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ABSTRACT 

In this paper, we discuss an optimization problem for mixed-model assembly lines in the aerospace 

industry. We minimize the total inventory and labor costs of an assembly line assuming a given job 

(airplane) sequence. A variable neighborhood search (VNS) approach is used to determine an appropriate 

number of workers for each station and processing times for jobs on stations. We are interested in 

executing the resulting plans in a stochastic simulation model to compute expected objective values in the 

face of uncertainty. An aggregated simulation model of the assembly line is described. Results of 

simulation experiments are presented that demonstrate that the proposed simulation-based approach leads 

to improved planning decisions. 

1 INTRODUCTION 

The aerospace industry is an example for large-scale assembly manufacturing that is characterized by a 

labor intensive low-volume production at a high customization level. Production planning and scheduling 

in aircraft manufacturing is mainly performed by human planners due to the high complexity, the very 

likely disturbances, and a large amount of customization. Optimization methods are only rarely used (cf. 

Heike et al. 2001 and Ríos et al. 2012). To fulfill a diverse customer demand, aircraft manufacturers have 

to be able to offer a wide range of products and produce them cost-efficiently. Consequently, aerospace 

companies develop different models within one airplane class. Mixed-model assembly lines are common 

where different product models within one class are assembled at the same line requiring different labor 

utilization during assembly. 

In this paper, we discuss a planning problem with adjustments of processing times and number of 

workers assigned to a station of the assembly line. This class of problems is considered in the production 

planning framework of mixed-model assembly lines (cf. Boysen et al. 2009 for a recent review). A model 

problem for an airplane assembly line is researched. We assume that the jobs, i.e. the airplanes, are in a 

given sequence. While planning problems for mixed-model assembly lines in the automotive industry are 

discussed in the literature, this is not the case for aircraft manufacturing with the rare exception of (Heike 

et al. 2001). For the sake of completeness, we sketch a VNS-based solution approach for a deterministic 

planning problem similar to those discussed by Heike et al. (2001).  

However, the main contribution of this paper is the design and the implementation of a simulation 

environment that allows for assessing plans under uncertainty by executing them. Such an environment is 

highly desirable since the planning model provides only a rough representation of the underlying 

manufacturing system and process. It is likely that disruptions occur due to inaccurate workload 
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estimates, missing components, and missing resources. Therefore, the planning assumptions might be 

incorrect. Executing the plans using simulation allows for a more realistic assessment of the quality of the 

plans and therefore for better planning decisions. 

The paper is organized as follows. We describe the planning problem in Section 2. This includes a 

discussion of plan execution under uncertainty. In addition, related work is reviewed in this section. The 

simulation environment is discussed in Section 3. The results of simulation experiments are presented and 

analyzed in Section 4.  

2 PROBLEM SETTING 

2.1 Planning Problem and Approach 

We consider a flow line that contains m  stations. Such a layout is quite common in aircraft 

manufacturing. The layout of such a flow line is shown in Figure 1. 

 

 

Figure 1: Layout of the flow line. 

A set of n  jobs  nJ ,,1  in a fixed job sequence is processed on the stations of the flow line. Each job 

i  consists of m  sets of tasks according to the number of stations that is also m . Such a set of tasks is 

called a work package. Station j  of the assembly line has to process work package j  of job i . The work 

load caused by work package j  of i  is ijL . Each work package can only be assigned to exactly one 

station. Station j  employs a crew of jh  workers. Each worker of this crew has ijr  days to work on job i . 

The start time for job i at station j  is ijs . It determines the completion time ijf . For the sake of 

simplicity, load and unload times are not modeled. Buffer places are assigned to each station where we 

have a fixed value  2,1,0b  for the number of buffer places at each station. Overtime hours are 

measured by the time to complete all work in excess of respective station’s right border. We do not 

restrict the overtime hours. A work overload at a specific station leading to overtime has no impact on 

succeeding stations. Thus, we assume that the workload is compensated by additional shifts. 

In addition to labor costs, inventory holding costs have to be taken into account. We differentiate 

between inventory within stations and between stations. We are interested in determining appropriate 

crew sizes, processing times, and start dates for each job and station such that the sum of the labor costs 

and inventory holding costs is minimized. There is a tradeoff between labor costs and inventory holding 

costs. Low labor costs increase the processing times. This results in a larger inventory.  

Next, we present a non-linear integer programming formulation for the researched problem. In the 

remainder of this paper, the notation  0,max: xx   is applied. We use the following sets and indices: 

 

ni ,,1  : jobs 

mj ,,1  : stations. 

 

The following decision variables are considered: 

ijs  : start date of job i on station j  

ijr  : planned processing time of job i  on station j  

jh  : number of workers assigned to station j  

2149



Biele and Mönch 
 

ijf  : completion time of job i  on station j . 

 

The model is based on the following parameters: 

ijL  : workload of job i on station j  

A  : regular hourly wage rate per worker 

B  : overtime hourly wage rate per worker 

jD  :  inventory holding cost per day at the station j  

Y  : regular hours available per day and worker 

lkE  : inventory holding cost per day between station l  and k  

b  : number of buffer places assigned to a single station,  2,1,0b . 
 

The model can be formulated as follows 

min  21 CC  , (1) 

where  

   






  m

j

n

i
jijij

n

i
jij hrYLBhrAYC

1 11

1
, 

(2) 

          


    


  n

i
ijji

m

j
jj

m

j

n

i

n

i
ijijjjjijiij fsEsfDhrssYAC

1

1,

1

1

1,

1 2 1

,1,12
 

(3) 

subject to  

,1,,1,,,1,1,   mjnisrs jiijij   (4) 

,,,1,,,2,,1,1 mjnisrs ijjiji     (5) 

,,,1,,,1, mjnirsf ijijij    (6) 

,,,2,,,2,1,,1 mjbniss jbiji     (7) 

mjnifshr ijijjij ,,1,,,10ȃ,,,   . (8) 

 

The main decision variables are ,, jij hr  and ijs . The cost function (1) is defined as the sum of total labor 

and inventory costs. The 1C  part of the objective is nonlinear. It contains the costs for the regular working 

hours whereas the second term accounts for the overtime hours exceeding regular hours. Note that 1C  

does not include ijs  decision variables. The first term of the 2C  expression (3) accounts for idle work 

between two consecutive jobs on the same station. The second term in expression (3) deals with inventory 

holding cost per station and per day, while the third term models inventory holding costs between two 

adjacent stations accounting for idle work-in-process (WIP) inventory. In case of b=0, only inventory 

costs at the stations appear since there is no buffer that allows for inventory between stations. Note that 

2C  is linear in ijs  if the values of jh  and ijr  are already chosen. The constraints (4) ensure that a job i  

can only start at the downstream station 1j  if the processing is completed at the station j . The inter 

arrival time of two successive jobs at a given station is modeled by constraints (5). Equations (6) express 

the derived decision variables. The possible buffer places are modeled by constraints (7). The constraints 

(8) ensure that the decision variables are integer and non-negative.  

Once the values of the decision variables jh  and ijr are selected, the remaining optimization problem 

is an integer linear program (ILP) with objective 2C  and constraints (4)-(8). The non-linear optimization 

problem with objective 1C  is solved in a first phase (FP). An appropriate number of workers for each 

station and processing times for jobs on stations are determined. A VNS scheme is applied to deal with 
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the FP. VNS is a fast local search-based metaheuristic (cf. Hansen and Mladenovic 2001). We apply 

neighborhood structures that change the entries of the vector  jhh :  and matrix  ijrR : . However, due 

to space limitations we do not present the algorithmic details of the FP. Let  ** , jij hr  be an optimal solution 

obtained in the FP. These values are used as input for the ILP that is solved in a second phase (SP) to 

determine optimal start dates *
ijs . 

2.2 Plan Execution under Uncertainty 

The planning problem described in Subsection 2.1 is based on deterministic data. In a real-world 

assembly line, however, there are various sources of uncertainty. First of all, the processing time at the 

stations is highly uncertain because of a changing performance of workers, changes in the material and 

product characteristics, as well as a changing failure rate due to complex manual processes. The planned 

processing time might be exceeded. In addition, delays caused by logistics problems can postpone the 

planned start dates of jobs at stations. As a result, jobs can move to a successor station with a certain 

amount of uncompleted work. This again, might lead to increasing processing times on the successor 

station. Uncertain processing times will result in blockage and starvation of the assembly line. 

We consider an asynchronous un-paced flow line. It allows for a station-specific processing time that 

depends on the workload. It is possible that a job on the successor station 1j  is not completed by that 

time and that additional buffers are not available. Thus, station j  is blocked. Additional waiting time is 

the result. Blocked stations appear frequently in aircraft manufacturing flow lines (cf. Ríos et al. 2012, 

Tiacci 2015b). A station is blocked if the current job is not completed or the already completed job cannot 

be transferred to a downstream station. Similarly, station j  can be starved after completing its job while 

waiting for a job from the predecessor station 1j . 

Buffers can be placed in an assembly line to prevent starvation and blockage of stations. They are used 

to temporarily store jobs between stations. They are limited in size and capacity. Buffers help to 

compensate the variations in processing time, to increase throughput, and to reduce waiting time. 

Independently from the buffers, there are two strategies to deal with processing time variations. The 

first strategy is based on the idea that each job is finished at a station without taking the planned 

processing time restriction into account. This strategy is called stop and fix. The second strategy ensures a 

given processing time that is obtained from the planned processing time by multiplying it with a safety 

factor 1s . In case of a disruption, the job is moved to the successor station after exceeding the possible 

processing time. In this situation, the amount of uncompleted work from ijL  has to be transferred to one of 

the successive stations resulting in traveling work iTW . Note that the stop and fix strategy is a special 

case of the traveling work strategy by choosing a very big value for the safety factor s . 

Jobs cannot start earlier with processing on a station than the planned start time. This leads to idle 

time of the job. The notion of flow times is introduced next. The flow time ijw of job i  on station j  is the 

time span that the job stays at the station. It consists of the realized processing time, waiting time because 

of logistics delays, and idle time because the job has to wait until it can start to process on the consecutive 

station. 

We need to modify the objective when we are interested in assessing the performance of a plan 

executed in a stochastic environment. Therefore, we consider realizations of the processing times, start 

dates, and completion times of the jobs on the stations. We use the notation X̂  if we refer to a concrete 

realization of a planned value X . A plan is executed within a certain horizon T . The horizon is chosen in 

such a way that we have nn   for the number of jobs completed within T . End-of-horizon effects are 

reduced by this approach. Let mm   be the last station where job 1n  is processed. We determine a 

modified workload by the following expression: 

2151



Biele and Mönch 
 

            ijijjijij rrYhLL  ˆ:
~

.        (9) 

We obtain for the realized cost 321
ˆˆˆ:ˆ CCCC   where we have 

   


 


  m

j

n

i
jijij

n

i
jij hrYLBhrAYC

1 11

1
ˆ

~
ˆ:ˆ , 

(10) 

          

 


    


  n

i
ijji

m

j
jj

m

j

n

i

n

i
ijijjjjijiij fsEsfDhrssYAC

1

1,

1

1

1,

1 2 1

,1,12
ˆˆˆˆˆˆˆˆ , 

(11) 




 n

i
i BLBLTWAC

1

213

~
:ˆ , 

(12) 

     


 


  m

j
jjnjnjnjjnjnjjn

hrssYAhrYLBhrAYBL
1

,1,1,1,11
ˆˆˆˆ

~
ˆ: + 

 

    
 






  




  m

mj
njnjnjn

m

j
jj

m

j
jnjnj TWALYAfsEfsD

1

1,1,11,1

1

2

1,

1
,1,1

~~ˆˆˆˆ , 
(13) 

 
 

 n

ni

m

j
ijLYABL

2 1

2

~
: . 

(14) 

Note that 3Ĉ  is a penalty term. The quantity A
~

 is a scaling factor. The term 1BL  collects the cost, the 

remaining workload, and the traveling work for job 1n , while 2BL  represents the workload for the 

jobs nn ,,1
. Independent simulation replications are performed to calculate the sample mean as an 

unbiased estimator for the expected value of the total costs. 

2.3 Discussion of Related Work 

We discuss related work with respect to simulating mixed-model assembly lines and with respect to 

uncertainty in planning formulations for mixed-model assembly lines. Crew assignment, operation 

effectiveness, and cycle time constraints in aircraft assembly operations are discussed by Scott (1994). 

However, logistics processes and disruptions in manufacturing processes are not studied. A simulation 

model of an aircraft assembly line based on the simulation software Quest is presented by Lu et al. 

(2012). A specific simulator for the throughput determination in mixed-model assembly lines is recently 

proposed by Tiacci (2012). However, it seems that this simulator is not able to cope with the complexity 

found in low-volume assembly lines in aircraft manufacturing. Ziarnetzky et al. (2014) describe major 

building blocks of simulation models for low-volume mixed-model assembly lines in the aerospace 

industry. The simulation model discussed in the present paper is based on these building blocks. 

Bukchin (1998) proposes several measures for throughput calculation in a mixed-model assembly line 

where the arrival sequence of items is randomly distributed. The results obtained by the measures are 

compared with those obtained from simulations. Measures based on the probability of a station to become 

a bottleneck yield results that are correlated with results from simulation. However, uncertain arrival 

times of the jobs are not important in our setting. A mixed-model assembly line balancing problem with 

stochastic task times and parallel workstations is considered in (Tiacci 2015a). A genetic algorithm is 

coupled with a discrete-event simulation tool to assess the performance of chromosomes. The similar 

approach is taken in (Tiacci 2015b) where balancing and buffer allocation decisions are made 

simultaneously. But our problem is different from the ones in (Tiacci 2015a, 2015b). It is based on a 

different objective function and is more aggregated. A robust approach is taken by Xu and Xiao (2009) to 
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hedge against the risk of poor system performance in bad scenarios in a mixed-model assembly line with 

significant uncertainty. However, in our setting it is unclear how to obtain appropriate scenarios.  

In the present paper, we extend the problem discussed by Heike et al. (2001) by proposing an efficient 

heuristic solution method and by designing and implementing a simulation environment for plan 

execution under uncertainty. 

3 SIMULATION ENVIRONMENT 

3.1 Requirements 

We are interested in executing plans from a planning formulation that is based on deterministic data in a 

simulation model to compute expected objective values. The simulation model has to mimic the behavior 

of an existing flow line. The following requirements are important for the corresponding simulation 

model: 

 

1. Since the planning formulation in Subsection 2.1 is based on the work package level rather than on 

the single task level, modeling a large number of tasks as common in the aircraft industry that are 

performed by individual workers with specific skills has to be avoided in the simulation model. 

Therefore, the modeling of work packages should be supported by the simulation environment. 

Workers are not modeled directly to keep the model as simple as possible. However, workers are 

implicitly represented by planning results. 

2. A specific simulation model has to be generated for the solution of each planning instance to model 

the flow of jobs through the simulation model that is driven mainly by the job-specific workload at 

the stations, a planning parameter, and the start dates and the processing times of the jobs on the 

stations that are planning results. 

3. Important sources of uncertainty like stochastic processing times and logistics delays have to be 

included in the simulation model. Realized processing times have to be modeled as stochastic 

perturbations of the planned processing times, while logistics delays are modeled by probability 

distributions. 

4. The repair strategies discussed in Subsection 2.2 like stop and fix and traveling work have to be 

represented in the simulation model.  

 

Simulation is required since the sophisticated material flow within the assembly line under uncertainty 

cannot be considered in an appropriate manner in the planning formulation. A simulation model that 

fulfills the derived requirements allows for coping with system behavior like blocking and starvation in 

conjunction with buffers under stochastic processing conditions. 

3.2 Building Blocks of the Simulation Model and Implementation Issues 

The simulation model is built using the simulation engine AutoSched AP. The physical line that consists 

of mstations and related buffers forms the static part of the model. The process flows are derived from a 

solution of a specific planning instance. The corresponding part of the model is created by taking into 

account the matrices  ijrR  ,  ijsS , the number of buffers b , and the number of workers  jhh . 

However, workers are not modeled in a detailed manner. Only their number is of interest. It is assumed 

that the number of workers determined by the planning formulation is given. In the simulation model, 

jobs are the moving entities. 

Simulation runs are performed to determine cost realizations Ĉ  that are required to estimate the mean 

cost. When the traveling work strategy is applied, the realized work load ijL
~

 might differ from the 

original one. The overall situation is summarized in Figure 2. 
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Next, we describe how we incorporate uncertainty in the simulation model. We use triangularly 

distributed processing times, obtained from  1,,triang~ˆ barr ijij  for ba  1 . Here we denote by  

 

 

Figure 2: Architecture for simulation-based performance assessment of the planning approach. 

 mba ,,triang  triangularly distributed random variables with cba ,,  being the minimum value, the 

maximum value, and the most likely value, respectively. Logistics delays ijd  are modeled as triangularly 

distributed random variables. Note that logistics delays might lead to postponed start dates. 

When the traveling work strategy is applied and the generated realized processing time ijr̂  exceeds the 

maximum possible processing time ijrs  the additional amount of traveling work given by  

              PYhsrr jijij ˆ          (15) 

appears where P  is a penalty factor that accounts for the additional effort to transfer uncompleted work 

from one station to a subsequent one. If the generated realized processing time is smaller than ijrs  then 

the already collected traveling work at predecessor stations can be reduced by the amount 

            ijijijij TWYhrsrW ,ˆmin:
~  .       (16) 

At the same time, the realized processing time for job j  at station i  has to be increased by  

             YhW jij
~

.          (17) 

This procedure is applied in an iterative manner to each job i  at each station j .  

The possible blocking time contributes to the flow time of a job at a station. The Kanban extension of 

AutoSched AP is applied to model this important behavior of real-world flow lines as proposed by 

Ziarnetzky et al. (2014). Kanban cards impose an artificial WIP capacity for certain operations. 

We model the stations of the flow line in two steps within the simulation model to integrate the finite 

buffers. Logistics delays and the variable processing times are set in a first step, whereas possible idle and 

blockage time is assigned in a second step. All flow line stations have a capacity of one, i.e., at most one 

job can be processed on them at specific points in time. Therefore, each station has exactly one Kanban 

card linked to the current job processed at the station. If no buffers exist, i.e. b =0, Step 1 and Step 2 share 

the same single Kanban card. However, if b>0, b  additional Kanban cards are assigned only to Step 2 to 

model the buffer. The resulting simulation model is validated by a domain expert.  
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4 SIMULATION EXPERIMENTS 

4.1 Design of Experiments 

We randomly generate problem instances similar to the problem description found in (Heike et al. 2001). 

The problem instances depend on the number of jobs n, the number of stations m, and the workload 

setting per station and job. We use 60n  and 7m  in all experiments. The values used for jD  and 

1, jjE  are provided in Table 1. The amount of workload can vary on a station for different aircraft 

models. The workload for the four different aircraft models A, B, C, and D is exemplified in Table 2. The 

regular hourly wage per worker is 20A  units whereas the overtime wage is 30B  units. Moreover, the 

setting AA 5
~   is used for the penalty term while the regular working hours per dayY is eight units.  

Table 1: Values for inventory-related costs.  

On station j 1 2 3 4 5 6 7 

jD  700 770 850 935 1029 1132 1245 

Between station j, j+1 0, 1 1, 2 2, 3 3, 4 4, 5 6, 7 7, 8 

1, jjE  - 400 440 484 532 585 - 

Table 2: Workload ijL  for four different aircraft models. 

Station 1 2 3 4 5 6 7 

A 1539 1561 1149 1063 1204 1795 900 

B 1247 1381 1382 1548 1561 1217 1590 

C 1796 1122 915 1422 1173 1223 1123 

D 1508 1465 1729 1401 1588 1240 941 

 

The design of experiments is summarized in Table 3. We start from six factor combinations and 

generate three independent instances for each factor combination. This leads to 18 problem instances in 

total. The notation  baDU ,  refers to a discrete uniform distribution over the set of integers  ba ,, . 

Randomly generated job sequences are used in this research.  

Table 3: Design of experiments for the planning formulation. 

Factor Level Count
b 0,1,2 3 

ijL  ~  1800,900DU , ~  2700,900DU  2 

 Number of independent problem instances per factor combination 3 

 Total number of problem instances 18 

 

The processing times are chosen as 6ijr  for the initial solution. The number of workers per station is 

randomly selected from  40,15~ DUhj  in the initial solution. Since there are three possible values for b , 

we obtain three solutions per problem instance. The time horizon is 300T  in all simulations. All 

problem instances are solved using the approach described in Subsection 2.1 with a computation time of 

ten minutes per instance.  
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The VNS algorithm of the FP is coded using the C++ programming language. The ILOG CPLEX 12.1 

solver libraries are applied in the SP to solve the ILPs. All the experiments are performed on a PC with 

3.0 GHz Intel Core(TM) i7-4610 CPU and 8GB RAM.  

For a fixed planning scenario, simulation experiments are conducted. We expect that the performance 

of the planning approach under uncertainty depends on the safety factor, the penalty factor for traveling 

work, and the uncertainty of the logistics delays and the processing times. The design of experiments for 

the simulation-based performance assessment of plans is summarized in Table 4.   

Table 4: Design of simulation experiments. 

Factor Level Count 
s 1.05,1.10,1.25, B 4 

P 1.2,2.0,3.0 3 

ijd  

0: 0  

1:  0,4,0triang~  

2:  0,8,0triang~  

3 

ijij rr̂  
1:  00.1,10.1,95.0triang~   

2:  00.1,50.1,90.0triang~  
2 

 Number of independent simulation replications 10 

 

Ten independent replications are performed for each simulation run to obtain statistically significant 

results. A single simulation run takes around 1.2 seconds. Realizations for n and Ĉ are obtained within 

each simulation replication. Instead of running the full design from Table 4, we consider only a partial 

design that is obtained by combining appropriate levels of processing time and logistics delay factors. The 

different scenarios are shown in Table 5. 

Table 5: Simulation scenarios. 

Scenario Logistics Delays Processing Time 
1 1 1 

2 2 2 

3 0 2 

4.2 Simulation Results 

We start by considering the small penalty factor P=1.2 to assign uncompleted work to a successor station. 

When deterministic processing times and no logistics delays are assumed, the numbers of completed jobs 
n  within the time horizon T are 44 and 43 for b=0 and b=1, respectively. The throughput n decreases 

as shown in Figure 3 due to the uncertainty in all scenarios. As expected, Scenario 2 causes the largest 

delays and leads therefore to the smallest throughput. The resulting throughput decreases by around 30%. 

The lowest n  values are obtained when the stop and fix strategy is enforced and no buffers are available, 

i.e. b=0, s=B. The largest n  values are achieved by applying the traveling work strategy with a safety 

factor of 1.05. 

Table 6 shows the average realized costs for the setting P=1.2 relative to the costs that are obtained for 

throughput n  when the planning instance with deterministic data is considered. As we can see from 

Table 6, the reduced throughput leads to higher costs caused by backlogs.  
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Figure 3: Average realized throughput for instances with  1800,900~ DULij  and 2.1P . 

Applying Scenario 1 leads to additional costs of up to 20% whereas under Scenario 2 realized costs 

are almost doubled. Offering additional buffer capacity is beneficial. The costs are reduced by up to 20% 

compared to the setting Bs  with 0b  and 1b . The most efficient strategy is to combine 10.1s  

and b=1. Note that the cost improvement under Scenario 2 for 10.1s  and b=0 compared to the setting 

with b=1 is only 5%. The allocation of one buffer place is always superior to the allocation of two buffer 

places.  

Table 6: Average realized costs for 2.1P . 

Scenario 1 2 3 

b=0 
 

 

05.1s  1.18 1.62 1.53 

10.1s  1.18 1.62 1.54 

25.1s  1.18 1.78 1.70 

Bs  1.18 1.85 1.78 

b=1 
 

 

05.1s  1.07 1.58 1.49 

10.1s  1.09 1.57 1.49 

25.1s  1.09 1.61 1.53 

Bs  1.09 1.64 1.56 

b=2 
 

 

05.1s  1.08 1.60 1.52 

10.1s  1.10 1.60 1.51 

25.1s  1.10 1.63 1.55 

Bs  1.10 1.67 1.58 
 

When it takes a higher effort to transfer the planned workload from a station to its successor ones, the 

costs increase tremendously as shown in Table 7 where 0.3P  is assumed. This means the effort to 

execute uncompleted work is three times higher than for the original work. In this case the stop and fix 

strategy (s=B) in combination with 1b  outperforms all traveling work strategies. The costs increase 

only at most by 67% compared to all traveling work strategy settings where costs are at least doubled. 

4.3 Analysis of the Results 

The performance of executed plans in case of a low effort to reallocate uncompleted work ( 2.1P ) and 

applying a safety factor of 1.05 and 1.10 is not influenced by the number of buffer places b . Therefore, 
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the traveling work strategy can replace buffers as long as P is small. This is of particular interest in 

aircraft production with expensive, large-size subassemblies causing high inventory costs. In addition, the 

installation of buffers requires additional investments. In case of a larger reallocation effort, e.g. P=3, the 

assignment of buffers helps to compensate the variations in processing time to increase throughput and to 

reduce costs. Using two buffer places per station does not provide additional benefit with respect to 

throughput and costs. Moreover, applying safety factors larger than 1.10 is not beneficial for the problem 

instances analyzed in this paper. A small safety factor ensures a higher throughput. The application of the 

described repair strategies is beneficial to achieve small costs and a high throughput. Finally, the 

application of simulation leads to improved planning decisions under uncertainty, simply because a more 

realistic assessment of plans is possible. 

Table 7: Average realized costs for  1800,900~ DULij  and 0.3P . 

Scenario 1 2 3 

b=0 
  

05.1s  1.20 2.24 2.17 

10.1s  1.19 2.03 1.96 

s=B 1.19 1.87 1.80 

b=1 
 

05.1s  1.16 2.21 2.15 

10.1s  1.10 2.00 1.92 

s=B 1.10 1.67 1.58 

5 CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS 

In this paper, we discussed the simulation-based assessment of plans that come from a planning 

formulation for mixed-model assembly lines. We described a deterministic planning problem that is 

motivated by real-world problems in the aerospace industry. A simulation environment is discussed that 

allows for executing the plans in a stochastic environment. Results of computational experiments 

demonstrate that the simulation-based assessment of plans is useful and leads to planning decisions that 

take the inherent uncertainty on the shop floor into account. 

There are several directions for future research. First of all, we strive to replace the triangular 

distributions by more appropriate probability distributions. Moreover, we are interested in applying our 

planning algorithm in a rolling horizon setting. This allows for taking feedback from the shop floor into 

account. The second direction for future research consists in integrating the simulation approach with the 

VNS approach. Each move within the VNS approach requires the evaluation of the objective function. 

This can be achieved by simulating the corresponding plan as described in the present paper. 
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