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ABSTRACT

In this paper, we discuss the formulation and solution to the newsvendor problem under a Bayesian
framework that allows the incorporation of urieérty on the parameters of the demand model
(introduced by the estimation process of these parametéespresent an application of this model with

an analytical solution and we conduct experiments to compare the results under the proposed method and
a classical approach. Furthermore, we illustrate thimason of the optimal order size using stochastic
simulation, when the complexity of the model doesailmw the finding of a closed form expression for

the solution.

1 INTRODUCTION AND LITERATURE REVIEW

Let D represent the demand (during the sales period) of a seasonal item.Olfdenotes the loss for
every unsold unit at the end of the period, arxd0 denotes the profit for every unit sold during the
period, the total profit for an order size Qf units is given by:

O R SN ®

The most common approach (see, for example, Nahmias and Olsen 2015) to find the optimal order

size QE consists in defining a density functidi{y/@) for the demand (the analysis is similar for the

discrete case), wher is the parameter vector, and, assuming known, we define the expected profit
as

de

f
B(Q0) = EbQ)o=06]= [§ ¥l dy §(Q ¥y () dy uQd f(yo)dy. (2

def

Fe(Qclo) = [ f(yoydy=—"1

u+w

®3)
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Note that Fc(y|6’) is the cumulative distribution function (cdf) of the demand gij@r= 4] .
Furthermore, if f (@) >0 is continuous in a neighborhood @t; condition (3) is sufficient for finding

the optimal value;):;. We also mention, for the sake of clarity, that the formulation presented in Nahmias

and Olsen (2015) is an equivalent formulationevehthe authors minimize the expected value of
— h(Q)-uD, so that (3) follows from Nahmias and Olsen (2015).

In practice, the value of is estimated from a data sek=(X,...,X,) using, for example, the
(maximum likelihood) estimator that maximizes the likelihood functlc(ﬁ|x). The most common

approach for finding the optimal order size consists in seﬂiag@ in (3), whereézé(x) is a point

estimator. While this procedure is found extensiviel Operations Management textbooks, it has the
downside of assuming that the point estimator eqinsparameter. Thus, in this article we discuss a
Bayesian approach to the newsvendor problem, (finding the optimal order size) incorporating
uncertainty (introduced by the estitizen process) in the parameter vector.

Bayesian methods to incorporate parameter uncertainty for inventory management have been
proposed since the pioneer work of Scarf (1959), itee author discusses the optimality of a Bayesian
updating rule for inventory management. Silver (1965) proposed the incorporation of parameter
uncertainty using Bayesian methods and shows how to compute a reorder point by modeling the demand
as a multinomial distribution. Bayesian methods hasen extensively appligd inventory management
in order to propose updating rules for the optiimaientory policy based on new information on the
product’s demand, see e.g., (Azouri 1985; Eppenlyed1997; Lariviere and Porteus 1999; Chen and
Plambeck 2008; Chen 2010; Jain et al. 2015), and feeerees therein. Howeneghe use of simulation
technigues to estimate performance measures for inyemtmmagement is not considered in these articles
and the related literature.

The following section describes the theory behind the proposed Bayesian approach, which allows the
incorporation of parametric uncertainty in thewsvendor problem. Afterwds, in the subsequent
section, we illustrate how to estimate the optimal order size using simulation by means of a simple
example. This example showcases how to estimateptal order size in more complicated problems.

In the same section, we present a comparison of the results obtained from applying a classical approach
versus the results obtained using the Bayesian approach. Finally, in the last section, we present our
conclusions and recommendations.

2 METHODOLOGY

Under a Bayesian framework, the pasder vector is a random variabte that has a prior density
function p(@), thus the posterior density function (given a dataxgeis given by

o)
M0, o Uxoro’ @

where x € R° , 0 S and L(X0) is the likelihood function. From (4) and following the same notation as
in (3), the cdf of the demand (givé¢iX = x]) is given by

def
E( yx= EEE(Y)] X= >§=SIOFc(W9) & x)do, (5)
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for y>0, whereR:(y|#) and p(¢x) are defined in (3) and (4), respectively. Similarly, from (1) we
obtain the expected profit (givgiX = x]) as

def
B [Qx J§ yaR [y} (@ Yde( y3+ udgdrs(yix), (6)
where Fg(y|x) is the cdf defined in (5). This shows thBg(Qx) has a similar form tB; (Qx) defined

in (2). Consequently, the optimal order s@é considering parametric uncertainty satisfies

u
u+w’

Fa(Qh/x)= )

where Fg(yx) is defined in (5). It is worth mentionirthat our problem formulation is different from

the one proposed in Jain et al. (2015), where the authors propose a dynamic program to solve the
newsvendor problem in a multi-period setting in order to show the advantages of using a more efficient
updating rule. The main difference is that we consalsingle-period expected profit that is explicitly
dependent on the available dataxséthis formulation allowed us to obtain a simple solution in the form
of (7).

It is important to point out that for éhcase where demand is discrete, taking vatljesd, <..., the
function Fz(yx) is not continuous, and edian (7) might not have a solution, in which case we must

find the value ofd, that satisfies:

HD< g X =x]< U< H D< d¢, g X = X], (8)
u+w
in order to evaluateB, (d,[X) and By(d,.,|X) , where:
B Qx= L_EQ PCiXx ¥ V\_EQ(Q J D= [jX= %+ uQR D> QX =Xx] )
j< j<

If Bs(dX > Bg(dk,1/x), the optimal order size will be given 195 = dy, otherwise it will be

given by QE =dy,1. Note that in the discrete case (8) isligglent to (7), in the sense that neither
equation considers fixed ordering costghere is an initial inventory o)y, we should not order when

Q ZQE, otherwise we should only ordé); —Qp units if BB((Q ><)— Bs (Qv|X) > Cq, WhereC,is the
fixed ordering cost.

3 AN ILLUSTRATIVE EXAMPLE

In this section we illustrate the application of the proposed methodology through a similar model to the
one presented in Mufioz and Mufioz (2011) for the forecast of an item of intermittent demand. We know
that the demand for service parts follows a Poisson process, though there exists uncertainty in the arrival
rate ©,, thus, given[®,=6,], the times between customers’ wals are i.i.d. according to the

exponential density function:

2080



Munoz and Mufioz

f(y|6’o)={‘goe€°y1 y>0,

0, otherwise,

where 8, e S, =(0,). Every client can ordej units of an item with probability;, j=1...,q,
g>2 Let ®1=(P1,...,Pq_1) and Z?:le =1, then® =(®,,0,) denotes the vector of parameters and
the parameter space is given lg§y= S, ® S,;, where

o1
501:{('01 v Pg-1) :Zl/)j <Ipj20j= l...,q—l}.
j=

The total demand for a period of lengthis given by

N(T)
D- Elui , N(T)>0, (10)
0, otherwise,

where N(s) is the number of clients that arrived in the interfeak], s>0, andu,,U,... are the

individual item demands (we assume theg aonditionally independent with respect @o). The
information fore consists of (i.i.d.) observations= (vi,...,v,), u=(u,...,u,) of past clients, where

v, is the time between the arrival of clienand previous clienti(-1), andu, is the number of items
ordered by client. The likelihood functions forvVand U are given by

n

n O TV g-1 Cq g-1 .
(V0o =05 ", and L) =|1- X p; | 157, (11)
j=1 j=1

respectively, Where!;"l:(pl,...,pq,l), andcj =X 1[u; = j] is the number of clients that ordergd
items.

From an objective point of view, we can assume a non-informative prior density functien for
using Jeffrey’s prior density. In the case of #wponential model, Jeffrey’s prior density (see, for
instance, Bernardo, 2009), is given B{6,)=6,", 0, S, . By taking =0y and x=V in (4), it
follows from (11) that

n \" -6 gVi
R
_ i=1

: (12)

which corresponds to @ammzﬁn,z{‘zlvi) distribution, where,Gamma(p,3,) denotes a gamma

distribution with expectatiorﬁlﬁz’l. Similarly, Jeffrey’s prior density for the multinomial model (see, for
instance, Berger and Bernardo 1992) corresponds to a Dirichlet distribution with density function:
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(1— lejJ HIPI”Z
0 — = = ,
P(L) B(1/2,.. 1/2)

where B(al,...,aq)zﬂ?zll“(aj)/F(z‘j‘:laj), for &,..,a,>0, thus, it follows from (4) and the
multinomial model that

q-1 cq—1/2q71 ci-1/2
_ . Cj~
(1 Elp]] 17
p(6yju) = (13)

B(c, + 1/2...,c4 +1/2)

which corresponds to d@irichlet(c; + 1/2,...,cq+1/2) distribution. Let % =(v,u;), i=1...,n,
x=(%.,..., X,) , 0=(6,,60,) , and assuming independence, tpesterior density is given by
16 ¥ = p(G/V) p(Gi)u), where p(dylv) and p(6yu) are defined in (12) and (13), respectively.
Note that, in this example, we can obtain a etbform expression for the point estimate of the
demand = EDX=x] , since, from (12) and (13) we havedOyV=V]= n(zi”:lvi )_1 and

HOyj|U=u= C_l(cj +1/2) (wherec= >, (cj +1/2)=n+q/2), and following (10) we have

n= EED, X X X= BEENT)OJEU(O]X =X]

q q
T%(ao _Zl P1j| X= %= THOoV =V] '21 JE[©1j]U =]
j= j=

n q
Tr{ > \4] (n+q/2)'y j(c; +1/2),

j=1

The above expression allows us to calculate a forecast for the méased on a data st In this

case, however, it is not easy to obtain a closed fxpression for the cdf and the optimal order size.
Thus, we can apply the posterior sampling (PS) algaridbscribed in section 3.1 of Mufioz et al. (2013)
in order to calculate, via simulation, the corresponding optimal order size, given a service level
a= u/(u+ w). It is worth mentioning that the main ideahbral the PS algorithm is to generate simulated

observations for the demand by first sampling a parameter vhfuem the posterior distribution density
F(ﬂX) and the sampling a demand observation from the forecasting model for the dBmand
(conditional on®=48).

For the case whefl=1 (i.e., every client orders just ommit), the model is simpler and it is not
necessary to turn to simulation in order to fthd optimal order size. In this case, we can igrgrand
the values U, (since they are always equal to 1). L&=V , 0=0, , we have that

HD= j@=6]= HNT)= jH@z@]:e_HT(GT)j/j!, and considering (12), it can be proven that
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n n i
n+j-1 X
P[D = jX:x]:( j ) EX

J n
T+ in T+ ZXi
i=1 i=1

T

: (14)

for j =01,..., which corresponds to a negative binomial distiion. Using equations (8), (9) and (14)

we can determine the optimal order sQé for this particular case, without resorting to the PS algorithm
or simulation.

4 EXPERIMENTAL RESULTS

In order to illustrate the validity of the PS algorithmdain particular, how it can be applied in order to
determine the optimal order size, we will use thanegle from the previous section that has a closed
form expression (14) for the posterior distribution & temand. First of all, we should point out that we

considered the values @f=15, n= 20, Z:in:lxi =10, u=9, w=1. With this data, the optimal service
levelisa =u /(u+ w)= 0.9. After applying the Bayesian approach described in equations (8) and (9), and
the posterior distribution defined in (14Wve obtained an optimal order size @@ =41, then, by
following (6), we have an expected profit 8f, Qg|x )= 25338, and a service level of, Qg|x )= 0901

(slightly higher than 0.9).
With the objective of comparing the results obtained through the classical approach, notice that, from

(10), we can find that the cd¥; (y|0) defined in (3) corresponds to a Poisson distribution with ns&an

On the other hand, the maximum likelihood estimatos o & = 2, thus, when applying the classical
approach with conditions similar to (8) and (9), we obtai@éd: 37, reporting an expected profit of

B. Qc|x )= 26005> B, (Q;
FB(Qg|x)= 0803< FB(Q*B|X). These results suggest that under the classical approach, expected profit is

overestimated, and results in a more conservative service level when compared to the Bayesian approach,
confirming the intuition that parametric uncertairgyoposes a posterior distribution for the demand
FB(y|x) with greater dispersion than tteassical approach distributiofc(yXx) . In the following

section, we present empirical results that confires¢hobservations. Subsequenthe will also illustrate

how we can estimate the optimal order size whennbigossible (or is extremely complicated) to find a
closed form solution.

x) from (2), and a service level, from the posterior distribution in (14), of

4.1  Empirical Comparison between the Classical and Bayesian Approaches
In our first experiment, we assuchan arrival rate for clients af =2 and generateth=1000 samples
of arrival times, each of size=20. For every sample, we calculat@in:lxi and the optimal order size

(under both the classical and Bayesian approjchis the data from the previous section £15,
n=20, u=9, W=1). For every sample, we calculated the défece in expected profit between both
approachesk: ( @\ X — BB(Q;\X) , and the service level for the optimal order stBe(an).
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Based on Figure 1, notice that the classical agprdeas overestimated the expected profit in all
replications of the experiment. Similarly, based igure 2, notice that the classical approach has
provided a more conservative service level in every replication of the experiment.

With the objective of showing that the proposed Bayesian approach isteonsigh the classical
approach, we replicated the previous experimeatssidering different samples sizes for the time
between client arrivals. The results are summarizethbiie 1. Notice from the table that, as the sample

size increases, the difference in expected profit between both approaches tends to zero and the service

level tends to the optimal value 0.9, showing that both approaches coindioe s@nple size increases
(and as the uncertainty in therameters becomes negligible).

Excess of Expected Benefit

0.4

0.35

0.3

0.25

0.2
M Rel. Freq.

0.15

0.1

0.05

210 263 316 369 423 476 529 582

Figure 1: Histogram of the differencg. (Q.|% — B;(Qg|x) based on 1000 replications of the estimation
experiments under the classical and Bayesian approaches.

Service Level

0.3

0.25

0.2

0.15 -
M Rel. Freg.

0.1 A

0.05 A

083 084 085 086 086 0.87 0.88 0.89

Figure 2: Histogram of the actual service Ie\llzéI(QC|X) for the optimal order size under the classical
approach based on 1000 replications of the etttmaxperiments under the classical and Bayesian
approaches.
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Table 1: Difference in expected profit and service level under the classical optimal order sizes using
different sample sizes.

n Difference in Expected Service Level
Profit

Mean Std. Dev. Mean Std. Dev.
5 25.95 18.02 0.732 0.032
10 13.61 6.13 0.770 0.025
20 7.23 2.16 0.813 0.018
50 3.10 0.59 0.861 0.011
100 1.61 0.22 0.885 0.009
150 1.08 0.12 0.894 0.008
200 0.82 0.08 0.899 0.008
250 0.66 0.06 0.901 0.008
300 0.55 0.05 0.903 0.008

4.2  Estimation of the Optimal Order Size using Simulation

With the objective of illustrating how to calculatestloptimal order size when the complexity of the
model does not allow the calculation of a closed form expression for the solution, in this section we show
the use of the PS algorithm to find the optimal order size using simulation.

Table 2: Results after applying the PS algorithnmier 100 and n¥ 1000.

m Optimal Order Size Estimation of the Expected Profit
Point Lower Upper
Bound Bound
100 dk 42 256.00 240.65 271.35
(o 98] 44 256.20 240.14 272.26
1000 dk 40 252.37 247.89 256.85
(o 18 41 252.49 247.90 257.08

In order to apply the PS algorithm in ouraexple, we once again use the data with-15, n= 20,
Z:in:lxi =10, u=9, W=1 Using these settings, we know that the optimal order si@% is 41, with an
expected profit ofB; Qg|x )= 25338. Based on the algorithm described in Figure 2 of Mufioz and

Mufoz (2013), the PS algorithm consists in simulatmgbservationsw,,...,w,, of the demand. Each
observationw, is obtained by first simulating the value thie parameter via the posterior distribution

p(9|x), and then simulatingy, using the forecast model (given the parameter value), which in our case
corresponds to model (10).
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In the case where the demand allows for a density function, the optimal order size is obtained by
setting the service level tor= u/(u+W) and applying a valid method for quantile estimation.
Nonetheless, for the discrete case, it is convenieagpty the method described by equations (8) and (9),
replacing the cdfFB(y1x) for the empirical distribution of the observations,...,w,,.

From Table 2, notice that for m1000 observations, the PS algorithm provides an optimal order size
of 41, and estimates an expected profit betweer®Zahtl 257.08, which covers the actual value (253.38).
Form= 100, the number of observations is insufficient for obtaining an optimal order size (surprisingly,
we saw no observation with a value of 43). For values 5f1000, the PS algorithm should still provide
an optimal order size of 41, with attex estimate of the expected profit.

5 CONCLUSIONS AND RECOMMENDATIONS

The results obtained by experimenting with the proposed approach show that the classical approach tends
to provide more conservative service levels and toestienate the expected profit when compared to the
Bayesian approach. On the other hand, as the nhumibealadata observations increases, the results with
both methods tend to coincide.

Based on the obtained results, we recommend applying the proposed Bayesian approach when the
number of observations is small since in this caseytigertainty in the parameters is significant. On the
other hand, if we use stochastic slation in order to estimate the optinmtder size, we ha to consider
a large enough number of simulated observations in order to obtain an adequate precision.
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