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ABSTRACT 

This paper presents the architecture and working principles of a Decision Support System (DSS) for 

logistics networks. The system relies on a data-driven discrete-event simulation model. A brief 

introduction to Reinforcement Learning (RL) and an explanation of the adoption of RL to the concepts of 

the DSS is given. An illustration of the realization is presented using a specific aspect of a logistics 

network. The logistics network is described in a data model which is represented by database tables. The 

tables are used to dynamically instantiate the simulation model. The authors describe how SQL queries 

can be used to model actions of an RL agent. A Data Warehouse can be used to measure Key 

Performance Indicators on the simulation output data of the simulation model, which can be used as a 

reward criterion for the RL agent. The paper presents a basis for the ongoing development of an RL agent. 

1 INTRODUCTION 

Logistics networks are very complex socio-technical systems which operate in an environment of 

uncertainty (McGinnis 2005). In order to cope with the complexity of these systems, many companies 

have developed dedicated logistics departments. They strive to provide accurate business reports to their 

managers to help them to decide about the right measures in the logistics network. The generation of 

reports is usually supported by Data Warehouse (DWH) technology. 

DWHs provide data structures in order to support tools for analytical decision making. In contrast to 

common databases, DWHs store data in redundant and aggregated ways, speeding up interactive analysis 

and providing data at sufficient aggregation levels. (Ehmke et al. 2011)  

Online Analytical Processing (OLAP) software provides a fast, flexible and interactive access to the 

data in a DWH and enables the organization, aggregation and visualization of information. Data are 

presented in terms of hypercubes depicting multidimensional structures. The cubes visualize system 

performance measures (the cube's cells) in context of their dimensions (the cube's borders) and therefore 

enable the flexible and multidimensional analysis of the data. (Bauer and Günzel 2013; Jarke et al. 2003)  

OLAP technology is often used to realize Performance Measurement Systems (PMS). A PMS unites 

different performance measures that relate to each other in a hierarchical form and typically culminate in 

one key performance indicator (KPI). KPIs are typically used by the management to measure, control and 

steer the logistics systems. Furthermore, some companies have developed dedicated KPI Monitoring 

Systems (KPIMS), which are designed to ensure a constant improvement of a logistics network regarding 

the monitored KPIs (Dross and Rabe 2014). Each KPIMS constantly monitors one KPI and sends an 

individually composed KPI Alert to a responsible manager if the KPI leaves certain predefined corridors. 

A KPI Alert generally consists of two parts: A list of facts that caused the KPI to deteriorate and a set of 

possible actions that could be performed by the addressed manager in order to improve the KPI. 
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Nevertheless, even with state-of-the-art DWHs, OLAP technology and smart KPIMS, the outcomes 

of certain actions in a logistics network are very hard to predict. In many situations, the managers are 

groping in the dark when it comes to decide about the right correcting changes in their network. It gets 

even more difficult if a manager tries to predict the consequences of a change regarding multiple KPIs at 

once, including the temporal development of the network. As a logical consequence, businesses are 

demanding for better solutions to plan possible changes in their logistics networks.  

The authors are currently developing a smart Decision Support System (DSS), which uses a Discrete-

Event Simulation (DES) model to predict the consequences of possible changes in the logistics network. 

Therefore, a mechanism has been developed to measure real world DWH KPIs on the simulation data 

(Dross and Rabe 2014). With the concept of a central Heuristic Unit (HU), the system is designed to 

automatically suggest smart changes in different areas of the network and predict their temporal effects 

regarding the overall development of the network. Cooperating with a large, international trading 

company, the authors are able to test the system with data from over 100 warehouses in different 

countries. In this paper, the authors present how Reinforcement Learning (RL) techniques are used to 

implement and test a novel approach to the realization of the internal HU in form of an RL agent. 

The paper is structured as follows: Section 2 presents an overview of the related work regarding 

simulation-based DSS and the use of RL techniques in the context of logistics networks. Section 3 

provides a description of the architecture and the general working principles of the DSS described in this 

paper. Section 4 provides an illustration of the realization of the system with RL techniques. It briefly 

describes the logistics network of the company providing the data for the study. A specific aspect of the 

logistics network and possible actions are presented. A brief introduction to RL and an explanation of the 

adoption of RL concepts to the DSS is given. Section 5 closes the paper with an outlook on future 

research. 

2 RELATED WORK 

2.1 Simulation-based Decision Support Systems 

Liebler et al. (2013) presented a simulation-based approach for gaining insight in global supply networks 

and explained its use for Logistic Assistance Systems (LAS). LAS are defined as systems which assist 

planners to quickly identify critical situations and objectively evaluate consequences of possible decision 

alternatives. Deiseroth et al. (2008) and Bockholt et al. (2011) are further publications that described LAS 

for planning and decision support in supply chains, especially in the automotive sector. In general, the 

concepts of LAS have been described by Kuhn et al. (2008) and Blutner et al. (2007). The terms LAS and 

DSS for logistics networks are mostly used synonymously in the literature. For this paper, we decided to 

consistently use the term DSS, although the system described here could also be referred to as a LAS. 

Heilala et al. (2010) presented a simulation-based DSS which can be used to help planners and 

schedulers organize production more efficiently. Although designed for a different problem domain, they 

explained the major challenges for a DSS, which are the data integration, the automated simulation model 

creation and the visualization of results for interactive and effective decision making. 

The combination of heuristics and meta-heuristics with simulation techniques  in  order  to  efficiently  

solve stochastic combinatorial optimization problems has been described as SimHeuristics by Juan and 

Rabe (2013). A SimHeuristic Framework as a DSS designed around this approach has been described by 

Dross and Rabe (2014). A good general introduction to the combination of simulation and optimization 

techniques can be found in März et al. (2011). 

2.2 Reinforcement Learning in the Context of Logistics Networks 

RL is the area of machine learning concerned with learning the actions that a software agent (RL agent) 

should take in a particular environment in order to maximize its rewards. It has attracted a considerable 

amount of interest recently. Classical textbooks on this topic are Sutton and Barto (1998), Bertsekas and 
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Tsitsiklis (1996) and Gosavi (2015). A general book on artificial intelligence with a good section about 

RL is Poole and Mackworth (2010). One of the most popular RL algorithms, also described in this paper, 

is the Q-Learning algorithm, which was developed by Watkins (1989). 

The usage of RL techniques in the logistics domain date back to 2002. Pontrandolfo et al. (2002) 

proposed an approach to study global supply chain management problems using RL techniques. They 

explained how the RL framework allows the management of global supply chains under an integration 

perspective. Giannoccaro and Pontrandolfo (2002) presented an approach to manage inventory decisions 

at all stages of a supply chain in an integrated manner. They described how RL is used to determine a 

near optimal inventory policy under an average reward criterion. Stockheim et al. (2003) presented a 

decentralized supply chain management approach based on RL. They showed that an RL solution 

outperformed a simple heuristic for all their training states. Subramaniam and Gosavi (2004) described 

how RL can be used to solve problems related to replenishing inventories at retailers in distribution 

networks operated under the paradigm of Vendor Managed Inventory (VMI). Another RL approach to 

determine a replenishment policy in a VMI system with consignment inventory has been presented by 

Zheng Sui et al. (2010). Qiu et al. (2007) described an approach where an RL algorithm is used to obtain 

the decision policies and system costs regarding different business service modes in distribution systems. 

Chaharsooghi et al. (2008) described how they considered supply chain ordering management as a multi-

agent system and formulated it as an RL model. They proposed a Q-learning algorithm to solve the RL 

model. Further explanations of the use of Q-Learning in the supply chain context can be found in Zhang 

and Bhattacharyya (2007) and Tim van Tongeren et al. (2007). 

To the best of our knowledge, there exists no description of a DSS for logistics networks which uses 

RL techniques to evaluate different action alternatives in the background, before suggesting concrete 

actions to the decision maker. 

3 THE DECISION SUPPORT SYSTEM 

The DSS described in this paper is build around the concept of a SimHeuristic Framework, which has 

been previously introduced by Dross and Rabe (2014). In this section, the authors will briefly summarize 

the most important parts. Additionally to Dross and Rabe (2014), further figures are introduced to clarify 

the technical implementation and the general working principles of the proposed DSS. 

3.1 Architecture 

The architecture of the DSS is shown in Figure 1. First, the data of the company, which is planning to 

implement the system, are used to create a DES model of the logistics network. This includes the process 

data, stock data and structure data. The process data and stock data are regularly collected by the 

transactional systems and are regularly transferred to the DWH. This process contains the steps Extract, 

Transform and Load and is therefore abbreviated with ETL. Once the data are in the DWH, they can 

comfortably be analyzed using OLAP technology. This can be especially useful when it comes to the 

parameterization of the simulation model. Structure data, e.g. warehouse capacities, might also be 

available in the DWH. If not, they need to be obtained from separate databases or files. Ideally, the 

process of simulation model parameterization should be automated or semi-automated, so that the 

simulation model can be automatically updated with the latest data from the logistics system under 

consideration. The implementation presented in this paper uses a data-driven simulation tool with a 

generic simulation model, which makes it easy to update the data of the simulation model. A more 

detailed description of the simulation tool will be given in the remainder of this section. 

In the second step, the KPI logic of the DWH has to be copied to a Shadowed Data Warehouse 

(SDWH). This virtual DWH ensures that no simulation output data are mixed with data from the actual 

logistics system. In order to work properly, the data model of the DWH and the exact queries for each 

KPI have to be transferred to the SDWH. This logic shadowing is another process which should ideally 

be automated, as well as the model parameterization process. 
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As briefly described in the introduction, DWH technology is often used to realize complex PMS. In 

Figure 1, the hierarchical structure of each PMS is illustrated by a tree of DWH queries, each of them 

culminating in one KPI. For each KPI, there exists one KPIMS, which periodically generates a KPI 

Report and examines it on the basis of specific, predefined criteria. Within this analysis, there are certain 

conditions which can trigger a KPI Alert, e.g. if a KPI has passed a predefined, fixed nominal value or if 

the development of a KPI shows a negative trend. The resulting KPI Alert typically consists of two parts: 

The facts that triggered the KPI Alert and a list of possible actions that could be performed by the 

manager in order to improve the KPI, respectively remove the conditions which triggered the KPI Alert. 

Without the DSS presented here, the KPI Alerts would be sent directly to the responsible manager in 

the company. With multiple, decoupled KPIMS, this could lead to a situation where one KPIMS would 

strive to improve its own KPI while possibly deteriorating one or more other KPIs. The concept could 

lead to discontent among the managers and deteriorations instead of improvements of the logistics 

network. Therefore, automated interdependence analyses of the different suggested actions are proposed 

to be performed by the HU. The results of these interdependence analyses are integrated actions, which 

are supposed to improve the overall network situation instead of just one KPI. 

Conceptually, the HU is able to execute the different action possibilities on the simulation model with 

the help of an Execution Engine. Regarding this aspect, the realization with a data-driven simulation 

model becomes very useful. Once an action has been executed on the simulation model, it is necessary for 

the HU to evaluate the effects of the action. In order to get an estimate of the effects caused by an action, 

a simulation experiment has to be conducted with the modified simulation model. After the simulation 

experiment has been conducted, the traces of the simulation experiment are extracted, transformed and 

 

Figure 1: The architecture of the Decision Support System based on Dross and Rabe (2014). 
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loaded into the SDWH using an abstracted form of the ETL process. Applying the KPI logic in the 

SDWH, the simulated effects of the actions on the KPIs can be evaluated. Using this framework, the HU 

is able to test different actions on the simulation model before suggesting integrated actions to the 

responsible managers in the company. The Reporting Module is planned to generate the final reports, 

which are sent to the managers. By means of a feedback mechanism, the HU should be able to learn about 

important structural changes in the network, which cannot be automatically derived from the DWH. 

Thinking further, the HU should also be able to learn from real world effects of previously suggested 

actions. The feedback could be received manually from the executing managers or automatically from the 

surveillance of actually occurring changes in the data of the logistics system. 

The described framework has already been extensively described in Dross and Rabe (2014) and the 

interested reader is referred to this paper for more detailed descriptions and explanations. In the remainder 

of this paper, the authors will explain their first implementation results of the described SimHeuristic 

Framework as well as their experiences using RL techniques for the realization of the HU as an RL agent. 

3.2 The Simulation Tool 

The simulation tool used for the prototypical implementation of the described SimHeuristic Framework is 

SimChain (SimPlan AG 2015). It consists of a generic supply chain simulation model for Siemens Plant 

Simulation and a corresponding data model stored in a MySQL database. The actual supply chain 

simulation model is dynamically instantiated from the data model, which describes the concrete 

configuration and parameterization of the generic building blocks. The structure and modeling approach 

of SimChain has been described in Gutenschwager and Alicke (2004). SimChain was chosen, because of 

its suitability and the authors' experience using it. It has been recently used in the e-SAVE project, which 

was funded by the European Commission (e-SAVE 2015; Rabe et al. 2012; Rabe et al. 2013). 

Figure 2 conceptually visualizes the realization of the SimHeuristic Framework with the simulation 

tool SimChain. The data model of SimChain contains database tables for all information necessary to 

describe a supply chain. The database tables are divided into basis and configuration tables. With the 

basis tables, the basic structure or layout of the logistics system is described. This includes e.g. the 

geographical locations of the sites, suppliers and customers. The configuration tables are used for the 

detailed specification of the dynamics of the simulation model. This includes for example the allocation 

of Stock Keeping Units (SKUs) to sites or the customer demands for SKUs at a site. The configuration 

tables allow for using configuration indices and the configuration indices can be used to define scenarios. 

This reference structure enables the modeler to easily specify different scenarios, constructed out of 

different configuration indices. It enables for example the description of scenarios with different SKU 

demands, but with the same replenishment configuration in each scenario. The output data of the 

simulation experiments is written back into specific statistics tables in the database. The granularity of the 

output data can again be specified with corresponding configuration tables. 

Following the idea of the SimHeuristic Framework, the raw data for the simulation data model are 

automatically derived from the DWH in predefined periods. As shown in Figure 2, an Input Data ETL 

Module is responsible to periodically extract the data from the DWH and transform and load it into the 

data structures of the simulation data model. The step of conceptually modeling the logistics network and 

defining the Input Data ETL processes is illustrated by the grey Modeling process in Figure 1. The data 

from the DWH can be combined with forecast scenarios, which have to be specified upfront by the 

domain experts. This may translate into different configurations for the dynamic behavior of the logistics 

system within the simulation data model. The transforming steps have to be periodically validated and 

verified with automated procedures and by the responsible persons. Once the automated procedures and 

the business processes for validation and verification are set up, the process of updating the simulation 

data model can be automated to a high extend. 
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As shown in Figure 2, the HU can receive the current system state with a State Observation module. 

This module uses SQL queries to extract the attributes necessary to describe the current system state and 

stores them accordingly. Action executions are realized with changes in the data model, not with changes 

in the instantiated simulation model. Thus, the Execution Engine performs SQL transactions to execute 

actions. Possible actions have to be defined as descriptions of changes in the simulation data model. Each 

SQL transaction has to fulfill the ACID requirement (Atomicity, Consistency, Isolation, Durability), 

leaving the data model in a consistent state (Coronel and Morris 2014). After a simulation experiment has 

been conducted, SimChain writes the simulation output data to the statistics tables in the database. From 

there the data can be extracted, transformed and loaded into the SDWH. The shadowed KPI logic is then 

used to generate KPI reports from the simulation output data. This setup builds the foundation for the 

realization of the HU as an RL agent. 

3.3 General Working Principle 

The general idea behind the realization of the DSS with the help of RL techniques is that it should be able 

to learn from experiments with the simulation model. At the time where the decision maker asks the 

system for a recommendation, it should already have knowledge about the possible consequences of 

actions, because it already has experience in applying actions to the simulation model of the logistics 

system. This is a fundamental difference to a classical simulation-based optimization approach, which can 

be explained with a simple example. 

Let !! be the set of all possible system states of the logistics system under consideration. Let ! be the 

set of all equivalent, possible system states of the simulation model of the logistics system. Let the system 

state !!
!
! !

! be the state of the real logistics system at the time !, for which the logistics manager needs a 

 

Figure 2: Concept for the realization of the SimHeuristic Framework with the simulation tool SimChain. 
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recommendation from the DSS. Let further be !! ! ! the equivalent system state in the simulation model 

of the logistics system. Let !!!!! be the set of possible actions in a state !! and ! ! !!!!  the number of 

possible actions in the state !!. If ! is a large number, the problem to decide which action combination 

should be taken becomes a !"-hard combinatorical problem (Juan and Rabe 2013). In a classical 

simulation-based approach a heuristic or meta-heuristic would be used to solve this problem. At the time 

! where the decision maker would ask for a recommendation from the DSS, the system would take the 

simulation model at system state !! and from there on intelligently try different actions !! !! !!!!!. The 

computation therefore typically starts at the time !. Furthermore, a temporally shifted execution of actions 

and the consequential development of the model are usually not considered. 

Using an RL approach, it is possible to train the system in advance, using the system state !!!! to 

learn a policy for this particular system state !!!!. A policy ! defines which action !! should be taken in 

a particular state !! . An approximation for the best action !!  in state !!  can be obtained with an 

approximation of the so-called action-value function for state !!  using a function approximation 

technique. An explanation of the underlying principles will now be given using a concrete example. 

4 ILLUSTRATION OF THE REALIZATION 

4.1 The Simulation Model 

As briefly mentioned in the introduction, the authors are cooperating with a large, international trading 

company with over 100 warehouses in different countries and are thus able to test the system with 

different data sets. The company has an inventory of around 150,000 items on permanent stock and 

operates a large, complex and heterogeneous logistics network. It is organized as a decentralized multi-

echelon network with central, regional and local warehouses. Each warehouse has a sales division that 

receives customer orders on a consistent basis. A special characteristic of the logistics network are certain 

warehouses that can perform value-added services, for example cutting, drilling or milling. Shuttle 

transfers between the warehouses and the shipment of the goods to the customers are performed using 

separated fleets with variable amounts of vehicles. 

In the following the authors will use one very basic, but specific aspect of the logistics network in 

order to illustrate the working principles of the described DSS. An illustration is given in Figure 3. In this 

SimChain simulation model, three sites with their respective customers have been modeled. Each 

customer is allocated to one delivery route. There exist only one article (SKU) in the model and only one 

plain supplier, from which the sites can potentially replenish the article. Only one future customer 

demand scenario is considered in order to keep the complexity to a minimum. The decision a logistics 

manager has to make for each site is whether a site should stock keep an article and regularly replenish it 

from the plain supplier, or if the article should be stock kept at another site and the article should be called 

on demand. If a site is replenishing from a plain supplier, a dynamic, demand-oriented safety stock 

calculation is used to calculate the reorder point. The authors will use the term system configuration to 

describe the combination of site configurations. Here, a site configuration could be represented with one 

bit, indicating whether the site is stock keeping or not. The system configuration could thus be described 

using a binary vector ! ! !!! ! ! ! ! !!, where ! is the number of sites. 

Figure 4 shows two exemplary system configurations out of the set of all possible system 

configurations. The manager has the task to choose the actions which will lead to the the most promising 

configuration. The decisions about the right actions in the logistics system involve the consideration of 

the stochastic behavior of the system, e.g. the customer demands at each site, the transportation cycles 

between the sites, the replenishment time of the plain supplier, the transportation costs, the inventory 

costs and the resulting service level at each customer. Of course, capacity restrictions have to be 

considered as well. Thus, even for this very basic decision problem with only one article, the use of a 

DES for the evaluation of the system behavior is justified. 
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Figure 3: The logistics system under consideration. 

 

Figure 4: Visualization of two exemplary system configurations A and B. 
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4.2 Application of Reinforcement Learning 

The decision problem a manager might be facing as described above can also be formulated as a Markov 

Decision Problem (MDP). An MDP consists of  

 

• a set of possible states !,  

• a set of possible actions !,  

• a specification of all the transition probabilities ! !
!
!! !! , specifying the probability of 

transitioning to state !! if action ! is taken in state ! and 

• a specification of all the expected immediate rewards !!!! !! !!!, which is the expected reward 

from doing action ! in state ! and transitioning to state !!.  

(Poole and Mackworth 2010; Sutton and Barto 1998) 

 

Thus, MDP provide a mathematical framework for decision problems where the consequences of 

decisions are partly random and partly in control of the decision maker. The solution to an MDP is a 

policy !, which defines which action !! should be taken in a particular state !!. Given a reward criterion, 

rewards are combined to a cumulated return !. A policy has an expected value !!!!! for each state, 

which is the expected return of following ! starting in state !. !! is called the state-value function for 

policy !. Another important function is the action-value function !!. !!!!! !! is the expected return of 

applying action ! in state ! and then following policy !. There always exists at least one optimal policy 

!
!, which is better than or equal to all other policies. All optimal policies share the same optimal state-

value function, which is defined as !! ! ! !"#! !
!
!  for all states !! ! ! and the optimal action-

value function, which is defined as !! !! ! ! !"#! !
!
!! !  for all states !! ! !  and all actions 

!! ! !!!!. 

If the transition probability model of an MDP is known, Dynamic Programming methods can be used 

to solve the MDP (Gosavi 2015). If the transition probabilities are too difficult to find because of the 

complex stochastics of the underlying system, which is the case in the system described in this paper, RL 

can be an approach to solve the MDP. One of the most often used algorithms in RL is the Q-learning 

algorithm. In its simplest form, one-step Q-learning, is defined by 

 

! !! ! !! !! ! !! ! !! ! !!!!!! ! !!!"#! ! !!!!! ! ! !!!! ! !!!!, 

 

 where ! is the step-size parameter (!! ! ! ! !!!and ! is the discount-rate parameter !!! ! ! ! !!. 

The choice of the step-size parameter ! is basically controlling how fast the algorithm is learning and the 

discount-parameter ! is controlling the extend to which an estimation of the future value is added to the 

return. The agent maintains a table of !!!!!!, where the rows are the possible states ! and the columns 

are the possible actions !. !!!! !! represents the agent's current estimate of !!!!! !!. 

 In the context of the presented DSS, the algorithm works as follows: 

 
Initialize Q[S,A] with 1.0 for all s and a 

Repeat 

 Observe state s 

 Execute an action a 

 Perform simulation experiment 

 Receive reward r and state s' 

 Update Q[s,a] 

Until termination 

 

The system states description for the example above are assembled from the system configuration and 

the manifestation of the system variables needed to learn a useful policy. An illustration is given in  
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Table 1, which resembles an illustrative state of the table !!!!!!. Each system state can be described 

using a vector !. The vector consists of different sections, described by !, ! and !. ! stands for the system 

configuration. For each site it is stored 1 if a site is stock keeping and 0 if not. ! stands for the inventory 

for the considered article at each site. ! stands for the demand forecast for the article at the respective site 

for the period under examination in the DSS run. 

Table 1: Illustration of the !!!!!! table for the exemplary decision problem. 

STATES ACTIONS 

! ! ! A1 A2 A3 A4 … 

[1,1,1, 80,42,10, 12,3,8] 1.0 0.2 0.5 0.8 … 

[1,0,1, 80,0,52, 12,3,8] 0.8 0.9 1.0 0.2 … 

… … … … … … … … 

 

The actions are abbreviated with A1, A2, et cetera. They are essentially functions in the Execution 

Engine, which can be called by the RL agent. The functions perform SQL queries which change the data 

in the simulation data model. The signatures of the functions used in the example described above are: 

 
instructWarehouseToStockkeepArticle(WarehouseID) 

instructWarehouseToOrderArticleOnDemand(WarehouseID) 

 

The reward for an action is measured through the SDWH, as shown in Figures 2. For the minimal 

example presented here, it is a weighted sum of the decline of logistics costs and increase in delivery 

performance. The transportation costs are currently not considered in this problem instance. The raw data 

for the KPIs are written to the statistics tables by SimChain and are subsequently combined in the SDWH. 

5 CONCLUSION AND OUTLOOK 

A first prototype of the described system is currently developed using an RL library. First experiments 

have been conducted to obtain an estimate on how well the DSS might perform with larger logistics 

problems. The first experiments have shown that RL techniques seem to be a suitable approach to 

construct the internal principles of the proposed DSS. It can be used for solving small problem instances, 

as the one described in this paper. Furthermore, there already exists some literature on the successful use 

of RL techniques to solve control problems in the logistics context.  

 In its conception, RL offers everything that is needed to realize the proposed DSS. Still, it will be 

interesting to research how the DSS behaves for larger problem instances. Since it is not feasible to store 

the whole action-value table for problems with large state spaces, it will be mandatory to use a value-

function approximation, such as an artificial neural network, which learns the action-value function from 

samples.  

 The key question in the subsequent research will be how to use the experience of an agent with a 

limited subset of the state space to successfully synthesize a useful policy for the rest of the state space. 

This form of generalization will especially be important in the application presented in this paper, since it 

cannot be guaranteed that the system will visit all relevant states, for which a decision maker might need a 

recommendation, in advance. 

 Finally, the system should be able to learn from experience with the simulation model in order to  

provide useful action recommendations for states in the real logistics system that are similar to the ones it 

has interacted with in the simulation model. 
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