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ABSTRACT 

We use two mathematical models to represent the dependency between workload releases and lead times: 
a linear programming model with fractional lead times (FLT) and a clearing function (CF) based 
nonlinear model. In an attempt to obtain a reference solution, a gradient based simulation optimization 
procedure (SOP) is used to determine the lead times that, when used in the FLT model, yield the best 
performance. Results indicate that both FLT and CF models perform well, with CF approach performing 
slightly better at very high workload scenarios. The SOP is able to improve upon the performance of both 
models across all experimental conditions, suggesting that FLT and CF models are limited in representing 
the lead time dynamics. All three models yield quite different lead time patterns at critical machines, 
suggesting the need for further study of the behavior of these models. 

1 INTRODUCTION 

In most optimization models for production planning (Johnson and Montgomery 1974; Voss and 
Woodruff 2003) the capability of the shop floor is represented as the “capacity” of the production system, 
expressed as the total available time of resources. However, capacity is, in fact, is a very complex concept 
(Elmaghraby 2010) which is manifested in lead times, the delay between work being released into the 
system and its emergence as finished product. Accurate modeling of lead times is essential to optimally 
coordinate the release of new work into the plant. However, lead times are, in fact, strongly dependent on 
the release decisions that determine the evolution of the system workload over time (Missbauer 2002; 
Pahl et al. 2005; Pahl et al. 2007). As shown by queuing models, system performance measures, 
especially lead times, start deteriorating well before resource utilization reaches 100%, and are influenced 
by both the mean and variance of the service and arrival processes (Hopp and Spearman 2008). This 
mutual dependency between lead times and releases is known as the planning circularity. 
 The planning circularity has been addressed in the literature using different techniques. The most 
common approaches, which will be discussed in Section 2, are the use of nonlinear clearing functions 
(CF) and iterative multi-model approaches combining linear programming (LP) and simulation. In this 
paper we use a fractional lead time based LP model (the FLT model); and a clearing function based model 
(the CF model) to obtain production/release plans taking the planning circularity into account. The FLT 
model is adapted from the work of Kacar et al. (2014) and the CF model from Asmundsson et al. (2009). 
We also use a simulation optimization procedure (SOP), similar to that of Kacar and Uzsoy (2015), that 
considers a more general fractional lead time model and searches for the set of planned lead times that 
yield the highest profit. Although our SOP does not guarantee global optimality, its solution is used as a 
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benchmark to investigate the solution quality of the two models and the lead time behaviour observed in 
their respective optimal solutions.  
 The remainder of the paper is organized as follows. Section 2 briefly reviews the literature. Section 3 
presents the production planning models and SOP. Section 4 presents the numerical experiments, while 
conclusions and directions for future research are presented  in Section 5. 

2 LITERATURE REVIEW 

There have been two basic approaches to the planning circularity in the literature to date. Clearing 
functions (CF) explicitly represent the nonlinear dependency between lead times and workload as a 
nonlinear function that can be incorporated into optimization models for production planning  (Missbauer 
and Uzsoy 2010). Some authors (Srinivasan et al. 1988; Karmarkar 1989; Selçuk  et al. 2007) derive CFs 
analytically for simple systems, while others such as Asmundsson et al. (2009), consider a complex 
production system and use off-line simulation to estimate the parameters of the CF. Albey et al. (2014) 
propose a family of product-based multi-dimensional CFs that use the disaggregated WIP levels for 
individual  products as state variables. CFs that consider lot sizing decisions are introduced by Kang et al. 
(2014). 
  In iterative approaches, production/release planning is achieved by iterations between a LP model and 
a simulation model. The estimates of the capacity related parameters used in the LP model are updated at 
each iteration until convergence (Hung and Leachman 1996; Byrne and Bakir 1999; Kim and Kim 2001; 
Byrne and Hossain 2005; Bang and Kim 2010). However, the convergence behavior of these techniques 
is often inconsistent and not well understood (Irdem et al. 2010; Albey et al. 2014). In addition, 
computational experiments have shown that appropriately fitted CF models yield superior production 
plans to those obtained by these iterative approaches (Kacar et al. 2012), 
 Tekin and Sabuncuoglu (2004), Fu (2002) and Zapata et al. (2010) present comprehensive surveys of 
simulation optimization techniques. They classify the existing techniques according to problem 
characteristics (global vs. local optimization), objective functions (single or multiple objectives) and 
parameter spaces (discrete or continuous parameters). Continuous parameter space methods, which are 
relevant to this study, are further categorized into response surface methodology, gradient-based methods 
and stochastic approximation methods. In this paper, we use a gradient based approach where the gradient 
is estimated using perturbation analysis (Ho et al. 1979). Our reasons for choosing perturbation analysis 
are: i) when applied properly, it is able to estimate all gradients from a single simulation run (Tekin and 
Sabuncuoglu 2004), hence is more efficient than other techniques; ii) it performs well for discrete-event 
dynamic systems that can be modeled as queueing networks,  hence has been used for manufacturing 
systems (Donohue and Spearman 1993; Liberopoulos and Caramanis 1994; Yan et al. 1994). 

3 LEAD TIME MODELING: PLANNING FRAMEWORK 

The production system under investigation is assumed to process a set of products, each requiring a 
specified set of operations. Products that complete processing at a particular machine immediately 
become available to the next operation on their process routing. The production/release plan considers a 
predetermined number of periods and seeks to maximize the total net present value of the profit obtained 
in each planning period, which is given by the difference of the period revenue and the sum of backorder, 
finished good inventory (FGI) holding, work in process (WIP) holding and material (i.e. release) costs 
incurred in the period. The central decision variables are the amount of each product to be released into 
the production system in each period. 
 In our experiments, the two planning models are executed to obtain a release plan for the entire 
horizon, yielding the quantity of each product to be released to the shop floor in each period. These 
aggregate release quantities are disaggregated using the heuristic of Askin and Standridge (1993) and 
released uniformly over the period. The First Come First Served (FCFS) dispatching rule is used to select 
parts from machine queues. The disaggregated release plan is then simulated using the software 
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environment of Albey and Bilge (2011). The realized profit at the end of the simulation as well as the 
observed lead times are recorded for performance comparison. 

To provide a benchmark, the FLT model is incorporated into a SOP that searches for the lead time 
values that allow this model to obtain the maximum expected profit. In this mode, the framework is 
operated as follows: Starting from an initial estimate of lead times for each period, the fractional lead time 
model presented in Section 3.2 is solved to generate a release plan for the initial set of parameters. The 
release plan is simulated and the resulting objective is recorded. The parameter vector is randomly 
perturbed, following the Simultaneous Perturbation Stochastic Approximation approach of Spall (1998) 
and a new parameter vector is obtained (the random perturbation approach is also used successfully in 
Kacar and Uzsoy (2015) for a similar setting to ours). A new iteration is triggered and the production 
planning framework is executed for the new set of parameters. The execution terminates once the 
predefined iteration limit is reached. Details of the SOP are given in Section 3.3. 
The following sub-sections present the mathematical models and the SOP.  

3.1 Fractional Lead Time (FLT) Model 

The FLT model used in this study extends that of Kacar et al. (2014) by considering fractional lead times 
varying from period to period and maximizes discounted total profit. The notation is presented in Table 1.  

Table 1: Notation. 

Indices: Sets: ݔ݁݀݊݅ ݀݋݅ݎ݁ܲ:ݐ, ݐ = 1,2, :(݅)ܱ݈݈ܣ ܶ… :(݋)ܯݐ݈ܣ    ݔ݁݀݊݅ ݐܿݑ݀݋ݎܲ:݅ ݅ ݐܿݑ݀݋ݎ݌ ݂݋ ݏ݊݋݅ݐܽݎ݁݌݋ ݈݈ܽ ݂݋ ݐ݁ܵ ݊,݋ ݋ ݊݋݅ݐܽݎ݁݌݋ ݎ݋݂ ݏ݄݁݊݅ܿܽ݉ ݁ݒ݅ݐܽ݊ݎ݁ݐ݈ܽ ݂݋ ݐ݁ܵ ׷ :(݉)ݎ݌ܱ ݔ݁݀݊݅ ݊݋݅ݐܽݎ݁݌ܱ ݃,݉ ݏݏ݁ܿ݋ݎ݌ ݊ܽܿ ݉ ݄݁݊݅ܿܽ݉ ݐ݄ܽݐ ݏ݊݋݅ݐܽݎ݁݌݋ ݂݋ ݐ݁ܵ ׷ :(݋)ܲ݉ܫ ݔ݁݀݊݅ ݄݁݊݅ܿܽܯ   ݅ ݐܿݑ݀݋ݎ݌ ݂݋ ݊݋݅ݐܽݎ݁݌݋ ݐݏݎ݅ܨ:௜ܨ  ݅ ݐܿݑ݀݋ݎ݌ ݂݋ ݊݋݅ݐܽݎ݁݌݋ ݈ܽ݊݅݉ݎ݁ܶ:௜ܮ ݋ ݊݋݅ݐܽݎ݁݌݋ ݂݋ ݎ݋ݏݏ݁ܿ݁݀݁ݎ݌ ݁ݐܽ݅݀݁݉݉ܫ
Decision Variables: ܴ௜௧:ܴ݈݁݁ܽܫ ݐ ݀݋݅ݎ݁݌ ݂݋ ܾ݃݊݅݊݊݅݃݁ ݄݁ݐ ݐܽ ݅ ݐܿݑ݀݋ݎ݌ ݂݋ ݕݐ݅ݐ݊ܽݑݍ ݁ݏ௜௧:ܤ ݐ ݀݋݅ݎ݁݌ ݂݋ ݀݊݁ ݄݁ݐ ݐܽ ݅ ݐܿݑ݀݋ݎ݌ ݂݋(ܫܩܨ) ݕݎ݋ݐ݊݁ݒ݊݅ ݏ݀݋݋݃ ݄݀݁ݏ݅݊݅ܨ௜௧:ݐ ݀݋݅ݎ݁݌ ݂݋ ݀݊݁ ݄݁ݐ ݐܽ ݅ ݐܿݑ݀݋ݎ݌ ݎ݋݂ ݎ݁݀ݎ݋݇ܿܽܤ ܺ௢௠௧: ܰݐ ݀݋݅ݎ݁݌ ݊݅ ݉ ݄݁݊݅ܿܽ݉ ݊݋ ݀݁ݐ݈݁݌݉݋ܿ ݋ ݊݋݅ݐܽݎ݁݌݋ ݂݋ ݎܾ݁݉ݑ ௢ܹ௧: ܹݐ ݀݋݅ݎ݁݌ ݂݋ ݀݊݁ ݄݁ݐ ݐܽ ݋ ݊݋݅ݐܽݎ݁݌݋ ݂݋ ݐ݊ݑ݋݉ܽ ܲܫ 
Parameters: ߮௜:ܷ݊݅ߩ ݅ ݐܿݑ݀݋ݎ݌ ݂݋ ݁ܿ݅ݎ݌ ݈݈݃݊݅݁ݏ ݐ௜:ܷ݊݅ߨ ݅ ݐܿݑ݀݋ݎ݌ ݂݋ ݐݏ݋ܿ ݈ܽ݅ݎ݁ݐܽ݉ ݐ௜:ܷ݊݅ߚ ݅ ݐܿݑ݀݋ݎ݌ ݂݋ ݐݏ݋ܿ ݈݃݊݅݀݋݄ ݕݎ݋ݐ݊݁ݒ݊݅ ݐ௜:ܷ݊݅ݐܿݑ݀݋ݎ݌ ݂݋ ݐݏ݋ܿ ݎ݁݀ݎ݋ܾ݇ܿܽ ݐ ݅ ݀௜௧:ߝ ݐ ݀݋݅ݎ݁݌ ݂݋ ݀݊݁ ݄݁ݐ ݐܽ ݅ ݐܿݑ݀݋ݎ݌ ݂݋ ݀݊ܽ݉݁ܦ௢௠:ܷ݊݅ܥ ݉ ݄݁݊݅ܿܽ݉ ݐܽ ݋ ݊݋݅ݐܽݎ݁݌݋ ݂݋ ݁݉݅ݐ ݃݊݅ݏݏ݁ܿ݋ݎ݌ ݐ௧:ܮ (݄ݐ݈݃݊݁ ݀݋݅ݎ݁݌ ݈݃݊݅݊݊ܽ݌) ݐ ݀݋݅ݎ݁݌ ݊݅ ݕݐ݅ܿܽ݌ܽܿ ݄݁݊݅ܿܽܯ௢௧:ߴ ݅ ݐܿݑ݀݋ݎ݌ ݂݋ ݊݋݅ݐܽݎ݁݌݋ ݄ݐ’݋ ݄݁ݐ ݂݋ ݊݋݅ݐ݈݁݌݉݋ܿ ݄݁ݐ ݋ݐ ݐ ݀݋݅ݎ݁݌ ݐܽ  ݅ ݐܿݑ݀݋ݎ݌ ݂݋ ݈ܽ݅ݎ݁ݐܽ݉ ݓܽݎ ݄݁ݐ ݂݋ ݁ݏ݈ܽ݁݁ݎ ݄݁ݐ ݉݋ݎ݂ ݃݊݅ݏ݌݈ܽ݁ ݁݉݅ݐ ݀݁ݐܽ݉݅ݐݏܧ௢௧:ܶhe fractional portion of the lead time ܮ௢௧ from the beginning of the process  
to the start of operation o, ݅. ௢௧ߴ.݁ = ௢௧ܮ െ :௜ܨܨ ۂ௢௧ܮہ  ݎ݋ݐ݂ܿܽ ݐ݊ݑ݋ܿݏ݅ܦ:݂ ܫܩܨ ݏܽ ݈ܾ݈݁ܽ݅ܽݒܽ ݁݉݋ܾܿ݁ ݋ݐ ݏݏ݁ܿ݋ݎ݌ ݄݁ݐ ݋ݐ݊݅ ݀݁ݐݎܽݐݏ ݈ܽ݅ݎ݁ݐܽ݉ ݎ݋݂ ݀݁ݎ݅ݑݍ݁ݎ  ݁݉݅ݐ ݁݃ܽݎ݁ݒܽ ݄݁ݐ ݂݋ ݋݅ݐܽݎ ݄݁ݐ ݏܽ ݂݀݁݊݅݁݀,݅ ݐܿݑ݀݋ݎ݌ ݂݋ ݎ݋ݐ݂ܿܽ ݓ݋݈݂ ݀݁ݐܽ݉݅ݐݏ݁
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FLT Model: ݖ ݔܽܯ = ෍ 1

(1 + ݂)௧୲ ෍ቐ߮௜(݀௜௧ െ ௜௧ܤ + ௜௧ିଵ)െܤ  ቌ ߨ௜ܫ௜௧ + ௜ܴ௜௧ߩ ௜௧ܤ௜ߚ +  + ෍ ߱௢ ௢ܹ௧௢א஺௟௟ை(௜) ቍቑ୧  (1) 

s.t.  ܫ௜௧ିଵ + ෍ ܺ௅೔௠௧௠א஺௟௧ெ(௅೔) + ௜௧ܤ െ ௜௧ିଵܤ െ ௜௧ܫ = ݀௜௧ ݅׊,  (2) ݐ

௢ܹ௧ = ෍ ܴ௜௣௧௣ୀଵ െ ෍ ෍ ܺ௢௠௣௧௣ୀଵ௠א஺௟௧ெ(௢)

,݅׊  ,ݐ א ݋  ௜ (3)ܨ

௢ܹ௧ = ෍ ෍ ෍ ܺ௡௚௣௧௣ୀଵ௚א஺௟௧ெ(௡)௡אூ௠௉(௢)

െ ෍ ෍ ܺ௢௠௣௧௣ୀଵ௠א஺௟௧ெ(௢)

,݅׊  ,ݐ א ݋ ௜ (4) ܺ௢௠௧ܨ\(݅)ܱ݈݈ܣ = ۀ௅೚೟ڿ௢௧ܴ௜,௧ିߴ + (1െ ,݅׊ ۂ௅೚೟ہ௢௧)ܴ௜,௧ିߴ ,ݐ א ݋ ݉ ,(݅)ܱ݈݈ܣ א  (݋)ܯݐ݈ܣ
(5) ෍ ை௣௥(௠)א௢௠ܺ௢௠௧௢ߝ

൑ ,݉׊ ௧ܥ ௜௧ܫ (6) ݐ ,ܺ௢௠௧,ܤ௜௧ ,ܴ௜௧ , ௢ܹ௧  ൒ ,݅׊ 0 ,݉,݋   ݐ
 
 The FLT model maximizes the net present value of cash flows composed of revenue minus the sum 
of holding, material, backorder and work-in-process costs. Constraints (2) ensure finished inventory 
balance, where σ ܺ௅೔௠௧௠א஺௟௧ெ(௅೔)  represents the total completed amount of product i as the sum of the 
amounts completed at the final operation for each product over all machines that can process this 
operation. Constraints (3) are the WIP balance constraints for the first operation of product i. Similarly, 
constraints (4) ensure WIP balance for the remaining operations of product i.  Constraints (5) estimate the 
output of each operation ݋ considering the noninteger lead times. In the FLT model, we assume constant 
lead time estimates independent of planning period t throughout the planning horizon, i.e. ܮ௢௧ =  .ݐ׊ ௢ܮ
This assumption is based on the observation that in practice there is no clear way to predict future lead 
times unless a release plan of some form is developed first. We compute the ܮ௢ values for each operation 
as  ܮ௢ = ௜ܨܨ௢௠ߝ + ,݅׊ ூ௠௉(௢)ܮ ݋ א ௜ܨ\(݅)ܱ݈݈ܣ  and ܮி೔ = ݅׊ ௜ܨܨ௢௠ߝ . Constraints (6) represent the 
machine capacity. 

3.2 Clearing Function Model: CF  

Our CF model is based on the nonlinear allocated CF model of Asmundsson et al. (2009) where the 
decision variables ܼ௢௠௧ are the fraction of the output of machine m allocated to operation o in period t: 

 
CF Model: (1) ݔܽܯ  

s.t.  

௢ܺ௢௠௧ߝ   (4)-(2) ൑ ܼ௢௠௧ ቂܽ௠(1െ ݁ି௕೘(ௐூ௉೚೘೟ೌೡ೒ ௓೚೘೟ൗ ))ቃ   
 

,݅׊ ,ݐ ݋ א ݉,(݅)ܱ݈݈ܣ א ෍ (7) (݋)ܯݐ݈ܣ ܼ௢௠௧௢אை௣௥(௠)

= ,݉ ׊ 1 ௢௠௧ܼ (8) ݐ א  ,݅׊ {0,1} ,ݐ ݋ א   (݅)ܱ݈݈ܣ
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However, unlike the final model of Asmundsson et al. (2009), which is reduced to an LP by outer 
linearization of the CF, we use the CF in nonlinear form, which results in a nonconvex optimization 
model. We take this approach to eliminate the possible impact of alternative piecewise linearization 
approaches on the model.  
  Our CF model is analogous to FLT in terms of its objective function and flow balance equations. 
Parameters ܽ௠  and ܾ ௠  are found using a fitting procedure similar to that of Albey et al. (2014). 
Constraint (8) ensures the total allocated capacity cannot exceed the capacity of the machine. 

We solve the resulting nonlinear model with the KNITRO NLP solver Version 7.0.0, which is a local 
solver for general purpose nonlinear models (Byrd et al. 2006). KNITRO is able to converge in all cases, 
requiring CPU times that are similar in magnitude to those of the LP solver (CPLEX 11.2, with default 
options) used to solve FLT model. 

3.3 Simulation Optimization Procedure: SOP 

Our SOP utilizes the FLT model described in Section 3.2. However, the SOP does not assume constant 
lead time estimates independent of planning period  ݐ throughout the planning horizon. Instead, SOP 
seeks a set of values for the parameters ܮ௢௧ for all (o, t) that maximize the objective function value of the 
FLT model in which they are inserted. Denoting the parameter vector of lead time estimates Lot by ߤ and 
an individual simulation replication for a given ȝ by r, the SOP seeks to solve the maximization problem: 

ఓݔܽ݉  ,ߤ)ݖ]௥ܧ  (9) .[(ݎ

 
In (9), ܧ௥[ߤ)ݖ,  denotes the expected value of the FLT objective over all replications r, for a given set [(ݎ
of lead time parameters, ߤ. 
 The SOP searches the parameter set ߤ, which is a continuous set bounded by the interval [0, ο], where ο is an upper bound on the lead time whose choice affects the SOP run time. In other words, for every 
period pair (o, t), the parameter Lot is in the interval [0,ο]. Since our SOP is searching a continuous 
parameter space, a gradient based approach with perturbation analysis is selected as mentioned in Section 
2. The notation and the pseudocode for the SOP are given below. 
 
Notation: 
k: Iteration index 
r: Replication index 
ItLim: The iteration limit ο: Lead time upper bound.  
ak and ck: The gain sequences at iteration k. They are updated at each iteration using the following 
relations: ܽ ௞ = ܣ)/ܽ + ݇)ఈ  and ܿ ௞ = ܿ/(݇)ఊ . The parameters in these recursive relations need to be 
selected carefully before SOP execution. In this work we set ߙ =  0.602 and 0.101 = ߛ following Spall 
(1998). The values of ܣ, ܽ and  ܿare set to 1, 10-5, and 1 respectively based on a set of preliminary runs. ߪ௞: Random perturbation vector at iteration k. In generating perturbations a Bernoulli distribution with 
probability of 0.5 is used as recommended by Spall (1998). The outcome values for each component, ɐ௞௜ , 
are selected as ±0.1. ݖ׏௞: Estimated gradient vector at iteration k. Each component ݖߘ௞௜  of the gradient is updated at each 

iteration as ݖߘ௞௜ =
௭(ఓೖା ௖ೖ஢ೖ)ି௭(ఓೖି ௖ೖ஢ೖ)ଶ௖ೖ஢ೖ೔ ௞ߤ . : The parameter vector at iteration k consisting of lead time estimates, ܮ௢௧௞  for all periods t in the 

planning horizon. ߤ௞  is updated at each iteration following the recursive relation ߤ௞ାଵ = ௞ߤ + ܽ௞ݖ׏௞. ܪ : User defined tolerance parameter. As in Kacar and Uzsoy (2015), this parameter H allows the 
objective function value to decrease by some fraction of the previous iteration’s objective value. If a 
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larger decrease is observed a new ߤ  vector is obtained by applying a new independent random 
perturbation to the current ߤ vector. 

The SOP can now be stated as follows: 
 
Algorithm SOP: 

Step 1: Initialization: Set k=1 and initialize lead time parameters.    
Step 2:  Construct ߤ௞, run FLT model and obtain release plan. 
  Simulate the plan for each replication r and obtain ݖ(ߤ௞). 
Step 3:  Generate a perturbation vector ɐ௞. 

  Estimate the gradient as ݖ׏௞ =
௭(ఓೖା ௖ೖ஢ೖ)ି௭(ఓೖି ௖ೖ஢ೖ)ଶ௖ೖ஢ೖ . 

Step 4: Compute the new parameter vector: ߤ௞ାଵ = ௞ߤ + ܽ௞ݖ׏௞. 
  Compute the objective value, ݖ(ߤ௞ାଵ).  
Step 5: Check the tolerance:  

   If 
௭(ఓೖశభ)௭(ఓೖ)

൑   .then repeat the above steps starting from Step 3 ,ܪ

   Otherwise go to step 6. 
Step 6: If ݇> כݖ then STOP and report the ,݉݅ܮݐܫ = max௞   .(௞ߤ)ݖ

  Otherwise set  =݇ ݇ + 1 and go to Step 7. 
Step 7: Update gain sequences using ܽ௞ = ܣ)/ܽ + ݇)ఈ and ܿ ௞ = ܿ/(݇)ఊ , then go to Step 3. 
  

The set of values for the parameters used in the SOP are summarized in the next section, which presents 
the experiments conducted to test the performance of SOP. 

4 EXPERIMENTS 

Experiments are conducted on a scaled down multi–stage multi-product wafer fabrication system 
previously studied by several authors (Kayton et al. 1997; Irdem et al. 2010; Kacar et al. 2012). As shown 
in Figure 1, the system used in these experiments is composed of 11 machines producing three products. 
The system reflects the major characteristics of semiconductor wafer fabrication, including a re-entrant 
bottleneck process, batching machines, and multiple products. Each row in the figure represents the 
routing of each product. The material flows from left to right, i.e. all products start the process at Station 1 
and complete their processing at Station 10. Product 1 has 22 operations including 6 visits to machine 4, 
which is the bottleneck station for a system producing only products 1 and 2. Products 2 and 3 have 14 
operations. Processing time parameters and batch sizes are listed in Table 2. All processing times follow a 
lognormal distribution and are given in minutes. The processing times for all operations on a given 
machine are the same, and we assume instantaneous material transfer between consecutive operations on 
a routing. We use backorder cost of 50, WIP holding cost of 35, release cost of 3, FGI holding cost of 15 
for all products. Unit selling prices are set to 60, 90 and 120 for products 1, 2 and 3 respectively. 

 The base demand scenario, S1, assumes a 3:1:1 product mix. The mean and standard deviation of the 
demand are ߤ௜ = {60, 20, 20} and ߪ௜ = {6, 2, 2} for Products 1, 2 and 3 respectively. For each product, a 
demand series for a 26 week (six months) period is used. The workload scenarios S2 and S3 are generated 
based on S1 by increasing the demand (10% and 20% for S2 and S3 respectively) of all products 
throughout the planning horizon while maintaining the 3:1:1 mix. The resulting overall expected system 
utilization are 89%, 98% and 107% for S1, S2 and S3. For each workload scenario, 5 different demand 
realizations are generated, hence in total 15 different workload scenarios are used in the experiments. 
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Figure 1: Product flow routes over the machines for the studied semiconductor fab. 

Table 2: Processing time distributions and batch sizes. 

Workcenter # Mean Std. Dev. Batch  Size 
1 80 7 4 
2 220 16 4 
3 45 4 1 
4 40 4 1 
5 25 2 1 
6 22 2.4 1 
7 20 2 1 
8 100 12 1 
9 50 4 1 
10 50 5 1 
11 70 2.5 1 

 

The execution of the FLT and CF models consist of a single run whereas the number of iterations for 
SOP is set to 250. In deciding the number of iterations, scenario S1 is used and the number of iterations is 
increased starting from 50 by increments of 50 until the performances of two consecutive executions are 
approximately equal. For the FLT and CF models, 10 simulation replications are performed. At each SOP 
iteration we use two perturbations and simulate each of these for ten replications. The average of 10 
replications is used to estimate the objective function value for gradients. The CPU time for a single 
execution of the simulation varies between 5 and 10 seconds on a computer with 1.60 GHz Intel Core i5-
2567M processor and 4GB RAM. The initial values of the backorder, FGI and WIP are taken as zero. The 
parameter values used in SOP are due to Kacar and Uzsoy (2015) and summarized in Table 3. 

Table 3: SOP parameter values used in the experiments. ο ߙ ߛ A a c H ItLim 
3 0.101 0.602 1 10-5 1 0.99 250 

 
 Table 4 compares the realized profits from SOP, FLT and CF. The mean and the standard deviation of 
the profits obtained by 10 independent replications of the final release plans are presented for all models. 
The performances of CF and FLT are very close, with the average profit obtained by CF slightly higher 
than that of FLT. Similarly, for all cases, SOP has higher average profit values than the CF and FLT 
models. This is intuitive as SOP spends considerable time in searching the solution space to improve the 
initial solution found by simply using FLT model with time independent lead time estimates. It is 
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interesting to note the magnitude of the improvement between SOP and FLT. the result of SOP can be 
interpreted as representing  the performance of FLT with perfect a priori knowledge of the realized lead 
times. The results in Table 4 indicate that both the CF and the FLT models approach quite close to the 
performance possible with perfect information. As pointed out by Kacar et al. (2014), the use of fractional 
lead times allows FLT to close the performance gap with the CF model. These results suggest that the 
ability of the CF model to capture the effects of workload upon lead times does not result in a major gain 
in expected profit, which requires further investigation to determine the causes. 

Table 4: Comparison of realized average profits and standard deviations (x 103). 

 SOP CF FLT 
 Mean Stdev Mean Stdev Mean Stdev 

S1 120.3 1.1 115.4 1.1 114.6 0.9 
S2 114.5 0.8 109.5 0.5 107.5 0.8 
S3 93.4 1.5 85.4 0.7 81.4 0.8 

 
 To determine whether there are statistically significant differences between the realized profit values 
of the methods, the Wilcoxon rank sum test (Wilcoxon 1945) which is a non-parametric alternative to 
the paired t-test when the populations cannot be assumed normally distributed or the data is on the ordinal 
scale, is used. The test results are presented in Table 5. The cases where the performances of the 
compared models are not statistically different indicated by “0”; and the cases where one of the models 
outperforms the other is shown using “+”, where “+” indicates that the model shown in the row 
outperforms the model in the column. It is seen that CF and FLT are alike in performance, except in the 
very high workload scenario, S3. SOP always outperforms FLT, but for scenario S1, SOP and CF are 
indistinguishable. 

Table 5: Wilcoxon rank sum test results. 

Scenario 
 

CF FLT 

S1 
SOP 0 + 
CF 

 
0 

S2 
SOP + + 
CF 

 
0 

S3 
SOP + + 
CF 

 
+ 

 
 The small differences in performance between the different production planning models and the SOP 
suggest a closer investigation of the specific lead times resulting from each of the models. For this 
purpose, we analyzed the average lead times at machines 1, 4 and 11 in scenario S1 as these machines 
constitute a representative sample of batching, bottleneck and near-bottleneck stations. Figure 2a-c 
present the realized machine lead times in periods 1 through 23 as a time series for these machines for all 
three models. To test whether there is significant difference in realized lead times a set of paired t-tests 
are executed. Table 6 shows the average and standard deviation values of the paired differences, as well 
as the resulting p-value for each possible 2-way combination. At a significance level of ߙ = 0.05, the 
lead time estimates of SOP for machine 1 are significantly lower than those of CF and FLT (Figure 2a) 
and both CF and SOP have lower lead time estimates than FLT for machine 11 (Figure 2c). All three 
methods estimate the lead times for designed bottleneck machine 4 quite accurately. The realized lead 
times at machine 1 vary widely across the three approaches, and have quite different dynamics. It is 
striking that even though the FLT model assumes a constant lead time estimate across all periods, the 
realized lead times vary quite substantially as seen in Figure 2. To illustrate, the sample standard 
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deviations of mean lead time for FLT are 0.83, 0.20 and 0.19 for machines 1, 4 and 11 respectively; 
whereas the same values are for SOP are 0.88, 0.20 and 0.26.    

Table 6: Paired t-test results. 

 
Machine 1 Machine 4 Machine 11 

 
SOP-CF SOP-FLT CF-FLT SOP-CF SOP-FLT CF-FLT SOP-CF SOP-FLT CF-FLT 

Avg. 0.95 1.22 0.99 0.22 0.21 0.25 0.29 0.29 0.33 
St.dev. 0.83 0.88 0.64 0.15 0.18 0.19 0.21 0.23 0.21 
p-value 0.042 0.002 0.129 0.760 0.483 0.719 0.632 0.003 0.022 
  

 

Figure 2: Realized lead times. 

5 CONCLUSIONS AND FUTURE RESEARCH 

We have developed a gradient based SOP for estimating the set of lead times that maximize expected 
profit when used in a LP model with dynamic fractional lead times. Although the developed approach 
requires high computational time, it allows us to estimate the performance of models with perfect a priori 
estimates of lead times. The results indicate that the use of fractional lead times, even when the same lead 
time is assumed across the entire horizon, results in almost equal performance to the CF model, and is 
quite close to the performance achievable with perfect lead time estimates. The causes of this behavior are 
not clear at present, and require further analysis of the lead time estimates obtained by each model in 
order to clarify the situation. A number of possible explanations arise. There may be many different 
release plans that lead to very similar realized lead times; it is well known that many production planning 
formulations have many alternative optima. The use of an aggregate CF for the entire system which is 
then allocated to products may reduce the effectiveness of the CF models. Taken as a whole, the very 
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limited results in this paper suggest the possibility that the quality of the solutions produced by LP models 
may be rather robust to lead time estimates. 
 Recent innovations in computation increase the applicability of simulation optimization methods. 
Despite its promising performance in our test environment, many issues still need to be investigated 
before we can assess the actual value and applicability of SOP in production planning. Some future 
research directions are: 

 • Systematically analyzing the sensitivity of SOP to the initial parameter selection, threshold 
parameters and range of the perturbations. • Comparing the performance of perturbation analysis to other gradient estimation techniques. • Testing the developed SOP in larger, more realistic production systems. 
 

Developing other simulation optimization procedures,  which aim to optimize other decisions (such as 
releases) in the production planning model. Approaches of this type have already been proposed by Liu et 
al.(2011) and Homem de Mello et al. (Homem de Mello et al. 1999). Also some performance 
improvement can be achieved by changing the search space of SOP. For example, instead searching over 
operation lead times, lead times over machines can be used, which would give a much smaller search 
space for SOP. 
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