remains upright after the WIP undercuts
ky. Only when the WIP reaches the lower switching pljnthe low capacity of the production system is
applied.This switching behavior of capacity leads to lead modified state probabilities of the production
system. The simulation study delivers more insights into the evolution of state probabilities of an queuing
system.

The analytic development of the state probabilitethe basis for developiranalytical relationships
for productionand FGI lead time and performance indicators such as services Eveltardines€ of
this production system in further research. Findhg, optimal switching poirit can be calculatebased
on an optimization problem in further research.
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