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ABSTRACT

To increase a 3D printer’s throughput and decrease the print objects’ lead times, composing good batches for

3D printers in high-volume 3D printing environments is of great importance. Since manual planners cannot

oversee the whole production planning, they tend to make sub-optimal decisions. This paper presents a

two-stage procedure that automatically generates batches for multiple 3D printers. The first stage consists

of allocating objects to a batch. This problem is an extension of the classical one-dimensional bin packing

problem by including lateness and object size mixture requirements. In the second stage, the positions

of the print objects in a tray are determined by using third party three-dimensional packing software. By

simulating the production planning of Shapeways, a popular 3D printing marketplace, model parameters

are calibrated and the performance of the two-stage procedure is evaluated. The results show an increase

of the throughput of the 3D-printers by approximately 10% in comparison with manually created batches.

1 INTRODUCTION

Additive manufacturing, or 3D printing, is the process of making three-dimensional objects from a 3D

model of virtually any shape. Additive manufacturing systems have been available for industrial use since

the 1980s and are widely used for industrial applications, such as rapid prototyping (Lipson and Kurman

2013). With the increase of the computational power in personal computers and the development of new

3D computer graphics software, 3D printing is currently becoming more accessible for the general public.

This can be seen in the popularity of relatively cheap consumer type printers and the emergence of 3D

printing marketplaces, such as Shapeways.

These 3D printing marketplaces are websites, where users can buy and sell 3D printable files. In other

words, people with the ability to design 3D models are able to upload and print their models, which thus

allows them the opportunity to sell their models. With the allocation of the purchased objects to one of the

many printers that are utilized by these marketplaces, a scheduling problem arises that has not yet been

adequately discussed in the current production scheduling literature. Currently these production schedules

are made by human planners. The kind and number of objects that are selected, is based on the experience

and intuition of the planner. After the planners have selected a batch of objects, the batch is packed by 3D

bin packing software before the actual printing can take place. Since the planners cannot oversee the whole

production schedule, they tend to make sub-optimal decisions. This makes automating this process very

promising. The purpose of this study is to explore the feasibility of automating the production schedule of

a network of additive manufacturing systems. An important aspect to explore is whether this automated

process is able to compose batches that have a high print density. This will decrease the amount of unused

space in the 3D printers, and thus increase throughput and decrease operational cost. At the same time,

the due date of orders will also have to be taken into consideration when generating production schedules.
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In this study, a method is presented to determine the production schedule for an environment of multiple,

high-volume 3D printers. In a more mathematical sense, this method attempts to approximate and to break

down a large, intractable 3D bin packing problem into multiple smaller and manageable 3D bin packing

problems. The feasibility of automating an entire production schedule and the potential advantages of

implementing this method are explored through a simulation study of one-month production data of a 3D

printing factory of Shapeways.

High volume 3D printing environments mainly use selective laser sintering (SLS) 3D printers, since

these printers have a large building envelope, high throughput, high resolution and need no support structures

(Kruth et al. 2003). The current paper is written with SLS printers in mind.

This paper is organized as follows. In Section 2 we briefly describe related work. The translation of

the production planning problem to a mathematical problem is presented in Section 3. The performance

of the mathematical approach is investigated by means of a simulation study in Section 4. This simulation

study is also used for parameter calibration. Finally, Section 5 summarizes our findings.

2 RELATED WORK

In this section we briefly present some related work in order to better understand the mathematical formulation

of the production scheduling problem of a 3D printing factory, as described in Section 3.

First, the classical bin packing problem is introduced, and formulated as an integer linear programming

problem (ILP). This problem is the starting point of the mathematical formulation of the production

scheduling problem. Second, the concept and difficulties of three-dimensional packing are discussed.

2.1 CLASSICAL BIN PACKING PROBLEM

In the classical bin packing problem, a set of items, each with a certain volume, are allocated to a set

of bins, each of which has a certain bounded volume capacity. The number of bins, used to pack all the

items, has to be minimized. This can be translated to the following mathematical programming formulation

(Kantorovich 1960):

Minimize
m

∑
j=1

u jCj (1)

Subject to
m

∑
j=1

xi j = 1, i ∈ N = {1, . . . ,n}, (2)

n

∑
i=1

vixi j ≤ u jV
max
j , j ∈ M = {1, . . . ,m}, (3)

u j,xi j ∈ {0,1},

where n is the number of items to be packed, m is an upper estimate of the number of bins needed, u j = 1

if bin j is used, and 0 otherwise, and xi j = 1 if item i is assigned to bin j, and 0 otherwise. The volume

of item i is vi and the volume of bin j is V max
j . Constraint (2) ensures that all items are packed, and (3)

limits the capacity of each bin. The cost of using bin j is denoted by Cj.

Moderately sized one-dimensional packing problems can easily be solved with branch-and-bound

algorithms (Land and Doig 1960) and with standard ILP solvers, e.g., Coin-cbc (Forrest and Lougee-

Heimer 2005). In the next section we discuss the generalization of one-dimensional packing problems to

multiple dimensions.
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2.2 PACKING ARBITRARILY SHAPED THREE-DIMENSIONAL OBJECTS

In the multiple-dimensional bin packing problem, an item is not only allocated to a bin, but additionally,

also a position in the bin is assigned to the item. The generalization to multiple packing dimensions greatly

increases the (computational) complexity of the problem. Nevertheless, with exact branch-and-bound

algorithms, this problem can be solved within a reasonable time limit, that is, for a limited number of

rectangular-shaped items with fixed orientations (Martello, Pisinger, and Vigo 2000). In the 3D printing

industry, however, items are not rectangular-shaped, and objects can, in the case of SLS-printers, be freely

orientated around their vertical axis. This makes the problem intractable, and therefore, no optimal solution

can be found anymore.

Packing arbitrarily shaped three-dimensional objects without a fixed orientation is studied most notably

by Jia and Williams (2001) and Gan et al. (2004). They present a heuristic packing method that works by

simulating gravity and object collision. This packing technique is commercially available under the name

Digipac-3D; this program is, unfortunately, not available for academic use and is not used in this paper.

Wu et al. (2014) present a packing method that is especially intended for 3D-printing. They first

determine the object orientation and then use a modified bottom-left-front packing heuristic to find a near

optimal position for the objects in a single rectangular bin. However, they do not deliver a usable software

package that implements their method.

In this paper, the program Netfabb is used for three-dimensionally packing print objects. Netfabb is

a program that is widely used for preparing 3D-files for 3D printing. It works by loading multiple 3D

printable objects and packing these to a minimum amount of space. Although no documentation of the

Netfabb’s packing algorithm is available, it is probably a so-called random placement algorithm. This is

an algorithm where all objects, that need to be packed, are placed in the packing space one by one in

randomly selected positions. Netfabb’s packing algorithm is known to perform mediocre (Freens 2015).

When packing spheres, for example, the maximum density that is reached is 0.46 (i.e., 62 percent of the

optimal sphere packing density). However, since no other packing programs are currently available that

can easily be used for 3D print objects, Netfabb is adopted in the current paper.

3 MODEL DESCRIPTION

This section explains the production planning process of a 3D printing factory and indicates which attributes

need to be considered when automating this process. Subsequently, the production planning problem is

translated into a mathematical problem in Section 3.2.

3.1 DESCRIPTION OF THE MANUAL PRODUCTION PLANNING

When a 3D print object is ordered, it is checked for printability and the print orientation is set. The print

object will then enter a buffer from where it can be assigned to a batch, which is a group of objects that

is to be printed by a specific printer. Before the objects in the buffer are allocated to a batch, the buffer

content is checked. If insufficient object volume is present in the buffer, one or more printers are left idle

and fewer batches will be needed. The printers that will be utilized, are now individually planned. This

planning process is visualized in Figure 1, and is further explained below.

Once the printers are selected, first their batch sizes need to be determined. In industrial SLS 3D

printers, e.g., in EOS P100 and P760 printers, a full batch is a print job of approximately two days. Since

daily production planning is considered in this paper, choosing the batch size effectively means choosing

between a one-day job or a two-day job.

Since larger batch sizes will result in taller printer trays, a planner will choose for a two-day batch if

larger quantities of large objects are in the buffer that do not fit in a small tray. However, smaller batches

are preferred, since this decreases the lead time of all objects in the batch. Furthermore, the material in an

SLS 3D printer deteriorates while being in a printer, so in smaller batches more unsintered material can

be reused.
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Figure 1: Manual production planning for a single printer.

Figure 2: Batch of objects in a tray that is ready to be printed.

After the batch size is set, i.e., a one-day job or a two-day job, the actual allocation of objects to this

batch is initiated. Objects close to their due date have priority and are chosen first. Subsequently, this

group of objects is then fitted into a tray with 3D packing software. This software minimizes the used

space in a printer tray by three-dimensionally packing the selected objects. Figure 2 displays an example

of a batch of objects packed into a tray. Depending on the number of objects, running a packing algorithm

typically takes ten to thirty minutes.

If the tray does not yet have the desired height after packing, objects are added or removed, and if

the tray density is insufficient, large objects are removed and smaller objects are added. This last step is

necessary, since large objects split a tray into smaller compartments that can contain small objects only.

After the batch composition is adjusted, the packing algorithm is executed again. How often this

procedure is repeated, depends on the planner. It can take between five and ten iterations before the desired

batch height and density is reached. This manual procedure of composing a printer tray takes approximately

three hours. After the final trays are generated, they are ready to print.
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Figure 3: Automated production planning for multiple printers.

After a tray is printed, a printer becomes available again for the next planning cycle. The printed

objects will have to be cooled down before they can be further processed. This can take up to one to four

days for small and large batches, respectively.

3.2 MATHEMATICAL MODEL

In this section the planning problem described in the previous section is translated into an integer linear

programming problem. A solution to this kind of problems can be obtained with standard ILP solvers.

The solution to the problem modeled in this section, prescribes which objects need to be allocated to

which batch. Subsequently, these objects can be packed with 3D packing software to create the actual

tray. The automated production planning will thus work for multiple printers at the same time, without the

need to iterate as done for manually generated production schedules. The automated planning procedure

is visualized in Figure 3.

First, the basic optimization problem is presented, which is then extended to include the main aspects

of the planning problem of a 3D printing factory.

3.2.1 ADJUSTED VARIABLE SIZE BIN PACKING PROBLEM

In essence the production planning problem is based on the aforementioned one-dimensional size bin

packing problem in Section 2.1. In the problem discussed here, the items are called objects and the bins

are called batches or trays. Additionally, constraint (2) which ensures that all objects are allocated, is

removed. To provide an incentive to still pack objects, costs are added for objects that are not packed, the

so-called object left-over cost. An optimization problem is now formulated where the machine utilization

costs (C
tray
j ) are balanced to the left-overs cost (Cle f t). The cost function now is:

m

∑
j=1

u jC
tray
j +

n

∑
i=1

aiviC
le f t ,

where set N = {1, ...,n} contains all objects that are to be allocated to a tray, and set M = {1, ...,m} contains

all available trays. The variable u j is 1 if tray j is used, otherwise it is zero, and the variable ai is 1 if

object i is left in the buffer and 0 if it is allocated to a tray. The variable ai is set by:

ai = 1−
m

∑
j=1

xi j, i ∈ N = {1, ...,n},

where xi j is 1 if object i is assigned to tray j, otherwise it is zero. Additionally, every object can only be

packed once:

m

∑
j=1

xi j ≤ 1, i ∈ N.
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(a) Original object (b) Shrink-wrapped object

Figure 4: Shrink-wrap generation of a 3D-printable object.
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Figure 5: Tray print time versus the tray height (based on historical data from an EOS P760 printer). The

green line is a linear regression model; the continuous red line is a locally weighted regression model

(Cleveland 1979) and the dotted red line is the spread to this.

The tray print time is largely determined by the height of a tray. This can be seen in Figure 5, where tray

print time versus the tray height is shown. The tray height depends to a large extent on the amount of

object volume allocated to a tray. Since it is desired to set (or predict) the print time of a tray, every tray

has its own maximum volume capacity:

n

∑
i=1

vixi j ≤ u jV
max
j , j ∈ M = {1, ...,m},

where the volume of object i is given by vi, and the maximal allowed volume of tray j is given by V max
j .

The volume of an object is defined by calculating the volume of a virtual balloon that is wrapped

around the object from which all air is drawn. This produces the so-called shrink-wrap volume (Freens

2015). An example of a shrink-wrapped object is given in Figure 4b.

The basic optimization problem is summarized below:
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Minimize
m

∑
j=1

u jC
tray
j +

n

∑
i=1

aiviC
le f t (4)

Subject to
m

∑
j=1

xi j ≤ 1, i ∈ N = {1, . . . ,n}, (5)

n

∑
i=1

vixi j ≤V max
j u j, j ∈ M = {1, . . . ,m}, (6)

ai = 1−
m

∑
j=1

xi j, i ∈ N = {1, ...,n}, (7)

ai,u j,xi j ∈ {0,1}.

In the following sections this basic problem is extended by including job prioritization, one- and two-day

jobs and size category constraints.

3.2.2 PRIORITIZING LATE OBJECTS

To prevent long lead times, objects close to their due date should be given higher priority. In this section

it is explained how this requirement can be included in the basic problem.

The lateness Li of object i is defined as the number of days before or after its due date. This value is

negative before the due date and positive after the due date. The due date is the point at which an object

should be ready for shipment or post processing. In other words, it is the date at which an object’s tray

should be finished printing and should be cooled down.

The expected tardiness Ti of object i is defined as its lateness Li plus its expected processing time Ri.

If an object can reach the post processing stage before its due date, the tardiness is zero. The tardiness

is thus defined as Ti = max(0,Li +Ri). To maintain linearity of the optimization problem, the tardiness is

modeled slightly differently, but equivalently, by the following constraints:

Li +Ri ≤ Ti, i ∈ N, (8)

Ti ≥ 0, i ∈ N, (9)

and the following tardiness cost component is added to the objective function:

n

∑
i=1

TiviC
tardy, (10)

where Ctardy is the cost of tardiness per volume unit. Now the calculation of the expected processing time

Ri will be explained now.

Since large trays (with a large V max
j ) have significantly longer cooling-down times, objects that are

close to their due date should be packed in a small tray (with a small V max
j ). The print time of a tray plus

its cooling-down time is given by the parameter P
tray
j . The print time and cooling times that are used here,

are only rough estimates, which can be rounded off to whole days. Depending on the tray an object is

allocated to, its time until post-processing can be calculated. This is defined by the following constraint:

P
ob ject
i =

m

∑
j=1

P
tray
j xi j, i ∈ N. (11)
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However, if Ri is set equal to P
ob ject
i , this creates the possibility that no objects are selected from the

buffer, because of the additional tardiness penalty for allocated objects, for instance, when all objects have

a lateness of minus one-day. This problem can be solved by adding a fixed time γ to the lateness of objects

that are not allocated and are left in the buffer (i.e., for which ai = 1):

Ei = aiγ i ∈ N, (12)

where the parameter γ should be greater than the process time (i.e., tray print time plus cooling time) of the

slowest printer, i.e., γ ≥ max
1≤ j≤m

(

P
tray
j

)

. In this way, a fair comparison can be made, while still preferring

to allocate late objects to small trays. The expected processing time Ri of object i can now be defined as:

Ri = P
ob ject
i +Ei, i ∈ N. (13)

Hence, the estimated time until post-processing is:

Ri =

{

P
ob ject
i if object i is allocated,

Ei if object i is not allocated,
i ∈ N. (14)

3.2.3 CHOOSING ONE- OR TWO-DAY JOBS

The batch size V max
j is not only determined by the type of the assigned printer, but also by the duration of

the print job that is chosen. It will now be explained how the decision of the batch size per printer can be

modeled. We will only consider full batches and half batches, or, translated to most industrial 3D printers,

one- or two-day jobs.

The set M = {1, ...,m} contains all trays that are available for planning. It has two entries per printer,

that is, it contains an entry for a one-day job and a two-day job. Both tray entries have different values

for the maximal allowed volume V max
j , and both trays will also have different values for the process time

parameter P
tray
j , mentioned in Section 3.2.2. However, if no additional constraints are added, the solution

to the optimization problem can contain both the one-day job tray and the two-day job tray, while only

one printer is available. To solve this issue, a parameter A jk is introduced that specifies which tray j in set

M belongs to printer k in the set Q = {1, ...,q}. The following constraint will then prevent both a one-day

job and a two-day job being planned for printer k:

m

∑
j=1

A jku j ≤ 1 k ∈ Q = {1, ...,q}, (15)

where:

A jk =

{

1 if tray j corresponds to printer k,

0 otherwise
j ∈ M,k ∈ Q. (16)

For example, if there are two printers in set Q, there will be four different trays in set M. By setting

A11, A21, A32 and A42 to 1, Constraint (15) will ensure that at most two trays can be selected, that is, for

each printer in set Q at most one tray is in set M.

3.2.4 SIZE CATEGORY CONSTRAINTS

The solution of the problem formulated so far, produces a list of objects for each available printer. For

each printer, this batch is then three-dimensionally packed in a tray. However, even if an object fits in a
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(a) (b)

Figure 6: Two trays with different object size mixtures. Packing (b) is packed denser.

tray volume-wise, it can happen that an object will not fit, because it is longer in one of its size-dimensions

(i.e., depth, width or height) than the tray it is allocated to. This problem is also closely related to the

density that the 3D packing software will achieve after packing a batch of objects. Relatively large objects

that fit in a tray, split the tray into smaller compartments. These compartments will stay unoccupied if no

sufficiently small objects are included in the batch that is 3D packed. This phenomenon is visualized in

Figure 6. Since a high tray density will increase the capacity of a printer, the amount of volume coming

from relatively large objects will be constrained in this section. These size constraints are modeled by

assigning an integer size category to all objects and trays. The higher the category number, the larger the

tray or the object.

If the category c
ob ject
i of object i is higher than the category c

tray
j of tray j, object i is not allowed in

tray j. This is modeled as follows:

ci
ob jectxi j ≤ c

tray
j , i ∈ N, j ∈ M, (17)

and if object i is more than two categories lower than the category of tray j, it is also not allowed in tray j:

c j
trayxi j ≤ c

ob ject
i +2, i ∈ N, j ∈ M. (18)

This constraint will preserve small objects for lower categorized (i.e., smaller) trays. A tray will now consist

of objects of three size categories. Note that finer object-size mixtures can be obtained by increasing the

number of size categories.

Since every tray can only contain a limited number of relatively large objects, an additional volume

constrained is added for each category. By adding constraints (19)-(23), undesired combinations of objects

can be prevented. The amount of volume allowed per category is specified by the fractions r0,r−1 and

r−2, which are multiplied with the maximal allowed volume V max
j per tray. The superscript in r is the

categorical difference of an object and a tray. The category fractions of a batch do not necessarily have to

add up to 1. If, for example, the fractions would add up to 1 and the buffer does not contain an object of a

specific size category, the batch cannot reach its volume capacity (V max
j ) anymore. Therefore, some slack

is created by setting the fractions such that they will add up to more than 1.

A binary variable z0
i j is introduced, indicating whether object i is allocated to a tray j that has the same

category number:

z0
i j ≥ (cob ject

i − c
tray
j +1)xi j, i ∈ N, j ∈ M. (19)

By using the fraction r0, the volume occupied by objects of the same category as the tray is constrained:

n

∑
i=1

z0
i jvi ≤ u jr

0V max
j , j ∈ M. (20)
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The same can be done for objects of one category lower than the tray. First a binary variable z−1
i j is

introduced, which is set to 1 if object i is of the same or one category lower than tray j.

z−1
i j ≥ (cob ject

i − c
tray
j +2)xi j − z0

i j, i ∈ N, j ∈ M, (21)

Volume used by objects that are one category lower than the tray (i.e., z−1
i j − z0

i j = 1) can now be limited:

n

∑
i=1

(

z−1
i j − z0

i j

)

vi ≤ u jr
−1V max

j , j ∈ M; (22)

and for objects that are two categories lower (xi j − z−1
i j − z0

i j = 1) than the tray’s category:

n

∑
i=1

(

xi j − z−1
i j − z0

i j

)

vi ≤ u jr
−2V max

j j ∈ M. (23)

In this section we described how to include the requirement that only objects of three size categories can

be allocated to a tray. This can of course be extended to finer object size mixtures, if necessary.

4 SIMULATION STUDY

The approach presented in the previous sections is now applied and tested on a factory of Shapeways, which

is a key player in the world of additive manufacturing and owns two of the largest 3D printing factories

in the world. To test the automated production planning method, a month of production planning of one

of Shapeways’ 3D printing factories is simulated. This is done for five 3D-printers, i.e., two large EOS

P760 printers and three smaller EOS P100 printers. Since every production order placed at Shapeways

is tracked and saved in a database, it is possible to exactly regenerate the order buffer of a specific day.

From this buffer, objects are allocated to the available printers by using the automated production planning

method. Subsequently, the objects are 3D packed with Netfabb. Then the objects ordered for the next day

are added to the buffer and the daily printer schedule is generated automatically again.

The volume capacity V max
j and object size mixture are based on the historical averages that Shapeways

has used per type of printer. The other model parameters, including Cle f t , Ctardy, P
tray
j , C

tray
j and γ , are

set empirically by simulating multiple model configurations and then choosing the configuration yielding

satisfactory performance. In future work, calibration of these parameters can be improved by utilizing

simulation-based optimization techniques (Deng 2007, Law and McComas 2000).

The resulting tray densities and object lead times are listed in Table 1. This table shows that the automated

production planning produces trays that are approximately 10% denser than the manually composed trays.

Additionally, it can be seen that the time that objects are waiting to be printed is reduced by almost half

a day. However, the larger trays for the EOS P760 printer are less dense. This can be explained by the

higher number of large objects that are allocated to this type of printer. This can potentially be solved by

changing the object size mixture.

Table 1: Comparison of a manual and automated planning, based on simulation of one-month production.

Automated Manual

Tray density Days in buffer Tray density Days in buffer

Printer type Avg. Std. Avg. Std. Avg. Std. Avg. Std.

P100 - 1 day 0.252 0.060 0.350 0.400 0.220 0.072 0.774 0.703

P760 - 1 day 0.153 0.030 0.360 0.328 0.104 0.025 1.026 0.629

P760 - 2 day 0.170 0.075 1.330 0.461 0.155 0.062 1.239 0.527

All 1 0.182 0.552 0.170 0.898

1 Averages are weighted by the shrink-wrap volume per tray
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Figure 7: Packing density distribution

The density distribution of the generated trays for the EOS P100 printers is depicted in Figure 7.

Clearly, the tray densities fluctuate significantly, with a coefficient of variation (i.e., std./mean) of 0.23.

This makes it hard to estimate the tray height and hence, to accurately estimate the expected print time

of a tray before the 3D-packing of the objects has taken place. This can be improved in future work by

investigating which object size mixture will result in more consistent tray densities.

5 CONCLUSION

The aim of this study has been to show the feasibility of automating the production planning of a 3D

printing factory. To do this, the production planning of a 3D printing factory has been modeled as an

optimization problem and tested in a factory of Shapeways.

The production planning of a 3D printing factory consists of composing printer trays, that is, it needs

to be determined which objects will be printed on which printer. Composing these trays consists of two

stages. First, sufficiently many objects are allocated to a batch, and secondly, the position of the objects

in a tray is determined by applying a 3D packing algorithm.

This paper described how the first stage of this problem can be modeled as an extension of the classical

one-dimensional bin packing problem. For the second stage of this problem, that is, the efficient three-

dimensional packing of multiple objects in a printer tray, third party packing software has been adopted.

The extension of the classical bin packing problem covers specific requirements that appear in high-volume

3D printing environments, including: prioritizing the allocation of late items, choosing the correct batch

size, and choosing the right object size mixture, which is a combination of large and small objects. This

method has subsequently been tested in a simulation study based on one month of production planning

data of Shapeways. This provided a good and fair strategy to test the performance of the proposed method

with regard to manually generated production planning. Automating the planning at Shapeways resulted

in an 10% increase of printer capacity together with significantly shorter waiting times before printing.

The main drawback of the proposed method is the difficulty in accurately estimating the print time

of an automatically generated batch. This difficulty is mostly due to the high variability of tray densities.

Future work should therefore focus on the design of a more elaborate simulation study to determine object

size mixtures yielding batches, the print time of which can be more accurately estimated. This problem of

parameter calibration can be formulated as a simulation based optimization problem, in which the output

response of object size mixtures under stochastic input of incoming orders can be systematically explored.
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