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ABSTRACT 

Manufacturing companies of today are under pressure to run their production most efficiently in order to 
sustain their competitiveness. Manufacturing systems usually have bottlenecks that impede their 
performance, and finding the causes of these constraints, or even identifying their locations, is not a 
straightforward task. SCORE (Simulation-based COnstraint REmoval) is a promising method for 
detecting and ranking bottlenecks of production systems, that utilizes simulation-based multi-objective 
optimization (SMO). However, formulating a real-world, large-scale industrial bottleneck analysis 
problem into a SMO problem using the SCORE-method manually include tedious and error-prone tasks 
that may prohibit manufacturing companies to benefit from it. This paper presents how the greater part of 
the manual tasks can be automated by introducing a new, generic way of defining improvements of 
production systems and illustrates how the simplified application of SCORE can assist manufacturing 
companies in identifying their production constraints. 

1 INTRODUCTION 

Manufacturing companies operate in a very competitive market, be it local or global. Keeping the 
performance of the production system as high as possible is a key factor in holding a competitive 
advantage against the competition and in the long run ensuring the survival of the company. Many present 
production systems have grown fairly large and have unfortunately become very complex in their 
processes. Usually when such a complex system is not performing optimally, it is not an easy task to 
identify the cause of this poor performance, i.e. finding the bottleneck of the system. Examples of both 
analytical and simulation-based techniques for identification of the bottleneck of a production system can 
be found in literature, including utilization of machines (Hopp and Spearman 2000), blocking and 
starving patterns (Kuo, Lim, and Meerkov 1996), data-driven approach (Li 2009), shifting bottleneck 
detection (Roser, Nakano, and Tanaka 2002), multiple bottlenecks (Aneja and Punnen 1999) as well as a 
method based on inter-departure time and failure cycle data (Sengupta, Das, and VanTil 2008). The 
simulation-based techniques are widely used in industry but they can be unreliable and at best they are 
able to pin-point the location of the bottleneck but not the actual cause of it. A new and promising 
bottleneck detection method called SCORE (Simulation-based COnstraint REmoval) has been proposed 
by Pehrsson (2013). It utilizes simulation-based multi-objective optimization (SMO) to identify and rank 
bottlenecks (i.e. not only the primary bottleneck but also the secondary and even lower-order bottlenecks 
are detected) while at the same time categorizing the causes of the bottlenecks. The use of SMO as a 
powerful tool for bottleneck detection has been further detailed by Ng, Bernedixen, and Pehrsson (2014) 
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based on the definition of bottleneck and improvability of production systems found in (Li and Meerkov 
2009). The SCORE-method systematically relaxes constraints of the system (i.e. improvements are 
implemented to eliminate the constraints) while the performance of the system (most often throughput, 
but other performance measures can be used) is measured with the goal of maximizing the performance 
(see objective function 1 below) with as few improvements as possible (objective function 2). According 
to theory of constraints (TOC) (Goldratt 1997) the highest throughput improvement will be achieved by 
removing the most significant constraint. In the simplest form of SCORE-analysis, processing times, 
availabilities and repair times are considered as potential causes for bottlenecks. However, the method is 
applicable to a wider range of causes of bottlenecks that may include, e.g. quality deficiencies, lack of 
resources, and buffer issues. These parameters are added as optimization input variables with two levels, 
see (3), the original value and an improved value where the constraint is removed. By transforming these 
parameters to binary 0/1-variables as in (4), it is possible to calculate the value of the improvement 
objective (2). Thus the following optimization problem is at the heart of the SCORE-method. 

ݔܽ݉  ݊݅݉(ݐݑ݌݄݃ݑ݋ݎ݄ܶ.݃.݁) ݁ܿ݊ܽ݉ݎ݋݂ݎ݁ܲ ෍ܫ௜ே
௜ୀଵ݋ݐ ݐ݆ܾܿ݁ݑݏ ௜ݔ א ݑ݈ܽݒ_݈ܽ݊݅݃݅ݎ݋}  ௜݁, ௜ܫ{௜݁ݑ݈ܽݒ_݀݁ݒ݋ݎ݌݉݅ א {0,1}, ൜ ݁ݎ݄݁ݓ  ௜ܫ = ௜ݔ ݂݂݅ 0 = ௜ܫ ௜݁ݑ݈ܽݒ_݈ܽ݊݅݃݅ݎ݋ = ௜ݔ ݂݂݅ 1 = ௜݅݁ݑ݈ܽݒ_݀݁ݒ݋ݎ݌݉݅ א {1, … ,ܰ}, ݏݐ݊݁݉݁ݒ݋ݎ݌݉݅ ݈ܾ݁݅ݏݏ݋݌ ݂݋ ݎܾ݁݉ݑ݊ ݈ܽݐ݋ݐ ݄݁ݐ ݏ݅ ܰ ݁ݎ݄݁ݓ 

 

(1) 

(2) 

(3) 

(4) 
 

 
This optimization problem quickly grows with the size of the manufacturing system, for instance even 

in its simplest form (i.e. with only process times, availabilities and repair times as potential causes of 
bottlenecks) six variables are added per potential bottleneck location (workstation) in the manufacturing 
system. Setting up such an optimization problem manually might be feasible for small models but not for 
large and complex production systems found in industry. Not only would it be a very time-consuming and 
tedious task to set it up manually, it would also be very error-prone. The SCORE-method, as presented by 
Pehrsson (2013), lacks details on how the formulation of this optimization problem can be automated, or 
how a software should be designed to support it so that it can be widely adopted within industry. 

In this paper we address this problem. We will  show how the setup of the SCORE optimization 
problem can be automated to a large extent by introducing a generic way of defining improvements 
(SCORE Groups) in Section 2.  In Section 3 these SCORE Groups will be used to perform a SCORE 
analysis on a small academic test model to further illustrate how these SCORE Groups can help with the 
formulation of the SCORE optimization problem. Section 4 will  describe a successful application of this 
automation within industry and at the same time provide some motivation for the need of this type of 
analysis within industry. Conclusions and direction of future research are given in Section 5. 

2 AUTOMATING THE SETUP OF THE SCORE OPTIMIZATION PROBLEM 

SCORE optimization problems tend to, as mentioned earlier, have a vast amount of input variables and 
are not easy to set up manually. This section will present a way in which this task can be automated to a 
large extent and at the same time eliminate or at least significantly reduce the errors commonly introduced 
when performing this task manually. First a generic way of defining the input variables, see (3), is 
introduced and then we present how these inputs are transformed to another set of binary variables (4) 
that are used to formulate the improvement objective (2) of the SCORE optimization problem. 
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2.1 A Generic Way of Defining Improvements 

Removal of system constraints is at the core of the SCORE analysis. Constraints are removed through 
actions that improve the values of the constraining parameters of the production system. Such an 
improvement action can be described as changing a system parameter from its original value to some 
improved value. The type of system parameter will determine whether an increase (e.g. the case for 
availability) or a decrease (e.g. the case for processing time) of the parameter value represents an 
improvement. The information needed to define a group of improvement actions (called a SCORE Group) 
is shown in Figure 1 and described in more detail in Table 1. 

 

 

Figure 1: Dialog used for defining a SCORE Group. 

Table 1: Detailed information about how groups of improvement actions (SCORE Groups) are defined 
using the dialog in Figure 1. The type of system parameter is determined by the two fields object type and 
variable type. 

Field(-s) Description 
Object type List of all object types of the modeled production system. Used to select what type of 

object this improvement applies to, e.g. an Operation, an Assembly station etc. 
Variable type List of all available variables of the selected object type. Used to select what type of 

system parameter this improvement applies to. 
Improvement 

type 
This will determine the type of improvement as one out of three types: • ABSOLUTE - The improved value is calculated as an absolute offset from 

the original value. • RELATIVE - The improved value is calculated as a relative offset from the 
original value. • FIXED - The improved value is fixed and independent of the original value. 

Improvement 
direction 

Determines what direction is considered an improvement for the selected type of system 
parameter. • POSITIVE - An increase of the original value is considered an improvement. • NEGATIVE - An decrease of the original value is considered an 

improvement. 
Improvement Parameter used to calculate the improved value. It's meaning is determined by the 

selected Improvement type: • Improvement type = ABSOLUTE - This parameter is the absolute offset used 
to calculate the improved value. • Improvement type = RELATIVE - This parameter is a percentage value used 
to calculate the size of the improvement as a percentage of the original value. • Improvement type = FIXED - This parameter is the actual improved value. 

Limit  Optional parameter used to limit the improvement and possibly exclude system 
parameters from improvement. If the improved value is better than this limit it will be 
capped to this limit parameter. On the other hand if the original value is already better 
than this limit the system parameter will not be added as an improvement. 
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With the information specified in a SCORE Group it is possible to automatically retrieve a set of 
system parameters and add them as binary multiple-choice set (MCS) (Bernedixen and Ng 2014) input 
variables to a SCORE optimization problem. These input variables will take either the original value or 
the improved value and the corresponding MCS notation is {original value, improved value}. As 
explained in (Bernedixen and Ng 2014), failure to handle MCS and equality constraint effectively is one 
reason why some simulation-based optimization packages fall short to solve large-scale industrial system 
design problems. The paper also provides the details on how MCS can be effectively embedded into 
meta-heuristic evolutionary algorithms. 

Combining several SCORE Groups provides a very powerful and generic way of setting up large and 
custom SCORE optimization problems with little effort compared to the tedious and error-prone way of 
manually setting up the same problem. This will be demonstrated in the following sections. 

2.2 The Improvement Objective 

The second objective (2) of the SCORE optimization problem is to minimize the total number of 
improvements that are actually implemented. In order to do this we need to transform the input variables 
(3) of the problem to binary 0/1-variables (4), where 0 corresponds to the original value (no 
improvement) and 1 corresponds to the improved value (one improvement). Taking the sum of these 
variables we are able to calculate the total number of improvements that are actually implemented in each 
solution, i.e. giving us the desired objective (2). 

3 APPLICATION ON A SIMPLE ACADEMIC MODEL 

This section will give a detailed view of how SCORE Groups can help with the formulation of the 
SCORE optimization problem, starting with a brief description of the model used and how the 
optimization problem is formulated using SCORE Groups. We then conclude with the results from the 
SCORE-analysis. 

3.1 Model and SCORE Optimization Problem 

The model used is a simple production line (Figure 2) with one variant and only 5 serial machines without 
any buffers. The line is never starved (i.e. infinite supply of the only variant in Source1) and never 
blocked (i.e. there is an infinite demand at Sink1). The settings of the machines are detailed in Table 2. 

 

 

Figure 2: Simple 5-machine serial production line with mixed issues. Top 3 bottlenecks according to the 
SCORE-analysis are circled along with their cause (PT – process time, AVB – availability). 

Table 2: Machine settings of the mixed issues line. 

Parameter M1 M2 M3 M4 M5 
Process time [seconds] 32 35 30 33 31 

Availability [%] 95 92 86 94 90 
Mean time to repair [seconds] 600 600 600 600 600 

 
The processing times of the machines are constant and the availabilities are modeled with exponential 

distribution for time between failures and Erlang distribution for repair times. The simulation model is 
run for 6 days with 1 day of warm-up time and with 30 replications.  
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Before running a SCORE-analysis on this model we need to determine some reasonable 
improvements. Assuming that a SCORE-analysis is to be run with the following improvements: Process 
times are improved by 30 % but are not allowed to be shorter than 22 seconds (e.g. due to technical 
restrictions), Availabilities are improved to 99 % no matter their current value and Mean time to repair are 
all reduced by 540 seconds. These improvements are easily defined with the three SCORE Groups shown 
in Figure 3. 
 

 

Figure 3: SCORE Groups for process time, availability and mean time to repair. Observe the limit set for 
process time (circled). 

In this example the defined SCORE Groups results in an optimization problem with 15 input 
variables and 15 corresponding improvement variables. These are listed in Figure 4 along with the two 
objectives, maximize throughput and minimize the number of improvements. In the list of input variables 
there are two process time variables (circled in Figure 4) that have been capped at 22 seconds by the limit 
set in the process time SCORE Group, i.e. a 30 % reduction of these process times would have ended up 
below 22 seconds. If some improvements need individual tailoring (other than what was defined in the 
SCORE Group) it is possible to manually adjust these variables directly in these lists. 

The total of 30 variables is not an insurmountable problem to set up manually, but still it serves as a 
good example to illustrate the different functionalities of the SCORE Groups. It is worth noting that even 
for such a simple example the SCORE Groups can avoid the error-prone, manual task significantly.  
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Figure 4: Generate optimization problem; Objectives (2) & (1) at the top, Input variables (3) to the left 
and Improvement variables to the right. 

3.2 Results 

The results from the 5000 evaluations that was run with the NSGA-II algorithm (Deb et al. 2000) on the 
SCORE optimization problem are shown in Figure 5. 

Figure 5: Optimization results with solutions of non-domination rank (Deb et al. 2000) 1 through 5 
highlighted with black. 

A frequency analysis is used for innovization (Deb 2003), i.e. to extract knowledge from 
optimizations with multiple conflicting objectives. Here, the causes of bottlenecks in the system are 
ranked in accordance with their severity. The best solutions, black solutions in Figure 5, are the result of 
applying different promising combinations of improvements to the system. Using the improvement 
variables of these solutions for the frequency analysis (Figure 6) we are able to rank the causes of 
bottlenecks in the system. 
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Figure 6: The 15 causes of bottlenecks ranked using the constraint frequency analysis for unique solutions 
of non-domination rank 1 through 5. 

The frequency analysis pinpoints the availability of machine M3 as the cause of the most severe 
bottleneck in the system. Recall that in the initial settings of the system (Table 2), this is the machine with 
the worst availability (86 %). Moving on to the second cause in the bar chart, the processing time of 
machine M2, which is not difficult to understand since it is the machine with the longest processing time 
(35 seconds). While locating these two attributes as the key causes of the system constraint is not 
surprising, the interestingness of this analysis result is that SCORE has clearly identified that the 
availability loss of M3 contributes higher capacity loss than the longer processing time of M2. 

For comparison, analysis results on the same production line model using the utilization method and 
the shifting bottleneck detection method are shown in Figure 7. Both of these two methods have identified 
M2 as the bottleneck machine, without providing the details on which attribute of M2 has to be improved, 
in contrast to the SCORE analysis which pinpoints the availability of M3 as the major cause of the 
constraint. The best way to evaluate the accuracy of these bottleneck methods is to simply make the 
improvements to the simulation model accordingly and then compare the respective throughput gains. 
Based on utilization and shifting bottleneck detection (Figure 7), only processing time of M2 is reduced to 
24.5 seconds (all other attributes retain their original values), which gives a throughput of 69.8 parts/hr. - 
an improvement of 5.9%. On the other hand, based on SCORE (Figure 6), only availability of M3 is 
improved to 99%, which increases the throughput to 75.9 parts/hr., i.e., a gain of 15%, significantly 
higher than 5.9%. Albeit the model and the validation are simple, it sufficiently illustrates the adverse 
effect of not pinpointing the correct order of the key attributes that restrain the performance of the system. 

 

 

Figure 7: Bottlenecks in order of importance according to utilization (working + failed) analysis to the left 
and shifting bottleneck detection to the right. 

It should be noted that without buffers in the system, different repair times (with the same 
availability) will have a limited effect on the system. As a matter of fact, it is possible to include the 
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increase of inter-station buffer capacities as a type of improvement action, which is also directly 
supported by SCORE through the addition of a SCORE Group for the parameter buffer capacity. If the 
simple example is extended to include inter-workstation buffers as shown in Figure 8 and a SCORE 
optimization is run to include Bi={1,10}, i.e. buffer capacities increase from 1 to 10. Then the SCORE 
analysis results shown in Figure 9 is obtained, showing that SCORE can rank buffer capacities as causes 
of bottlenecks. 

 

 

Figure 8: The simple 5-machine serial production line extended with inter-workstation buffers with their 
bottleneck rank highlighted. 

 

Figure 9: The 19 causes of bottlenecks (including buffer capacities) ranked using the constraint frequency 
analysis for unique solutions of non-domination rank 1 through 5. 

4 APPLICATION WITHIN INDUSTRY 

In this section, a successful application of the automated SCORE-analysis on a model of a real-world 
production system is presented. We will start by giving a background to this application of the SCORE-
analysis and while doing so motivating the need for such an analysis. Following the background, we will 
present the model and the SCORE optimization problem before we conclude with some results from the 
analysis. 

4.1 Background 

Redesigning or building completely new production systems is not an easy task and sometimes the 
resulting system may not perform fully according to the original specifications. For instance, the system 
design specifies technical availabilities that are usually higher than what can be achieved when the system 
is up and running. Finding out why the system is not performing as planned is not an easy task. An 
example is a re-engineered line at a partner company (Figure 10), not performing according to the plan, 
despite being modeled and simulated from the project start. Relentless efforts had been made to identify 
and improve the bottlenecks in order to elevate the system performance, using traditional methods. 
However, it was not an easy task to agree on the bottlenecks and the actions required to really remedy the 
system performance issues. The pure utilization statistics and the more advanced shifting bottleneck 
detection method (Roser, Nakano, and Tanaka 2002) had already been used in several attempts to identify 
the bottlenecks when the automated SCORE method was applied in parallel as described in the following 
sections. 

2190



Bernedixen, Ng, Pehrsson, and Antonsson 
 

 

 

Figure 10: Model of real-world production system, illustrating its complex nature. Top 3 bottlenecks 
according to the SCORE-analysis are circled along with their cause (PT – process time, AVB – 
availability). 

4.2 Model and SCORE Optimization Problem 

The modeled production line (Figure 10) is a complex production system. The model contains 71 
workstations, 72 buffers, 2 variants, pallets, assemblies and disassembles etc. By using default SCORE-
analysis settings (20 % reduction of cycle times, availabilities improved to 98 % and repair times reduced 
by 50 %) a SCORE optimization problem with N = 163 improvement alternatives (89 process time 
improvements, 24 availability improvements and 50 repair time improvements) was set up. Adding these 
manually and then transforming them to binary 0/1-variables (4) is far too time-consuming to fit with the 
rest of the tasks of a production engineer and would prevent this kind of analysis from being performed. 
However, with this automation and the default SCORE settings, it can be done with a few straightforward 
steps. 

4.3 Results 

The results from the 20000 evaluations that were run with the NSGA-II algorithm (Deb et al. 2000) on the 
SCORE optimization problem are shown in Figure 11. As can be seen in the figure (circled solutions) 
there is a significant boost in performance with only one improvement and two improvements, indicating 
some rather severe bottlenecks in the system. Being such severe bottlenecks, these were actually known 
to the production engineer before this analysis, but knowledge about subsequent bottlenecks was missing. 
The frequency analysis presented in Figure 12 pinpoints the causes of these top 2 bottlenecks and also 
ranks subsequent bottlenecks even though they are less obvious than the first and second ones (1st 
availability in operation O16, 2nd process time in operation O1, 3rd availability in operation O13, 4th 
process time in A12…). 
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Figure 11: Optimization results with solutions of non-domination rank 1 through 5 highlighted with black. 
First two improvements have some significant impact on the performance of the system, as can be seen by 
the circled solutions, indicating the presence of severe bottlenecks. 

 

Figure 12: Top 20 causes of bottlenecks ordered using the constraint frequency analysis for unique 
solutions of non-domination rank 1 through 5. 

Using the SCORE-analysis with the constraint frequency analysis as decision support for where to 
make improvements during a couple of weeks the production system now delivers as it was originally 
intended to. 

For comparison the utilization and shifting bottleneck detection analysis are presented in Figure 13. In 
this case, both methods agree to the results from the SCORE-analysis for the top bottlenecks (that were 
known beforehand in this case, see throughput increase in Figure 11). However, they lack details about 
their impact on the system performance that is included in the SCORE-analysis. In addition, when 
comparing these three data plots generated from the three different methods, it is apparent that SCORE 
provides more detailed information about the order of the lower-ranked bottlenecks as well as their causes 
so that appropriate improvement actions to address them can be planed proactively. 
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Figure 13: Top 20 bottlenecks according to utilization (working + failed) analysis to the left and shifting 
bottleneck detection to the right. 

5 CONCLUSIONS 

Based on the novel SCORE-method, that treats a bottleneck identification and improvement problem as a 
multi-objective optimization problem for identifying the optimal (minimal) number of changes to 
maximize the throughput, this paper illustrates how a generic way of defining improvements of the 
decision variables, in terms of processing times, availabilities, repair times, can largely automate the 
analysis process. The importance of such an automated assistance to the users, in most cases simulation or 
production engineers, should not be underestimated, since manual definition of tens, maybe hundreds of 
variables, is not only tedious but also error-prone. The efficiency of the automated SCORE-analysis 
process is illustrated through a simple academic study and through the application on a real-world 
complex industrial improvement project. Additionally the results obtained in both these studies have 
clearly shown the advantages offered by SCORE when compared to other bottleneck detection methods 
like machine utilizations measurement and shifting bottleneck detection. Current and future work 
involves adding some advanced features, e.g. parameter leveling, sensitivity analysis and guided search 
based on user preference, to SCORE in order to further improve the efficiency of the method. 
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