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ABSTRACT 

In this paper, we discuss the formulation and solution to the newsvendor problem under a Bayesian 
framework that allows the incorporation of uncertainty on the parameters of the demand model 
(introduced by the estimation process of these parameters). We present an application of this model with 
an analytical solution and we conduct experiments to compare the results under the proposed method and 
a classical approach. Furthermore, we illustrate the estimation of the optimal order size using stochastic 
simulation, when the complexity of the model does not allow the finding of a closed form expression for 
the solution. 

1 INTRODUCTION AND LITERATURE REVIEW 

Let D  represent the demand (during the sales period) of a seasonal item. If 0w  denotes the loss for 
every unsold unit at the end of the period, and 0u  denotes the profit for every unit sold during the 
period, the total profit for an order size of Q  units is given by:   
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The most common approach (see, for example, Nahmias and Olsen 2015) to find the optimal order 

size *
CQ   consists in defining a density function )( yf  for the demand D  (the analysis is similar for the 

discrete case), where   is the parameter vector, and, assuming   is known, we define the expected profit 
as
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 Note that  yFC  is the cumulative distribution function (cdf) of the demand given   . 

Furthermore, if 0)( xf  is continuous in a neighborhood of *CQ , condition (3) is sufficient for finding 

the optimal value *
CQ . We also mention, for the sake of clarity, that the formulation presented in Nahmias 

and Olsen (2015) is an equivalent formulation where the authors minimize the expected value of    uDQb  , so that (3) follows from Nahmias and Olsen (2015). 

In practice, the value of   is estimated from a data set   nxxx ,,1  using, for example, the 

(maximum likelihood) estimator that maximizes the likelihood function  xL . The most common 

approach for finding the optimal order size consists in setting  ˆ  in (3), where  x ˆˆ   is a point 
estimator. While this procedure is found extensively in Operations Management textbooks, it has the 
downside of assuming that the point estimator equals the parameter. Thus, in this article we discuss a 
Bayesian approach to the newsvendor problem (i.e., finding the optimal order size) incorporating 
uncertainty (introduced by the estimation process) in the parameter vector. 

Bayesian methods to incorporate parameter uncertainty for inventory management have been 
proposed since the pioneer work of Scarf (1959), where the author discusses the optimality of a Bayesian 
updating rule for inventory management. Silver (1965) proposed the incorporation of parameter 
uncertainty using Bayesian methods and shows how to compute a reorder point by modeling the demand 
as a multinomial distribution. Bayesian methods have been extensively applied to inventory management 
in order to propose updating rules for the optimal inventory policy based on new information on the 
product’s demand, see e.g., (Azouri 1985; Eppen and Iyer 1997; Lariviere and Porteus 1999; Chen and 
Plambeck 2008; Chen 2010; Jain et al. 2015), and the references therein. However, the use of simulation 
techniques to estimate performance measures for inventory management is not considered in these articles 
and the related literature.  

The following section describes the theory behind the proposed Bayesian approach, which allows the 
incorporation of parametric uncertainty in the newsvendor problem. Afterwards, in the subsequent 
section, we illustrate how to estimate the optimal order size using simulation by means of a simple 
example. This example showcases how to estimate the optimal order size in more complicated problems. 
In the same section, we present a comparison of the results obtained from applying a classical approach 
versus the results obtained using the Bayesian approach. Finally, in the last section, we present our 
conclusions and recommendations. 

2 METHODOLOGY 

Under a Bayesian framework, the parameter vector is a random variable   that has a prior density 
function  p , thus the posterior density function (given a data set x) is given by 
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where dx  , 0S  and  xL  is the likelihood function. From (4) and following the same notation as 

in (3), the cdf of the demand (given  xX  ) is given by 
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for  0y , where  yFC  and  xp   are defined in (3) and (4), respectively. Similarly, from (1) we 

obtain the expected profit (given  xX  ) as 
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where  xyFB is the cdf defined in (5). This shows that )( xQBB  has a similar form to )( xQBC  defined 

in (2). Consequently, the optimal order size *
BQ  considering parametric uncertainty satisfies 

   ,*
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u
xQF BB        (7) 

 
 where  xyFB  is defined in (5). It is worth mentioning that our problem formulation is different from 
the one proposed in Jain et al. (2015), where the authors propose a dynamic program to solve the 
newsvendor problem in a multi-period setting in order to show the advantages of using a more efficient 
updating rule. The main difference is that we consider a single-period expected profit that is explicitly 
dependent on the available data set x. This formulation allowed us to obtain a simple solution in the form 
of (7). 

It is important to point out that for the case where demand is discrete, taking values  21 dd , the 

function  xyFB  is not continuous, and equation (7) might not have a solution, in which case we must 

find the value of kd  that satisfies: 
 

   ,1 xXdDP
wu

u
xXdDP kk         (8) 

 
in order to evaluate )( xdB kB  and )( 1 xdB kB  , where: 

        .)( xXQDuQPxXjDPjQwxXjDjPuxQB
QjQj

B        (9) 

 

If    xdBxdB kBkB 1 , the optimal order size will be given by kB dQ * , otherwise it will be 

given by 1
*  kB dQ . Note that in the discrete case (8) is equivalent to (7), in the sense that neither 

equation considers fixed ordering costs. If there is an initial inventory of 0Q , we should not order when 
*

0 BQQ  , otherwise we should only order 0
* QQB   units if     00

* CxQBxQB BBB  , where 0C is the 
fixed ordering cost. 

3 AN ILLUSTRATIVE EXAMPLE 

In this section we illustrate the application of the proposed methodology through a similar model to the 
one presented in Muñoz and Muñoz (2011) for the forecast of an item of intermittent demand. We know 
that the demand for service parts follows a Poisson process, though there exists uncertainty in the arrival 
rate 0 , thus, given  00  , the times between customers’ arrivals are i.i.d. according to the 
exponential density function:  
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where   ,0000 S . Every client can order j  units of an item with probability j , qj ,,1 , 

.2q Let  111 ,,  q  and 11  q
j j , then  10 ,  denotes the vector of parameters and 

the parameter space is given by 01000 SSS  , where  
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The total demand for a period of length T  is given by  
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where  sN  is the number of clients that arrived in the interval  s,0 , 0s , and 21,UU  are the 
individual item demands (we assume they are conditionally independent with respect to  ). The 
information for   consists of (i.i.d.) observations  nvvv ,,1  ,  nuuu ,,1  of past clients, where 

iv  is the time between the arrival of client i  and previous client ( 1i ), and iu  is the number of items 
ordered by client i . The likelihood functions for  v and u  are given by 
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respectively, where  111 ,,  q  , and    ni ij juIc 1  is the number of clients that ordered j  

items. 
From an objective point of view, we can assume a non-informative prior density function for  , 

using Jeffrey’s prior density. In the case of the exponential model, Jeffrey’s prior density (see, for 

instance, Bernardo, 2009), is given by   1
00
p , 000 S . By taking 0   and vx   in (4), it 

follows from (11) that 
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which corresponds to a   ni ivn 1,Gamma  distribution, where,  21,Gamma   denotes a gamma 

distribution with expectation 1
21
 . Similarly, Jeffrey’s prior density for the multinomial model (see, for 

instance, Berger and Bernardo 1992) corresponds to a Dirichlet distribution with density function: 
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j jq aaaaB 111 /,, , for 0,,1 qaa  , thus, it follows from (4) and the 

multinomial model that 
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which corresponds to a  2/1,,2/1Dirichlet 1  qcc   distribution. Let  iii uvx , , ni ,,1 ,  nxxx ,,1  ,  10 ,  , and assuming independence, the posterior density is given by 

     upvpxp 10   , where  vp 0  and   up 1  are defined in (12) and (13), respectively.  
Note that, in this example, we can obtain a closed form expression for the point estimate of the 

demand  xXDE  , since, from (12) and (13) we have     1
10

 n
i ivnvVE  and    2/11

1  
jj ccuUE   (where   2/2/11 qncc n

j j    ), and following (10) we have 

 
 

  
The above expression allows us to calculate a forecast for the mean   based on a data set x . In this 

case, however, it is not easy to obtain a closed form expression for the cdf and the optimal order size. 
Thus, we can apply the posterior sampling (PS) algorithm described in section 3.1 of Muñoz et al. (2013) 
in order to calculate, via simulation, the corresponding optimal order size, given a service level  wuu  / . It is worth mentioning that the main idea behind the PS algorithm is to generate simulated 

observations for the demand by first sampling a parameter value   from the posterior distribution density  xp , and the sampling a demand observation from the forecasting model for the demand D 

(conditional on  ). 

For the case when 1q  (i.e., every client orders just one unit), the model is simpler and it is not 

necessary to turn to simulation in order to find the optimal order size. In this case, we can ignore 1  and 

the values iu  (since they are always equal to 1). Let vx , 0  , we have that 
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for ,1,0j , which corresponds to a negative binomial distribution. Using equations (8), (9) and (14) 

we can determine the optimal order size *
BQ  for this particular case, without resorting to the PS algorithm 

or simulation. 
 

4 EXPERIMENTAL RESULTS 

In order to illustrate the validity of the PS algorithm and, in particular, how it can be applied in order to 
determine the optimal order size, we will use the example from the previous section that has a closed 
form expression (14) for the posterior distribution of the demand. First of all, we should point out that we 

considered the values of 15T , 20n , 10
1

 
n

i ix , 9u , 1w . With this data, the optimal service 

level is   9.0/  wuu . After applying the Bayesian approach described in equations (8) and (9), and 

the posterior distribution defined in (14), we obtained an optimal order size of 41* BQ , then, by 

following (6), we have an expected profit of 38.253)( * xQB BB , and a service level of 901.0)( * xQF BB  

(slightly higher than 0.9). 
 With the objective of comparing the results obtained through the classical approach, notice that, from 
(10), we can find that the cdf  yFC  defined in (3) corresponds to a Poisson distribution with mean T . 

On the other hand, the maximum likelihood estimator of   is 2ˆ  , thus, when applying the classical 

approach with conditions similar to (8) and (9), we obtained 37* CQ , reporting an expected profit of 

)(05.260)( ** xQBxQB BBCC   from (2), and a service level, from the posterior distribution in (14), of     xQFxQF BBCB
** 803.0  . These results suggest that under the classical approach, expected profit is 

overestimated, and results in a more conservative service level when compared to the Bayesian approach, 
confirming the intuition that parametric uncertainty proposes a posterior distribution for the demand  xyFB  with greater dispersion than the classical approach distribution  xyFC . In the following 

section, we present empirical results that confirm these observations. Subsequently, we will also illustrate 
how we can estimate the optimal order size when it is not possible (or is extremely complicated) to find a 
closed form solution. 

4.1 Empirical Comparison between the Classical and Bayesian Approaches 

In our first experiment, we assumed an arrival rate for clients of 2  and generated 1000m  samples 

of arrival times, each of size 20n . For every sample, we calculated 
n

i ix
1

 and the optimal order size 

(under both the classical and Bayesian approaches) with the data from the previous section (15T , 
20n , 9u , 1w ). For every sample, we calculated the difference in expected profit between both 

approaches )()( ** xQBxQB BBCC  , and the service level for the optimal order size  xQF CB
* . 
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Based on Figure 1, notice that the classical approach has overestimated the expected profit in all 
replications of the experiment. Similarly, based on Figure 2, notice that the classical approach has 
provided a more conservative service level in every replication of the experiment. 

With the objective of showing that the proposed Bayesian approach is consistent with the classical 
approach, we replicated the previous experiments considering different samples sizes for the time 
between client arrivals. The results are summarized in Table 1. Notice from the table that, as the sample 
size increases, the difference in expected profit between both approaches tends to zero and the service 
level tends to the optimal value 0.9, showing that both approaches coincide as the sample size increases 
(and as the uncertainty in the parameters becomes negligible).  

 

 

Figure 1: Histogram of the difference )()( ** xQBxQB BBCC   based on 1000 replications of the estimation 

experiments under the classical and Bayesian approaches. 

 

Figure 2: Histogram of the actual service level  xQF CB
*

 for the optimal order size under the classical 
approach based on 1000 replications of the estimation experiments under the classical and Bayesian 
approaches. 
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Table 1: Difference in expected profit and service level under the classical optimal order sizes using 
different sample sizes.  

n Difference in Expected 
Profit 

Service Level 

Mean Std. Dev. Mean Std. Dev. 

5 25.95 18.02 0.732 0.032 

10 13.61 6.13 0.770 0.025 

20 7.23 2.16 0.813 0.018 

50 3.10 0.59 0.861 0.011 

100 1.61 0.22 0.885 0.009 

150 1.08 0.12 0.894 0.008 

200 0.82 0.08 0.899 0.008 

250 0.66 0.06 0.901 0.008 

300 0.55 0.05 0.903 0.008 

 

4.2 Estimation of the Optimal Order Size using Simulation 

With the objective of illustrating how to calculate the optimal order size when the complexity of the 
model does not allow the calculation of a closed form expression for the solution, in this section we show 
the use of the PS algorithm to find the optimal order size using simulation. 

Table 2: Results after applying the PS algorithm for m = 100 and m = 1000.  

m Optimal Order Size Estimation of the Expected Profit 

Point Lower 
Bound 

Upper 
Bound 

100 dk 42 256.00 240.65 271.35 

dk+1 44 256.20 240.14 272.26 

1000 dk 40 252.37 247.89 256.85 

dk+1 41 252.49 247.90 257.08 

 
In order to apply the PS algorithm in our example, we once again use the data with  15T , 20n , 

10
1

 
n

i ix , 9u , 1w . Using these settings, we know that the optimal order size is 41* BQ , with an 

expected profit of 38.253)( * xQB BB . Based on the algorithm described in Figure 2 of Muñoz and 

Muñoz (2013), the PS algorithm consists in simulating m observations mww ,,1   of the demand. Each 

observation iw  is obtained by first simulating the value of the parameter via the posterior distribution  xp , and then simulating iw  using the forecast model (given the parameter value), which in our case 

corresponds to model (10).   
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In the case where the demand allows for a density function, the optimal order size is obtained by 
setting the service level to  wuu  /  and applying a valid method for quantile estimation. 
Nonetheless, for the discrete case, it is convenient to apply the method described by equations (8) and (9), 
replacing the cdf )( xyFB  for the empirical distribution of the observations mww ,,1  . 

From Table 2, notice that for m = 1000 observations, the PS algorithm provides an optimal order size 
of 41, and estimates an expected profit between 247.9 and 257.08, which covers the actual value (253.38). 
For m = 100, the number of observations is insufficient for obtaining an optimal order size (surprisingly, 
we saw no observation with a value of 43). For values of m > 1000, the PS algorithm should still provide 
an optimal order size of 41, with a better estimate of the expected profit. 

5 CONCLUSIONS AND RECOMMENDATIONS 

The results obtained by experimenting with the proposed approach show that the classical approach tends 
to provide more conservative service levels and to overestimate the expected profit when compared to the 
Bayesian approach. On the other hand, as the number of real data observations increases, the results with 
both methods tend to coincide. 

Based on the obtained results, we recommend applying the proposed Bayesian approach when the 
number of observations is small since in this case, the uncertainty in the parameters is significant. On the 
other hand, if we use stochastic simulation in order to estimate the optimal order size, we have to consider 
a large enough number of simulated observations in order to obtain an adequate precision. 
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