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ABSTRACT

This paper describes a decision support system (DSS) built on knowledge extraction using simulation-based
optimization and data mining. The paper starts with a requirements analysis based on a survey conducted
with a number of industrial companies about their practices of using simulations for decision support.
Based upon the analysis, a new, interactive DSS that can fulfill the industrial requirements, is proposed.
The design of the cloud-based system architecture of the DSS is then described. To show the functionality
and potential of the proposed DSS, an application study has been performed for the optimal design of
a hypothetical but realistic flexible production cell. How important knowledge with respect to different
preferences of the decision maker can be generated as rules, using the new Flexible Pattern Mining algorithm
provided in the DSS, will be revealed by the results of this application study.

1 INTRODUCTION

Manufacturing processes often involve several complex machines and procedures which together form a
complex system. Such systems can be difficult to analyze and understand without any aid. Simulation
has been used to improve and understand manufacturing processes in several different areas, for example:
workforce planning, supply chain management and capacity planning (Jahangirian et al. 2010). Simulation
studies can help a company to answer what-if questions, but in order to know which parameters are best
suited for the manufacturing system, an optimization technique has to be applied. When combined with
optimization technologies, simulation has a potential to generate data as a basis for decisions made by
decision makers (Pehrsson, Ng, and Stockton 2013).

The combination of simulation and optimization is called simulation-based optimization where an
optimization algorithm uses a simulation model to iteratively evaluate solutions to search for the best
solution for the problem (April et al. 2003). Simulation-based optimization can be used in several types
of applications, for example manufacturing (Amaran et al. 2014). This method can generate a lot of
data, which together with other data the company has for their manufacturing process, contains a lot of
information that can be used to improve the process. Because of the large amount of data and the complex
nature of manufacturing systems, it is difficult to manually unravel the information. Through data mining,
this can be done in an automatic manner to help the user in retrieving useful information. Data mining
is the process of automatically extracting knowledge hidden in large data sets with the help of computers
(Fayyad, Piatetsky-Shapiro, and Smyth 1996).

Data mining has been used to analyze several areas in manufacturing (Choudhary, Harding, and Tiwari
2008) and its addition to simulation-based optimization has proven to be powerful in generating valuable
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information that can be used to make decisions (Dudas et al. 2014). In order to make full use of the
combination of simulation-based optimization and data mining they can be integrated into a DSS. The
combination of the two methods can also be automated into a streamlined process so that manually
transferring files between separate software packages can be avoided. Because of the potential of such a
DSS, manufacturing companies show interest but their requirements on the DSS are not evident.

This paper investigates the requirements that manufacturing companies have in regard to a DSS that
uses simulation-based optimization and data mining methods. It also introduces the implementation and
evaluation of a novel DSS designed to help decision makers in making decisions confidently, based on the
aforementioned requirements. The paper is structured as follows: Section 2 discusses the requirements of
a DSS. Section 3 describes an architecture for the DSS. An application study is presented in Section 4 and
the paper is concluded in Section 5.

2 REQUIREMENTS OF A DECISION SUPPORT SYSTEM

In this section a survey that was sent to several organizations to gain more knowledge about requirements
for a DSS is described and analyzed. The section also discusses and summarizes the requirements.

2.1 Survey

To understand how simulation engineers use simulation and simulation-based optimization and how they
elicit knowledge from the data generated by these methods, a survey was sent to a group of companies
and organizations. The survey asks what general requirements there are for a DSS using simulation-based
optimization and data mining. The selected companies and organizations are research partners of the
University of Skövde and are known to be active users of simulation. They varied in size, from large
manufacturing companies running worldwide businesses to small and medium enterprises. The survey was
sent to 21 simulation engineers working in 8 different manufacturing companies and organizations that
utilize simulation models in their work. Of the 21 who received the survey, 15 answered from 7 of the
companies and organizations.

For the survey 19 questions were constructed, divided into two sections. The first section asks the
respondents about their experiences and how they currently work with simulation and simulation-based
optimization, as well as their experiences in eliciting knowledge from the data generated by simulation
models. In the second section the respondents are asked about how they want to be able to work in the
future, what features of a DSS they are missing and so on. The survey (in Swedish) is available on the
web at http://research.i5r.se.

2.2 Requirement Analysis

The survey shows that the companies solve a multitude of problems using different simulation software.
All the respondents answered that they use simulation for improving their processes, whereas the second
most common answer was to use simulation results as decision basis for new investments. Other areas
there the respondents use simulation models are production planning, personnel scheduling, supply chains,
competence improvement and energy consumption. The majority of the respondents answered that they
use simulation-based optimization together with their simulation models.

The respondents mention that experiment design is an important function in simulation-based opti-
mization. With a proper experiment design, the simulation-based optimization can be initialized with
promising solutions either by the user or through a design of experiments (DOE) method. Population-based
metaheuristic optimization algorithms work better if they can start with a diversified set of initial solutions
which leads to more effective optimizations (Talbi 2009). Online user interaction with simulation-based
optimization where the user can guide the search process to interesting areas can also lead to faster con-
vergence. The majority of the respondents answered that they are interested in being able to choose the
degree to which they interact with the system.
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Because the respondents want different degrees of interaction with the DSS, it has to provide a way for
the user to create a workflow that tells the software how and when it should start the optimization and data
mining processes. The system needs to have a graphical user interface (GUI) where the decision maker
can create their workflow and to provide the settings that are needed for the components in the workflow.

Another important subject for the respondents is cooperation by working on the same data, like simulation
models and optimization results. All the respondents claim to share data with their co-workers. Simulation
results and simulation models are regularly shared. Those who use simulation-based optimization share
optimization settings, results from the optimization and complete analysis based on output data. Documents
are also shared among co-workers in the same project like requirement specifications, project specifications
and project goals.

The survey also shows that the respondents use several methods for analyzing the optimization results
to discover knowledge. The majority of the respondents use manual methods by studying the raw data
together with the aid of data plots, like scatter and parallel coordinate plots (PCP), but they clearly indicate
their desire for some automatic knowledge extraction functionality.

According to the answers to the survey the simulation models, the respondents work with contain
information sensitive by the company. All respondents answered that their simulation models and data,
always or sometimes, contain sensitive information. This is an important aspect about the system that it
must be secure both from external and internal unauthorized access.

Most of the respondents run their simulations and optimizations on their own workstations. Because of
their computationally intensive nature, these processes can make the process very slow. By using dedicated
virtual computers, e.g. using cloud computing for these processes, the user can free resources for doing other
things on the workstation. If the simulation evaluations are performed in parallel on several computers, the
optimization process can run much faster. Utilizing several computers requires investments and a support
organization and other resources, like space and electricity.

Based on the answers to the survey a list of requirements for a DSS is compiled. The requirements
are summarized in Table 1 with a motivation as to why they are needed.

2.3 Comparison with Existing Decision Support Systems

To see how earlier work supports simulation-based optimization and data mining, a careful literature review
of papers published in the last five years reveals four related studies describing similar solutions. Rossetti
and Chen (2012) have developed an architecture that uses cloud computing techniques to run a supply
chain network simulation. The authors mention that the simulations take a long time to run and by running
them in parallel in a cloud environment, it is possible to get the result from the simulations faster when
compared to running them on a single workstation. Melouk et al. (2013) present a decision support tool
using simulation-based optimization to optimize a steel production process. By utilizing a simulation model
and a standalone optimization package the authors show that by using simulation-based optimization they
can reduce the cost of the steel production process they used in their case study. Another DSS based on a
cloud computing environment is proposed by Taylor et al. (2014) who aim to put simulation software in
the cloud. Through scalability, cloud computing offers the possibility of using the web-based version of
the authors’ simulation software by any users. Ng et al. (2011) also present an internet-based DSS where
a simulation software can evaluate solutions both in a distributed and parallel manner. This increases the
precision and speed of the DSS. In summary, none of the DSSs discussed fulfill all the requirements that
have been previously identified. A comparison is summarized in Table 2.

Besides the DSSs presented in the literature, there are also generic software capable of running
simulation-based optimization that can integrate with different simulation software. Examples of such
software are modeFRONTIER R© from Esteco and HEEDS R© MDO developed by Red Cedar Technology.
In these software the users can analyze the results from simulation-based optimization with the help of
visualization. For an automated analysis the user has to export the data and use other software capable of
such automated analysis.
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Table 1: Summary of requirements for a new DSS.

Requirement Motivation

Support for multiple simulation softwares Problems may require different simulation software

Support for multiple optimization algorithms
There exists no optimization algorithm that is best

for all types of problems

Experiment design
Initial solutions to optimization algorithm

Ability to start from earlier optimizations

Automated decision support process
Easier use of the decision support system

Less monitoring

Support for sharing data to promote cooperation between users Faster and more efficient decisions

Accessible from company network with a

client/server architecture

Multiple users can work on the same data

Users can do other work on their workstations while

doing optimizations

Secure storage and transfer of data
Simulation models and data derived from them can

contain industrial secrets

Manual knowledge extraction methods Simulation engineers can manually extract data

Automatic knowledge extraction methods

The simulation engineers wants to be supported in

the process of extracting knowledge from the results

of simulation-based optimization

Can be used to automatically limit the optimization

problems

Running simulation models in parallel

Faster and more efficient decisions because of faster

optimizations

Ability to run in a cloud environment
More efficient use of resources

No need for own hardware

Table 2: Supported requirements in earlier studies. • = supported, − = not supported

Requirement Rossetti (2012) Melouk (2013) Taylor (2014) Ng (2011)

Support for multiple simulation software − − • •

Support for multiple optimization algorithms − − − •

Experiment design − − − −

Automated decision support process − − − −

Support for sharing data to promote cooperation

between users
• − − •

Accessible from company network with a

client/server architecture
• − • •

Secure storage and transfer of data − − − −

Manual knowledge extraction methods • • • •

Automatic knowledge extraction methods − − − −

Running simulation models in parallel • − − •

Ability to run in a cloud environment • − • −
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3 DECISION SUPPORT SYSTEM

This section describes a system architecture for a DSS that is based on the requirements identified earlier
in the paper.

3.1 System Architecture

A system architecture for a DSS using simulation-based optimization and data mining has been developed to
fulfill the requirements. The major components of the DSS are illustrated in Figure 1. The DSS architecture
is based on a client/server design. The server consists of a group of components that together supply the
major computational functionality for the DSS. In the client application, the users can create and manage
the workflows using the workflow designer graphical user interface (GUI) as shown in Figure 2.

Web service

HTTPS

Client side

Workflow

manager

Resource

manager

Optimization

manager

Optimization

engine

Data mining 

manager

Data mining

workers

Simulation

workers

Storage

Server side components

Figure 1: Architecture of the decision support platform.

Figure 2: Screenshot of a prototype workflow GUI.

The GUI lets the user use the processes and build the workflow to extract knowledge from a simulation
model. A workflow is stored in a structure called project along with the results from the optimizations
and data mining processes. In the project the users can also store files like simulation models, project plan
and so on. The projects are managed in the GUI and can be shared between users depending on their
permissions on the project. The optimization and data mining processes are run in the server.

The server components are divided into three groups: core, optimization and data mining components.
The core components are: web service, workflow controller, resource manager and storage which constitute
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the core functionalities. The web service which acts as an interface for the client applications can be
exposed to a company network or directly to the internet. This makes the DSS accessible from more than
one computer and a user can sign in on any computer that has the client application installed. The resource
manager component of the DSS keeps track of the resources needed by the optimization and data mining
processes. In a local environment this component is not used, but when installed in a cloud environment
the resource manager spawns virtual computers when needed to execute parallel and distributed simulation
runs and data mining processes. The last one of the core components is the storage component that stores
the data that the user uploads or creates with the DSS. This component consists of a SQL database and a
file storage sub-component where the SQL database stores the project information, optimization problems,
workflows, the optimization results and so on. The file storage stores the simulation models as well as
other files that the user uploads. The files are accessible to all the users who have permissions to the files
through the client application to support the requirements on collaborative project work.

The three optimization components provide the decision-support system with simulation-based opti-
mization functionality. The optimization manager handles the optimization engines which are the second
component in this group. The optimization uses the third component, simulation worker, to evaluate
solutions using the simulation model. To support multiple simulation software, the simulation worker has
an interface to the simulation software that can be replaced by the DSS in runtime as needed.

The data mining process is handled by the data mining manager and data mining worker. The data
mining manager keeps track of the data mining workers and allocates work to the data mining worker that
is free. The data mining worker has the data mining algorithms and downloads the data needed from the
storage component.

3.2 Implementation of Requirements

The evaluation of simulation models is the core of the DSS and the support for integration between different
types of simulation software and the simulation worker component, makes the system generic. To integrate a
new simulation software the only component that needs development is the interface between the simulation
worker and the simulation software. With support for different simulation software the user can optimize
different types of problems. Since there is no optimization algorithm that performs well for all types of
problems (Wolpert and Macready 1997), the DSS needs to support a set of optimization algorithms suiting
different problems.

To automate the analysis, a workflow concept is introduced. A workflow is designed by the user and
the workflow manager in the DSS uses the workflow to start and set up the simulation-based optimization
and data mining process accordingly. This makes the analysis automatic. In case the user’s interaction is
needed, the user is notified in the client application that a running workflow needs supervision to be able
to continue. An example of such interaction is the user-input to data mining algorithms.

Multiple data mining algorithms are supported by the DSS that has an interface in the data mining
worker component which makes it possible to integrate several algorithms in the system. This gives the
DSS the possibility to automatically generate knowledge obtained through data from the simulation-based
optimization. Manual knowledge extraction methods are supplied to the user through the experiment
analysis GUI in the client application.

During and after the analysis the users need to share data with their co-workers. This requires that
other users can access the project from their workstations, based on the client-server design. By running
the processes on a server, multiple users can access the core DSS components simultaneously as well as
access other users’ data. The protection of the data in the DSS is an important aspect identified by the
requirements analysis. The data transferred to and from the client application use an encrypted version
of the HyperText Transfer Protocol (HTTP). Through encrypted data transfer between the server and the
client application, eavesdropping is made harder.

By running the simulation worker component in parallel on multiple servers, the DSS has the ability
to evaluate more than one evaluation at a time which drastically reduces runtime. The DSS can run on
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ordinary servers or virtually in a cloud-computing environment. Running the DSS in a cloud environment
has several advantages, most importantly, no physical servers are needed for the company and the company
only needs to pay for the resources needed for the moment. To access the scalable and elastic properties
of a cloud computing environment, the DSS is designed to contain the resource manager component. This
component makes sure that the optimization and data mining processes have the required resources within
the limits set by the company.

4 APPLICATION STUDY

An application study has been conducted to give an example of how the DSS can be used. This section
describes the application study and how the DSS supports it.

4.1 Simulation Model and Optimization Problem

The application study is based on a machining cell model for studying the use of multi-objective optimization
and data mining for production systems design. The model is an extended version of the one presented
in Ng et al. (2011). Although the model is a hypothetical one, it is realistically designed based on our
experiences in working with real-world complex models and decision making situations in industry. This
model makes use of three so-called Selection objects in the simulation software FACTS Analyzer (or FACTS
hereafter) (Ng et al. 2007) that can enable several design alternatives to co-exist in a model. By changing
the values of the corresponding decision variables, the optimization module in FACTS can then switch
the selection objects into various combinations. The analysis of such a model could then be made in an
efficient way by letting the optimization algorithm to seek the optimal combination of design alternatives
with their optimal settings together with the optimal values of other decision variables (e.g. buffer spaces),
in a single optimization run.

Figure 3: Simulation model depicting the made-up production system.
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Table 3: Decision variables, their ranges and associated cost for calculating Payoff time.

Decision variable Range Investment cost ($)

Bi, i = 1, ...,5 {1,2,3, . . . ,50} 1000 / buffer

S1 {1,2} 500000 if S1 = 1 (two old m/c), else 900000

N2 {1,2,3,4,5,6} Flexible m/c 500000 each; dedicated 250000

M3 {1,2} Flexible if M3 = 1, else dedicated

M6 {1,2} Flexible if M6 = 1, else dedicated

S3 {1,2,3} {100000, 150000, 120000}

Figure 3 illustrates how alternative designs can be easily built in FACTS with two selection objects
(S1 and S3) and an additional flow selection controlled by two variables M3 and M6 (explained below).
S1 constitutes the choice of having one fast machine instead of two slow machines in parallel, which
is a common decision-making problem faced in industry when considering the replacement of old, slow
machines, with a new, fast machine. S3 is a selection among three options: (1) two machines with longer
setup times; (2) three machines with longer setup times; (3) two machines with shorter setup times. When
compared to the model presented in Ng et al. (2011), the current model is more complex as there are
two decisions that have to be made for the operations at the second stage, between Store2 and Buffer3,
namely, (1) number of machines (N2) and (2) if these machines are flexible machining centers that can
process multiple part types or they are dedicated machines that are capable of processing only one specific
part type. Since this model involves three product variants (i.e. A, B and C), to have their own dedicated
machine means that this can only happen when the number of machines in question is either 3 or 6. In
this case, M3 and M6 are the two variables that represent if dedicated (non-flexible) machines are used (in
this case their value = 2) when N2 = 3 and 6, respectively. In other words, flexible machines, which are
double in investment costs than dedicated machines (see Table 3), will be set for all other combinations
of N2, M3 and M6. For example, a candidate solution being found in the optimization, with N2 = 6 and
M6 = 1, represents an option of using 6 flexible machines. With the flexible machines, the three variants are
allowed to be flexibly processed in any of the machines but with the cost in increasing setup times during
variant switch, as well as higher investment cost. Therefore, apart from the decision on whether to replace
the old machine in the first stage, the decision maker also needs to evaluate whether it is cost-effective to
invest in flexible machines in the second stage.

Given that payoff time (year) can be calculated as total investment / profit per year, this decision-
making problem can be easily formulated as a single objective optimization problem by minimizing the
payoff. Assuming the profit by selling each product = $20 and there are 52 weeks’ production per year.
If Pw is the weekly production, then the payoff time is calculated as shown in (1).

Payof f =
Total investment cost

Pw ×20×52
(1)

With an aim to demonstrate how multi-criteria decision support can be done efficiently using multi-
objective optimization and data mining, the problem has been solved as a three-objective optimization
problem: f1(x) = min(Payof f (x)), f2(x) = max(T H(x)) and f3(x) = min(WIP(x)), where
x = [B1,B2,B3,B4,B5,S1,N2,M3,M6,S3] represents a solution vector in the decision space, T H = system
throughput and WIP = Work-In-Process of the production line. It can be easily seen that while T H and
WIP are simulation outputs evaluated through simulation runs, Payof f is a variable by mixing other input
and output variables. Table 3 gives the ranges of the decision variables and their associated costs to show
how the total investment is calculated.

With the detailed data provided in Figure 3 and Table 3, other researchers can easily verify and compare
with the optimization and data mining results presented in this paper. As will be shown in the next section,
it can be seen that such multi-objective optimization study can provide the knowledge that Payoff year,
Throughput and Work-In-Process are three conflicting objectives. The post-optimality analysis through
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data mining will then reveal properties of the efficient solutions that constitute the different preference
regions indicated by the decision maker using the DSS.

Flexible Pattern Mining (FPM) was used as the data-mining algorithm in this study. FPM is an extension
of the popular sequential pattern mining (SPM) algorithm (Agrawal and Srikant 1995). SPM was originally
developed for extracting significant buying patterns (also called frequent item-sets) from market basket
data (customer transactions). FPM extends the concept of market basket data to optimization data by
considering each solution as a customer and each variable as a transaction containing individual items
(variable values). While SPM looks for a sequence of items from any of the transactions, FPM enforces that
these items (variable values) come from the same transaction columns (variables). Thus, significant patterns
of discrete variable values can be found. FPM can also generate rules instead of patterns by transforming
the optimization data into a truth matrix containing columns corresponding to logical operators <, = and
> applied over all available discrete choices of all variables.

4.2 An Application Study of the DSS

A workflow has been created to run the optimization problem in the DSS. The workflow, which is shown
in Figure 2, consists of four nodes, optimization problem, design of experiments (DOE), optimization and
data mining. The first three nodes are fully automatic when they are configured in the client application
but the chosen data mining process, FPM, requires a set of solutions to be selected to be able to extract
knowledge.

Figure 4: Selection of evaluations for data mining.

The interactive feature of the DSS can be illustrated through this example as the decision maker
may choose between two preferences which from the results of the optimization have been shown to be
impossible to satisfy at the same time: (A) lowest possible payoff period or (B) highest possible T H. From
the data plots, e.g. the PCPs as shown in Figure 4, it is clear that the solutions which give the highest
T H do not give the shortest Payof f . Here a trade-off situation has to be resolved by the decision maker,
probably based on the forecasted production demand. In order to acquire deeper knowledge about what
configurations lead to the two preferred regions of interest (i.e. A or B), a data mining algorithm is called
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Figure 5: Screenshot on client application experiment analysis GUI.

by identifying the preferable solutions. As shown in Figure 4, the DSS allows the user to do this by filtering
away the non-preferred solutions by adjusting the limit bars in the PCPs. In case A (upper plot), only
solutions with lowest Payof f and WIP are selected while solutions with highest T H and lowest possible
Payof f and WIP are selected in case B (lower plot).

The shape of the Pareto-optimal front clearly shows that the three objectives are in conflict with each
other. Particularly interesting is that the multi-objective optimization can locate a point in the objective
space that shows the WIP value when the Payof f is minimized (see the red circle in Figure 5).

Table 4: The rules extracted by using FPM in the two preferred regions.

Preferred region Rule acquired by FPM

A: Lowest Payoff time S1 = 1∧S3 = 3∧N2 = 6∧M6 = 2∧B2 = 2∧B3 < 3∧B4 < 8∧B5 < 3
B: Highest TH with lowest

possible Payoff and WIP
S1 = 1∧S3 = 3∧N2 = 5∧B1 = 1∧B2 = 3∧B3 = 3∧B4 < 16∧B5 > 5

The data mining results reveal some very interesting and important knowledge in the form of rules
generated by FPM based on the preferences of the decision maker as shown in Table 4. If this study were
for a real-world decision-making scenario:

• Irrespective of whether lowest Payof f or highest T H is the target, two parallel machines in stage
1, represented by S1 = 1 and two fast setup machines in stage 3 (S3 = 3) are preferred to any other
combinations.

• Interestingly, 5 flexible machines (N2 = 5) give higher T H than 6 dedicated machines (as indicated
by N2 = 6∧M6 = 2), but less economical (i.e. longer Payof f period). On the other hand, 6 flexible
machines do not give higher T H, only higher investment cost, so that no efficient solution possesses
the attribute N2 = 6∧M6 = 1.

• Apart from the difference between 6 dedicated machines and 5 flexible machines at processing
stage 2, the difference between lowest Payof f and highest T H lies on the required buffer spaces.
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In this case, the rules generated by FPM have given the decision maker some specific details: it is
B4 and B5 that matter and should be increased if higher T H is the preferred target; the size of B1,
B2 and B3 should be kept small in all cases to keep lower WIP and investment cost.

5 CONCLUSIONS

This paper describes how simulation-based optimization and data mining can be integrated in a DSS.
To study how companies work with simulation and simulation-based optimization and how they extract
knowledge using these methods, a survey was conducted at 8 companies and organizations. Their responses
were used to identify requirements for a DSS that uses the aforementioned methods. A system architecture
for such a DSS and how it fulfills the requirements is described.

To show how the proposed system architecture can help the user in the decision making, an application
study was conducted which analyzed a simulation model depicting a hypothetical, but realistic production
system. The flexible production cell consisted of machines and buffers, both in parallel and series which
have alternative configurations with different costs. Simulation-based optimization was used to minimize
the payoff time, minimize work in progress and maximize throughput for the production system. To extract
knowledge from the data, a data mining algorithm, in this case FPM, has been applied on the data generated
from the optimization which revealed valuable knowledge about the system.

To the authors’ knowledge there is no DSS that currently fulfills all the requirements given by the
industry. The proposed DSS enables the users to use simulation-based optimization and data mining in an
efficient way without the need for any combination of tools that only supports one of the methods. Since
all data is stored in a project structure and since the DSS is accessible through the company network, the
users can share data with their co-workers.

The next step is to validate the system on a real simulation model and evaluate how the DSS is used
by a simulation engineer in a manufacturing company. In a company environment the protection of data is
vital and this also applies to the simulation models and the data related to them. When running the DSS
in a cloud environment provided by a third party, the data is leaving the company and therefore security
is a very important aspect. Before a DSS can be fully implemented, the security issues and their solutions
should be investigated more thoroughly. The simulation-based optimization and data mining processes may
generate a lot of data. Retrieving this data can take a considerable amount of time which is undesirable.
How the data should be stored and transferred to the user in an efficient manner is also an area that has to
be further investigated.
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Metamodel-assisted Parallel Simulation Optimization”. In Proceedings of The IAENG International

Conference on Internet Computing and Web Services (ICICWS’07), 2007, 879–885.
Pehrsson, L., A. H. C. Ng, and D. Stockton. 2013, December. “Industrial Cost Modelling and Multi-

Objective Optimisation for Decision Support in Production Systems Development”. Computers &

Industrial Engineering 66 (4): 1036–1048.
Rossetti, M. D., and Y. Chen. 2012. “A Cloud Computing Architecture for Supply Chain Network Simula-

tion”. In Proceedings of the 2012 Winter Simulation Conference, edited by C. Laroque, J. Himmelspach,
R. Pasupathy, O. Rose, and A. M. Uhrmacher, 1 –12.

Talbi, E.-G. 2009. Metaheuristics: From Design to Implementation, Volume 74. John Wiley & Sons.
Taylor, S. J. E., T. Kiss, G. Terstyanszky, P. Kacsuk, and N. Fantini. 2014. “Cloud Computing for Simulation

in Manufacturing and Engineering: Introducing the CloudSME Simulation Platform”. In Proceedings

of the 2014 Annual Simulation Symposium, ANSS ’14, 12:1–12:8: Society for Computer Simulation
International.

Wolpert, D., and W. Macready. 1997. “No Free Lunch Theorems for Optimization”. IEEE Transactions on

Evolutionary Computation 1 (1): 67–82.

AUTHOR BIOGRAPHIES

INGEMAR KARLSSON is a Ph.D. student at the University of Skövde. He has a B.Sc. in Computer
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