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ABSTRACT 

Flexible capacity of production system gets in times of short-time working and economic crisis an 
increasingly important status. Therefore, models to handle flexible capacity of production systems are 
necessary. In production planning queuing theory is a widely applied modeling approach. Since classical 
M/M/1 queuing models neglect flexible capacity this work implements two production rates in an M/M/1 
queuing model. Whenever the queue length is more than k, the system runs at high speed otherwise low 
speed is used. The aim of this paper is the calculation of the state probabilities of the Markov chain. The 
state probabilities are the basis for developing an approximation for the production lead time which is 
dedicated to further research. Finally, a simulation study for the evaluation of state probabilities for 
flexible capacity with one and two switching points is conducted.  

1 INTRODUCTION  

On the one hand the due dates of the customers can be negotiated to create a smoother capacity demand 
(Corti et al. 2006; Hegedus and Hopp 2001; Hopp and Roof Sturgis 2000; Keskinocak and Tayur 2004). 
On the other hand the capacity can be adjusted to the fluctuations of the customer demand (Altendorfer et 
al. 2014; Bradley and Glynn 2002; Defregger and Kuhn 2006; Kok 2000; Li et al. 2009; Mincsovics and 
Dellaert 2009; van Mieghem and Rudi 2002). The methods discussed in this paper are based on capacity 
adjustment literature. 

2 MODEL DESCRIPTION  

A simple M/M/1 queue is assumed where two different production rates are possible. For solving this 
problem queuing theory is applied for a M/M/1 queue with a WIP and FGI (see Figure 1). In literature 
only a constant production rate ߤ is used (Altendorfer and Jodlbauer 2011; Altendorfer and Minner 2011; 
Buzacott and Shanthikumar 1993; Medhi 1991). Therefore, literature is extended by applying two 
different production rates ߤ  and ߤு . Whenever more than ݇ orders are in the WIP of the production 
system, it runs at speed ߤு otherwise ߤ is used. (Altendorfer and Jodlbauer 2011) demonstrated how a 
customer required lead time distribution can be implemented in a M/M/1 queuing model with constant ߤ for service level, FGI, FGI lead time and tardiness. 

Figure 1 shows the basic model where order ݅ is stated by a customer with rate ߣ. If the machine is 
idle, the order is released into production, otherwise the order is waiting in the buffer for processing. Only 
one order can be processed at a time. The production unit consists of a buffer for waiting orders and a 
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processing step that requires a random processing time. Whenever more than ݇ orders are in the WIP of 
the production system, it runs at speed ߤு otherwise is ߤ  used.  

Figure 1: M/M/1 Production system with switching capacity. 

2.1 MODEL ASSUMPTIONS  

The following assumptions are taken into consideration to create the model: 

• M/M/1 model is assumed with two levels of Ɋ ՜   { Ɋ,Ɋୌ } • Processing times are exponentially distributed and only one order can be processed at time. 
Whenever more than k orders are in the WIP Ɋୌ otherwise Ɋ is used as production rate and no 
transient behavior at the switching point is assumed • Customer orders for single items are stated piecewise from many different customers which 
supports the exponentially distributed customer order interarrival times with rate ɉ for single 
items i • Customer orders are not changed once they are stated and have be accepted and released into the 
production system • Nothing is produced without a customer order (MTO system) • FIFO is applied as dispatching rule after the customer orders are released • Machine capacity cannot be stored 

2.2 STATE PROBABILITES FOR SWITCHING PROCESSING RATES  

As described above, a simplified M/M/1 production system is applied in this paper and whenever the 
queue length is more than ݇, the system runs at speed ߤ   and at speed ߤு  otherwise. For ݇ = 2 the 
following derivation of the state probabilities ܲ of the Markov chain holds:  

Machine

Buffer

Customer

Production leadtime = W

WIP = Y

µH

µL

Ȝ 
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Which can be generalized to: 
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And therefore ܲ can be calculated as: 
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(3)  

Further simplifying the state probabilities leads to: 
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Which can be applied to identify ுܲ the percentage of time the production system is running at flexible 
overcapacity ߤு: ( )( )
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3 SIMULATION STUDY 

In the simulation study the state probabilities are analyzed. Therefore, 10 replications for each parameter 
combination are conducted. The simulation time is set to 100,000 periods. For all results a confidence 
interval of 99% holds true. The following parameters are set: 

 • Arrival rate ߣ ;0.8}א 0.9}  • Switching point ݇ = ுߤ • 12 = ߤ + ݀; ߤ = ߤ  െ ݀;݀ א {0; 0.05; 0.1; 0.15} 

3.1 BASIC SCENARIO 

Figure 2 and Figure 3 illustrate the evolution of state probabilities under flexible capacity scenarios. 
When no flexible capacity is available (݀ = 0) then state probabilities decrease exponentially since only 
one capacity level is available. For the high utilization scenario (Figure 2) it is shown that increase 
flexibility in capacity leads to an change in the state probabilities. In this simulation study the switching 
point is set to ݇ = 12. In the states assuming low WIP the probability deceases when more flexible 
capacity is available compared to the constant capacity scenario. After reaching the switching point the 
probability decreases and the production system is able to decrease the WIP in the system due to 
providing more capacity.  
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Figure 2: Evolution of state probabilities under flexible capacity for high utilization scenario ߣ = 0.9. 

In the low capacity scenario flexible lead on all two (݀ א {0.05; 0.1} ) to a decrease of state 
probabilities. For the states assuming low WIP again the probability decrease when more flexible capacity 
is provided and the probability increases when reaching the switching point compared to the constant 
capacity scenario.  

 

Figure 3: Evolution of state probabilities under flexible capacity for low utilization scenario ߣ = 0.8. 
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3.2 TWO SWITCHING POINTS  

In order to get an more realistic situation two switching points are also implemented in the simulation 
study. If more than ݇ு  orders are in the system the production rate from ߤ  to ߤு  is increased. The 
production rate is decreased from ߤு to ߤ when less or equal than ݇ orders are in the system. For testing 
these cases the following relationships hold true: ݇ = ݇ െ ݅ ; ݇ு = ݇ + ݅; ݅ א {0; 1; 2; 3; 4}. If i is two 
then the production system produces at high capacity when the WIP is greater than 13 and the system 
switches back to low capacity when the WIP reaches 11 units. For the “two switching points” situation 
also both utilization scenarios are tested for evaluating the state probabilities and are presented in Figure 4 
and Figure 5. 

 

 

Figure 4. State probabilities for the low utilization scenario for different i at d = 0.1. 

For the low and high utilization scenario one can observe for state probabilities up to 12 that for setting up 
two switching points (݅> 0) the state probability decreases the greater i gets. For state in which the 
observed scenario reaches ݇ு  leads to the highest probability. Also for the “two switching points“ 
situation, the above observed influence of utilization can be determined on the evolution of state 
probabilities. 
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Figure 5. State probabilities for the high utilization scenario for different i at d = 0.1. 

4 CONCLUSION 

In this paper, the state probabilities of a M/M/1 queuing system with two production rates and one 
switching point when reaching a certain WIP are calculated analytically. In a simulation study the 
evaluation of the state probabilities is observed by providing flexible capacity of the production system. 
Moreover, a “two switching point” production system is introduced where the system uses high capacity 
when the WIP reaches ݇ு. Unlike previously, the high capacity remains upright after the WIP undercuts ݇ு. Only when the WIP reaches the lower switching point ݇ the low capacity of the production system is 
applied. This switching behavior of capacity leads to lead modified state probabilities of the production 
system. The simulation study delivers more insights into the evolution of state probabilities of an queuing 
system. 

The analytic development of the state probabilities is the basis for developing analytical relationships 
for production and FGI lead time and performance indicators such as service level s and tardiness C of 
this production system in further research. Finally, the optimal switching point k can be calculated based 
on an optimization problem in further research. 
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