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Québec, QC, G1V 0A6, CANADA

ABSTRACT

We use machine learning to generate metamodels for sawing simulation. Simulation is widely used in the
wood industry for decision making. These simulators are particular since their response for a given input is a
structured object, i.e., a basket of lumbers. We demonstrate how we use simple machine learning algorithms
(e.g., a tree) to obtain a good approximation of the simulator’s response. The generated metamodels are
guaranteed to output physically realistic baskets (i.e., there exists at least one log that can produce the
basket). We also propose to use kernel ridge regression. While having the power to exploit the structure
of a basket, it can predict previously unseen baskets. We finally evaluate the impact of possibly predicting
unrealistic baskets using ridge regression jointly with a nearest neighbor approach in the output space. All
metamodels are evaluated using standard machine learning metrics and novel metrics especially designed
for the problem.

1 INTRODUCTION

We propose to tackle a raw matter transformation problem from the wood-products industry using metamodels
generated using machine learning techniques. Felled trees are first transformed into logs and taken to a
sawmill. Each log is then processed by the mill, the log breakdown resulting in a set of lumbers we call
the basket (or the mix) of products. In the industry, it is capital to foresee the lumbers resulting from the
transformation of a log or several logs. This information is used in several decision-making processes, from
strategic choices on the design of the plant, to tactical decisions regarding the introduction of a new product.
Since sawmilling is influenced by many factors, simulation is often the preferred method to support these
decisions. Sawing simulators take three-dimensional scans of the logs and determine the lumbers resulting
from the sawing. Unfortunately, sawing simulators tend to be slow at processing large volumes of wood.

In this paper, we generate metamodels for sawing simulation using machine learning algorithms. These
metamodels are particular in that a sawing simulator response is not a single value. It is the types and
numbers of lumbers to be produced (basket of products) which is a structured object. We evaluate the fitted
metamodels using novel problem-specific metrics as well as traditional machine learning metrics. Such a
metamodel can be used to complement simulation as presented in (Hara et al. 2014) or to replace it in a
decision-making context (Barton and Meckesheimer 2006).

As a first specific contribution, we generate metamodels using the k-nearest neighbors (k-NN) (Fix
and Hodges Jr 1951), the decision tree (DT) (Breiman et al. 1996), and the random forest (RF) (Breiman
2001) algorithms. All three algorithms are different methods to determine to which known log an input
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(and possibly unknown) log resembles the most. Taking a vector that represents the characteristics of a log
as input, the fitted metamodel output is a known product basket. These techniques, although they predict a
realistic basket, do not fully exploit the simulation problem’s structure. A basket of lumbers is physically
constrained by the machines used for the transformation of an input log and by the characteristics of that
log. In the machine learning community, structured output problems are recognized to be more difficult
than their unstructured counterpart (Bakı̆r et al. 2007). For that reason, we propose using an advanced
kernel ridge regression (KRR) algorithm (Cortes et al. 2007) as a second specific contribution. The main
advantage of the method being that it has the power to predict unknown structured objects (i.e., structures
it has never encountered during the training phase). We first exploit this property. The downside of the
approach is that it might produce an unrealistic basket from a given log. That is, there might exist no
physically realistic log for which the plant can produce that basket. In order to evaluate the impact of this
last observation, we developed a second version of the algorithm we called kernel ridge regression with

nearest output (KRR-NO). This version first predicts a basket using KRR to finally choose, among known
and seen baskets, the one closest to the predicted basket.

The paper is structured as follows. We first introduce background concepts related to sawing simulation,
metamodeling, and machine learning (Section 2). Then, in Section 3 we introduce the proposed methods to
fit the metamodel of a sawing simulator using machine learning. Experiments are presented in Section 4.
We conclude in Section 5.

2 PRELIMINARY NOTIONS

This section has three parts. We first introduce sawing simulation and review important simulators from the
sawmilling industry (Section 2.1). Then, we review the background notions of metamodeling and discuss
the importance of metamodels in decision making and simulation-optimization (Section 2.2). Finally, we
describe machine learning as a method to generate metamodels (Section 2.3).

2.1 Sawmilling and Log Breakdown Simulation

We are interested in the sawmilling process which consists in determining the set of lumbers (called basket

or mix) resulting from the sawing of a log at a given sawmill (plant). The sawing process is a divergent
process with co-production (Figure 1). It is divergent in that it results in multiple lumbers (outputs) with
different characteristics, e.g., thickness and width (Figure 1). The lumbers are co-produced in that their
output is simultaneous for a single input (e.g., two 2 inches by 3, two 2 by 4, and one 2 by 6). Felled
trees are first transformed into logs. These logs are taken to a lumber mill log yard where they wait to
be processed by the sawmill. Given a log to process, the sawing equipments decide in real time how that
specific log will be transformed. A log is sawn according to physically constrained patterns determined by
the configuration of the saws as well as by the physical characteristics of the log. The curvature of a log
is, for instance, an important factor that determines its position in the machine and, as a result, influences
the set of feasible cuts and thus the outputted lumber set. North American softwood lumber products are
normalized according to NLGA (National Lumber Grades Authority) grading rules. The type of a product
is defined solely by its thickness, its width, and its length. The grade of a product is an ordering relation
of products of the same type. Even though the North American market allows for any produced lumber
to be sold, the prices vary in time. The sawmill equipment is configured to select a feasible pattern that
maximizes the basket value. The exact same log sawn by different sawmill equipment would generate a
different basket of products.

In the industry, it is capital to be able to determine efficiently the output of the transformation of the logs
for a given mill at different planning stages whether it be at a strategic (long-term decision), at a tactical

(mid-term decision), or at an operational (short-term decision) level (Genin et al. 2007). Simulation is
one of the possible and widely used techniques for such purposes (Sampson 1990, Lindner 2014). There
exist multiple sawing simulators, e.g., Autosaw, Optitek, Optsaw, Saw2003, SAWSIM, SIMSAW, and
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Figure 1: Sawing (process) a log (input) produces a basket (output) with different products types (e.g.,

thickness and width).

WoodCIM. The input of these simulators is the three-dimensional scans of the available logs. Given the
model of a sawmill, the simulator virtually processes each log and generates a basket (mix) of products
resulting from its breakdown. The basket is part of the simulator’s response. Sophisticated simulators take
into account the machines used in the mill’s design along with their configuration. They also take into
account the physical characteristics of the log and the physical constraints of the sawing process. This
leads to a log-specific sawing pattern implying an input-contextual response which includes various reports
along with the specific basket.

One example of a strategic usage of sawing simulation is sawmill design. A sawing simulator can be
used jointly with other simulators, e.g., a discrete-event simulator, to simulate the sawmill and to verify
its productivity. By using various scenarios of sawmill design (including machines specifications and
configuration) and multiple virtual log sets, it is possible, for instance, to use a simulator to make decisions
related to the “ideal” design of a mill. Sawmill design decisions are strategic-level decisions that might be
taken over a lengthy period. As a result, the simulation of multiple scenarios is run off-line and the total
running time of each simulation is not of great importance. Examples of such researches are found in the
work of (Lundahl 2007) (with Saw2003), (Verret 1997, Tong and Zhang 2006, Liu et al. 2007, Goulet
2007) (with Optitek), (Orbay 1984) (with SAWSIM).

This off-line use is not the only context in which we might require sawing simulation. It happens that
a sawmill receives a demand for specific products which are non-standard. Choosing the configuration or
the log(s) to process is a difficult task in a co-production context. Many products are generated at once
and a small modification might influence the overall production and reduce the profit. This is a case of
tactical planning where sawing simulation can help in evaluating multiple scenarios with different sets of
logs and configurations (Wery et al. 2014). Finally, for a company owning many sawmills, predicting log
breakdown also improves deciding which logs should be sent to which sawmills.

2.2 Metamodeling

Actually, large companies around the world can handle a volume of more than 5 millions m3 of wood a
year (M. and Friberg 2007). Even when considering a single sawmill, the volume of wood processed per
year can easily be close to a million of m3. Simulation of the sawing of the logs involved in a tactical
(mid-term) or operational (short-term) decision-making context has tremendous computational costs. Even
strategic planning with such a large volume of wood to handle poses computational issues. Besides reducing
computational costs, metamodels are used to get insights on a phenomenon at a low cost (design space
exploration), to enhance a problem formulation, and as optimization support (Wang and Shan 2007). We
now formalize the contexts in which simulation can be used as decision aid. To do so, we discuss the
framework of simulation-optimization and describe the concept of metamodel (Barton and Meckesheimer
2006, Wang and Shan 2007, Banks et al. 2010).

In general, simulators can be considered as a black-box function f from an input space Θ to a response
space Y (Banks et al. 2010). Suppose a discrete-event simulator (Barton and Meckesheimer 2006). We
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further suppose that the simulator response is a real number representing the expected value of some key
performance indicator (KPI) or objective (Barton and Meckesheimer 2006). The goal of the simulation-
optimization problem is to find the design parameters θ ∈ Θ that minimize or maximize f(θ) where the
response function f(θ) form is not known (Barton and Meckesheimer 2006). The goal of a metamodel,
which is a simpler mathematical relationship, is to approximate f : Θ → Y (Banks et al. 2010).

Metamodels for optimization are either global or local (Barton and Meckesheimer 2006). A global

metamodel is fitted once whereas a local metamodel is fitted as the optimization progresses. Regression
analysis and Kriging interpolation (Van Beers and Kleijnen 2004, Kleijnen 2009), and neural networks (Barton
and Meckesheimer 2006) are among the widely used metamodeling techniques. One of the recent applications
of metamodels for KPIs predictions is found in the work of (Hara et al. 2014) in (multi-)agent-based
simulation (Macal and North 2009). The authors demonstrate how prediction-based metamodels (here
Kriging interpolation) can be used to infer a KPI value by using the design parameters θ ∈ Θ along with
the results of a partial simulation as input. This additional information proved to be useful at improving
the accuracy of the prediction on the KPI. We find, among other recently used metamodeling techniques,
Bayesian networks (Poropudas et al. 2011) and least-square regression (Salemi et al. 2012).

Simulators, however, do not only output a single value response. The principal output of the sawing
simulators described in Section 2.1 is the basket which is a structured object. Structured object can be
used, just as other responses, as part of an optimization (or decision) process, e.g., sawing simulators are
used in discrete-event simulators (Orbay 1984, Verret 1997, Lundahl 2007, Tong and Zhang 2006, Liu
et al. 2007, Goulet 2007). Just as discrete-event simulators, physical processes simulators require lengthy
runtime to virtually reproduce the process to simulate. The machine learning-based metamodels we present
in this paper are meant for structured predictions, e.g., they quickly approximate the simulator’s structured
response which is, in our context, a basket of products.

2.3 Machine Learning Concepts and Methodology

Machine learning algorithms aim at approximating a phenomenon from data observation (Bakı̆r et al. 2007).
More precisely, in the supervised learning setting, the goal is to learn a predictor h : X → Y that accurately
predicts the output y ∈ Y of an input x ∈ X. In our problem, this corresponds to a prediction of the output
basket y given a log x as input. To do so, the learner (or learning algorithm) has access to a training set of
m examples S = {(x1,y1), ...,(xm,ym)} ∈ (X×Y)m, where xi = [xi1,xi2, ...,xin] is the feature representation
(or feature vector) of the example i, and yi is the corresponding output. We assume the examples to be
drawn iid (independently and identically distributed) from an unknown distribution D, meaning they are
generated using the same distribution (identically distributed) and the occurrence of any example does not
affect the probability of encountering any other example (independently distributed).

The goal of the learning algorithm is to find a predictor h, among all predictors in H, achieving the
lowest expected loss (minimum number of errors):

r(h) = E
(x,y)∼D

l(h(x),y), (1)

where l : Y×Y → R defines the loss incurred when the prediction h(x) differs from the observed value y.
Since the distribution D generating the examples is unknown, the expected loss can be estimated with the
empirical loss remp(h) on the training set S:

remp(h) =
1

m

m

∑
i=1

l(h(xi),yi). (2)

However, a learning algorithm that only minimizes the empirical loss can result in over-fitting. Over-
fitting occurs when the predictor approximates the training set so perfectly and in such a complex fashion
that generalization to new examples is no longer possible. Over-fitted predictors usually have a poor
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performance on new data. For that reason, multiple learning algorithms minimize a regularized empirical
loss that compromises between the performance of the predictor on the training data and its complexity.
Moreover, the performances of a predictor are evaluated on an unseen testing set to insure it can accurately
predict the output value of new examples.

Since the output space Y is arbitrary, supervised learning can be applied to a wide variety of tasks,
namely classification, regression and structured prediction. The output y is a discrete value (class) of a
finite set for classification tasks, a real value for regression tasks, and a structure like a sequence, a list or
a tree for structured output problems. Thereby, the prediction of the basket y given a log x can be seen
as a structured prediction problem, where the output basket is represented as a list of products. However,
structured output algorithms are often computationally more expensive than classification algorithms. To
overcome this problem, we can reduce the basket prediction problem to a classification task, where each
class corresponds to a basket in the training set. In this setting, the predictor h would only be able to output
one of the previously seen baskets. Note that this could be problematic since the correct output of a new
log might not be in S. For these reasons, in Section 3, we present both classification and structured output
algorithms for metamodels generation in sawmilling simulation.

3 MACHINE LEARNING ALGORITHMS FOR METAMODELS GENERATION

In this section, we describe four machine learning algorithms that were used to train (fit) a metamodel
for sawmill simulation. Sections 3.1 to 3.3 respectively describe the use of nearest neighbors and tree-
based classification algorithms. Section 3.4 describes the kernel ridge regression algorithm for structured
prediction. We describe each algorithm in terms of training phase and prediction phase. The training
phase consists in fitting the metamodel. The prediction phase consists in approximating the response of
the simulator on a given input.

3.1 K-Nearest Neighbors Classifier

The k-nearest neighbors (k-NN) algorithm (Fix and Hodges Jr 1951) predicts the output class of a new
example by averaging the vote of the k closest examples in the training set. The training phase consists of
storing the training examples in a search-efficient data structure. Thereby, the k closest training examples
of a new example can be found using a distance function like the Euclidean distance over their feature
vectors, i.e., over the known inputs of the training set. The prediction of the output class y of an unknown
example x is often done by taking the majority class among the k nearest examples found. An alternative
approach is to weight each of the k nearest examples according to their distance from x.

3.2 Decision Tree Classifier

The decision tree (DT) algorithm (Breiman et al. 1996) learns a predictor in the form of a tree structure.
This tree consists of decision nodes and leaf nodes. A decision node contains a branching rule based on
a single feature ( f eature ≤ value) which decides if an example x should take the left or the right path of
the tree. Each time an example takes the left path, it respects the rule. Otherwise it does not. A leaf node

contains the value to predict when x reaches it.
In the training phase, the tree is constructed in a greedy fashion. The first branching rule is the one that

gives the best partitioning of the training examples according to some metric. One of the most commonly
used metrics is the gini impurity that computes the probability of an example to be misclassified given
the branching rule. Next, the training examples take the left path of the tree if they respect the chosen
rule, and the right path otherwise. A new decision node is then created on each path by using only the
examples reaching that node. This greedy process stops, thus creating a leaf node, when all the examples
reaching a node belong to the same class, or as soon as a specified condition to avoid overfitting is met,
e.g., maximum depth, maximum number of nodes. Finally, the value of a leaf node is set to the majority
class of the training examples reaching it.
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In the testing phase, the output class of an unseen example x is predicted by passing this example
through the tree until a leaf is reached. The value of the reached leaf is predicted.

3.3 Random Forest Classifier

The random forest (RF) algorithm (Breiman 2001) is similar to the DT algorithm, but it creates k trees
instead of only one. In the training phase, k new datasets of m examples are created by sub-sampling the
training examples uniformly with replacement. A tree is then learned on each of the k datasets. In contrast
with DT , only a random subset of features is used to select the branching rule of each decision node. The
output class y of an unseen example x can be predicted by passing the example through each tree and
returning the most frequently predicted class.

3.4 Structured Kernel Ridge Regression

Given an input x, the structured kernel ridge regression algorithm predicts a vectorial representation of the
corresponding output y, and then transforms the predicted vector into a structure of the output space Y.
More formally, let φX : X → HX be a function that maps an input x into a high-dimensional vector space
HX, and let φY : Y → HY be a function that maps an output y into a high-dimensional vector space HY.
The goal of the learning algorithm is to find a linear operator W that transforms a vector of HX into a
vector of HY. Given the predicted vector WφX(x) ∈ HY, the corresponding output in Y is predicted by
finding the closest y ∈ Y once mapped into the HY space:

h(x) = argmin
y∈Y

||φY(y)−WφX(x)||. (3)

For the log breakdown problem, WφX(x) ∈ R
p represents the frequency of each of the p products in the

basket when the input log x is sent to a sawmill. However, since the predicted product counts are regression
values, WφX(x) is an unrealistic basket. The conversion of WφX(x) into the Y space is called the pre-image
problem and is often computationally expensive. We first describe how to learn W and then show how we
solve the pre-image problem in our case.

Let X and Y be the input and output matrix respectively, where Xi = φX(xi) and Yi = φY(yi). By
minimizing a regularized l2 loss, (Cortes et al. 2007) show that the predictor W is obtained in the following
way:

W = Y(X ·XT +λ I)−1XT , (4)

where λ is a parameter controlling the penalty on the complexity of the predictor, Im×m is the identity
matrix, ()−1 is the inverse matrix function, and ()T is the transposed function. Note however that there is
no need to consider the vectors φX(x) and φY(y) (which can be of infinite dimensions), but only scalar
products of the form φX(x) ·φX(x′) and φY(y) ·φY(y′). In many cases, there exists a function k : X×X→ R

that emulates the scalar product φX(x) ·φX(x′) by taking as input any x and x′, and returning a real value
representing how similar x and x′ are in HX. We call such function a kernel. Hence, we need two kernels,
to emulate respectively the scalar product HX and HY. In our experiments, we considered the simplest
kernel for the output by using HY = Y, but an output kernel that encodes specific properties of the sawmill
basket production problem could also be designed. For the input kernel, we used the radial basis function

(RBF) (Bishop 2006, Ben-Hur and Weston 2010). The vector WφX(x) can now be predicted with:

WφX(x) = Y(K+λ I)−1kT
x , (5)

where K is an m×m matrix with Ki j = k(xi,x j), and kx = [k(x1,x), ...,k(xm,x)].
Once the vector WφX(x) is predicted, the corresponding output h(x) can be predicted by finding the

basket, over all possible ones, that is the closest to WφX(x). This could easily be done by rounding the
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values of WφX(x) to the nearest integer. However, this basket would not be guaranteed to be feasible since
the volume of the products could be higher than the volume of the input log. A second version of the
algorithm, we call ridge regression with nearest output (KRR-NO), performs a search in the baskets of the
training set to find the nearest.

4 EXPERIMENTS: FITTING MACHINE LEARNING-GENERATED METAMODELS

One goal of the experiment is to compare the sawing metamodels generated using various machine learning
algorithms and to illustrate, along the way, the proposed methodology. We describe, in the next two sections,
the data we used to train (fit) the metamodels and problem-specific performance measures. The results
are presented and discussed in Section 4.3. All algorithms were implemented in Python. All experiments
were run using the help of the scikit-learn module (Pedregosa et al. 2011).

4.1 Data

Even if the complete scan of each log could be used as input for the metamodel, the input space can be
reduced by identifying the important characteristics of the logs. We chose to use the volume of a log (dm3),
its length (m), its wide-end diameter (cm), its narrow-end diameter (cm), its curvature (cm/m), and its
shrinking (cm/m) (a measure of how fast the log shrinks from its wide end to its narrow end) leading to
an input vector x ∈ R

n with n = 6. Given a log’s input, the output is the basket of products defined as a
vector y ∈ N

p. The length of vector y depends on the total number of products that can be produced by
the sawmill of interest. As mentioned in Section 2.1, the products are standardized according to their type
and their grade. Different factors influence the grade including the presence of nodes and singularities,
and/or the imperfection of the cut. Nodes and singularities naturally occur in trees. Imperfection of a cut
might arise when the lumber is located close to the periphery of the log. We have, in our input vector, few
characteristics that could help the machine learning algorithm to identify nodes and singularities. We thus
limit ourselves to predicting the type of the products.

The baskets were generated from the three-dimensional scans of real logs using the Optitek sawing
simulator (FPInnovations 2014). The dataset we use has 1207 logs generated from 299 trunks with 6 input
characteristics and 19 plausible product types.

4.2 Performance Evaluation

The zero-one score and the Hamming distance are two conventional machine learning performance measures
for vector outputs. The zero-one score sz is a binary score rewarding only 100% correct predictions only (Bakı̆r
et al. 2007). The Hamming distance dH is a finer metric that penalizes the algorithm for in-basket incorrect
predictions, i.e., product by product (Bakı̆r et al. 2007). The Hamming distance dH is normalized on the
size of the input vector leading to a penalty between 0 and 1.

Definition 1 (Zero-one score) Given a prediction ŷ ∈ N
p and an output y ∈ N

p, the zero-one score sz gives
1 if ŷ = y and 0 otherwise:

sz(ŷ,y) =

{

1 ŷ = y;

0 ŷ 6= y.
(6)

Higher is better. ⊳

Definition 2 (Hamming distance) Given a prediction ŷ ∈ N
p and an output y ∈ N

p, the Hamming distance

dH is the sum of the prediction errors on each single product j:

dH(ŷ,y) =
1

p

p

∑
j=1

isNotEqual(ŷ j,y j) (7)

where isNotEqual(a,b) returns 1 if a 6= b and 0 otherwise. Lower is better. ⊳
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In addition to these classic performance measures, we propose a novel version of the Hamming distance

we called the augmented Hamming distance dH+
. The augmented Hamming distance compares two vectors

of products (baskets) product by product. For each product, the distance gives a score of 0, if the predictor
has correctly predicted the number of this product in the outputted basket. Otherwise, it gives a strictly
positive penalty that is proportional to the prediction error with respect to the true output. Finally, we average

all these scores to obtain the distance dH+
. We also propose two scores specific to sawing simulation.

We call the first the production ratio spro and the second the prediction ratio spre . Here are the precise
definitions of these three performance measures.

Definition 3 (Augmented Hamming distance) Given a prediction ŷ ∈ N
p and an output y ∈ N

p, the

augmented Hamming distance dH+
is the sum of the ratios of the minimum between ŷ j and y j over the

maximum between ŷ j and y j:

dH+
(ŷ,y) =

1

p

p

∑
j=1

(1− f (ŷ j,y j)) (8)

where

f (ŷ j,y j) =

{

1 if ŷ j = y j;
min(ŷ j,y j)
max(ŷ j,y j)

otherwise.
(9)

Lower is better. ⊳

Definition 4 (Production) Let ε be a small positive value. Given ŷ ∈ N
p and y ∈ N

p, the production ratio

spro is the average bounded ratio of the real production on the predicted production:

spro(ŷ,y) =
1

p

p

∑
j=1

min

(

1,
max(y j,ε)

max(ŷ j,ε)

)

. (10)

It corresponds to the percentage of predicted products that are effectively produced. Higher is better. ⊳

Definition 5 (Prediction) Let ε be a small positive value. Given ŷ ∈ N
p and y ∈ N

p, the prediction ratio

spre is the average bounded ratio of the predicted production on the real production:

spre(ŷ,y) =
1

p

p

∑
j=1

min

(

1,
max(ŷ j,ε)

max(y j,ε)

)

. (11)

It corresponds to the percentage of the real production that is faithfully predicted. Higher is better. ⊳

Example 1 Figure 2 plots the spre value against the spro value for a fictive problem on an example (x,y).
We compare the prediction of 11 fictive metamodels (predictors). An ideal metamodel h is one such that
spro(h(x),y) = spre(h(x),y) = 1 for all x. A pessimistic metamodel h predicts h(x) = 0 for all x. It obtains
spro(h(x),y) = 1 and spre(h(x),y) = 0. An optimistic metamodel h is one for which h(x) = ∞ for all x.
According to Pareto dominance, a metamodel is non-dominated if there is no other metamodel that is at
least equal on all criteria while being strictly better on at least one criteria. The dominance region of each
non-dominated metamodel (h1, h2, and h3) is filled in blue on the figure. ⊳

According to Pareto optimality theory, non-dominated metamodels are incomparable (Talbi 2009).
However, in our specific case, the two criteria are commensurable. This means that we can compare them.
We propose as our last metric of performance, the area of the dominance region to compare metamodels
on a single example (x,y).

Definition 6 (Production and prediction area) Given a prediction ŷ ∈ N
p and an output y ∈ N

p, the area

of the dominance region is:

spro×pre(ŷ,y) = spro(ŷ,y)spre(ŷ,y). (12)

Higher is better. ⊳
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Figure 2: An example of spre vs spro plot for a fictive example (x,y) for 11 fictive metamodels; non-dominated

metamodels are labeled and their dominance region is filled in blue.

Example 2 The areas of the dominance region of the non dominated metamodels of example 1 are:
spro×pre(h1(x),y) = .36, spro×pre(h2(x),y) = .35, spro×pre(h3(x),y) = .09. ⊳

We use the expected spro×pre value over the sample as our principal quality indicator of a metamodel h.
There is a strong parallel to be made between the production ratio, the prediction ratio, and the production
and prediction area metrics and the receiver operating characteristic (Fawcett 2004). The former is however
closer to our specific problem. The motivation for the proposed metrics can be found in the need, for a
wood-industry company, to foresee its production and to evaluate that prediction both in terms of over
and under-estimation of the real production. While enabling the proportional comparison of the prediction
of the metamodel to the real response of the simulator, the augmented Hamming distance does not give
information on the behavior of the metamodel. That is, we do not know whether the metamodel has a
tendency to overestimate or to underestimate the production. These insights are given by the prediction
and the production ratios.

The baskets are usually sparse. They contain a small number of products. To avoid overestimating the
quality of a prediction, it is convenient to filter the outputs prior to evaluation as follows.

Definition 7 (Filtered prediction vector) Let k1,k2, . . . ,kp′ be the index such that yi 6= 0 or ŷi 6= 0. The
filtered vector y′ (resp. ŷ′) is such that y′ = [yk1

, . . . ,ykp′
] (resp. ŷ′ = [ŷk1

, . . . , ŷkp′
]). ⊳

4.3 Results and Discussion

Table 1 presents the results of the generated metamodels for various scores (higher is better) on the two
datasets described in Section 4.1. To have only metrics for which higher is better in our comparison table,
we had considered 1−d instead of d itself for both the Hamming distance (d = dH) and the augmented one

(d = dH+
). For each metric, we highlight the single best result in bold. The first dataset does not contain

the examples that produce an empty basket. The second one contains all the examples. The former dataset
is harder than the latter. The experiment is conducted in three phases. Each dataset is partitioned into a
training set (60% of the data) and a test set (40% of the data). The first phase consists in finding the best
hyper-parameters for each discussed machine learning algorithm, i.e., DT , RF, KRR, and KRR-NO, and
k-NN. This is done by using a grid search cross-validation procedure on the training set. We use spro×pre

as our main performance criterion. Once the best parameters are found, the second phase consists in fitting
the metamodel using the training set. Finally, in the third phase, we use the test set to assess the quality of
the metamodel on unseen logs. The three phases are performed 10 times with different random partitioning
of the datasets into a training set and a test set. Each score is computed on filtered baskets (see Def. 7)
to avoid overestimating the performance of the metamodels. Without filtering, our fitted metamodels have
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a spro×pre score of more than 95%. As a basis for comparison, we added a metamodel that predicts the
average basket seen in the training set (MEAN).

Table 1: Average scores on 10 test set runs (standard deviation); filtered outputs (see Def. 7).

Without empty baskets With empty baskets

Score MEAN DT RF KRR KRR-NO k-NN MEAN DT RF KRR KRR-NO k-NN

sz .0722
(.0119)

.5834
(.0221)

.6088
(.0251)

.5376
(.0181)

.5519
(.0117)

.56
(.0161)

.1905
(.0159)

.7006
(.0172)

.7265
(.0154)

.6841
(.0177)

.6919
(.0142)

.6979
(.0171)

1−dH .1298
(.014)

.6051
(.0235)

.6331
(.0225)

.5809
(.0184)

.5917
(.0142)

.5874
(.0175)

.2102
(.0165)

.7159
(.0174)

.7398
(.0148)

.7077
(.0164)

.7138
(.014)

.7137
(.0172)

1−dH+ .2037
(.013)

.7172
(.0178)

.7423
(.0173)

.7046
(.0124)

.7118
(.0095)

.6989
(.0134)

.2428
(.0163)

.7839
(.0153)

.8044
(.0116)

.783
(.0131)

.786
(.0128)

.7813
(.0143)

spre .537
(.0089)

.841
(.014)

.8538
(.0119)

.8402
(.0094)

.8432
(.0057)

.7982
(.0081)

.6332
(.0077)

.8894
(.0146)

.8945
(.0095)

.8885
(.0075)

.8904
(.0068)

.8635
(.006)

spro .6666
(.0105)

.8762
(.0156)

.8886
(.0163)

.8644
(.0129)

.8686
(.0077)

.9007
(.0092)

.6096
(.0151)

.8944
(.0191)

.9099
(.0128)

.8946
(.0133)

.8957
(.0135)

.9178
(.0134)

spro×pre .3109
(.0101)

.7571
(.0155)

.7779
(.0147)

.7426
(.0108)

.7511
(.0074)

.7344
(.0106)

.2964
(.0169)

.8056
(.014)

.8256
(.0099)

.8044
(.0127)

.8077
(.0125)

.8012
(.0125)

The metamodels generated using all the presented machine learning algorithms reach at least 80%
accuracy with respect to the spro×pre score on the dataset with empty baskets. This is confirmed by low
Hamming distance and augmented Hamming distance values. The algorithms are also good at predicting
the entire basket (see the sz score). A sz of 1 would mean that 100% of the unseen baskets are faithfully
predicted. A perfect prediction in 70% of the cases is a good performance considering the fairly low number
of features (six) considered in the input vector of the logs compared to the size of a three-dimensional
scan in number of points. The standard deviation is low in all cases and the tendency on both the dataset
with and without empty baskets is similar. We can see, by comparing the performance of the metamodels
generated by the KRR algorithm to the one of the metamodels generated by the KRR-NO algorithm that
the impact of possibly predicting unrealistic basket is fairly low. All metamodels generated using machine
learning techniques significantly outperform the MEAN procedure.

5 CONCLUSION

We generated metamodels for sawing simulation using machine learning algorithms. We demonstrated
how simple machine learning algorithms like k-nearest neighbors (k-NN) and decision tree (DT) could
be used to fit metamodels to output not a single value, but a structured response. Then, we moved on
to a more powerful and yet simple metamodel scheme generated by a random forest (RF) algorithm.
All the metamodels based on these algorithms have the advantage of simplicity. Furthermore, they are
guaranteed to produce a physically realistic basket of products meaning that the basket is the result of the
transformation of at least one realistic input log. We proposed, as a final fitting method, a kernel ridge
regression (KRR) approach. Our KRR algorithm can be used to exploit the structure of the response of the
simulator to predict unseen logs, a feature we will be fully able to exploit by developing problem-specific
kernels (especially for the output space). Finally, we developed useful problem-specific metrics along with
a general one to evaluate our metamodels: the prediction ratio, the production ratio, and the augmented
Hamming distance. The prediction and the production ratios can be aggregated as a single metric we called
the production and prediction area. As a future work, we propose to tackle the converse problem using
machine learning-generated metamodels. That is, to approximate the inverse of the black-box function of
a sawmill simulator which would help in a context where one needs to determine which characteristics
of a log are needed to output a given basket. The metamodels we generated using machine learning
techniques achieved good performances on our datasets using only the six industrial standard features for
a log description which turns out to be an impressive result considering the usual input size in sawing
simulation involving a three-dimensional log scan and a detailed model of the plant.
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FRÉDÉRIK PARADIS is a computer science student at the Department of Computer Science and Software
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