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ABSTRACT

We use two mathematical models to represent the dependency between wetkiases and lead times

a linear programming model with fractional lead times (FLT) and a clearing function (CF) based
nonlinear model. In an attempt to obtain a reference solution, a gradient based simulation optimization
procedure (SOPis used to determine the lead times that, when used in the FLT model, yield the best
performance. Results indicate that both FLT and CF mqueferm well, with CF approach performing
slightly better at very high workload scenarios. The SOP is able to improve upon the performance of both
models across all experimental conditions, suggesting that FLT and CF models are limited in representing
the lead time dynamics. All three models yield quite different lead time patterns at critical machines,
suggesting the need for further study of the behavior of these models.

1 INTRODUCTION

In most optimization models for production planningpl{nson and Montgomery 197¥p0ss and
Woodruff 2003)the capability of the shop flods represented as the “capacity” of the production system,
expresseas the tal available time of resources. However, capacitnifact, is a very complex concept
(Elmaghraby 2010yhich is manifested in lead times, the delay between work being released into the
system and its emergence as finished product. Accurate modeling of lead times is essential to optimally
coordinate the release of new work into the plEiotvever, lead times are, in fact, strongly dependent on
the release decisiorithat determine the evolution of the system workload over tiisspauer 2002
Pahl et al. 2005Pahl et al. 2007)As shown by queuing modelsystem performance measures,
especially lead times, start deteriorating well bef@source utilization reach£80%, andareinfluenced
by both the mean and variance of the service and arrival prodétsgs and Spearman 2008)his
mutual dependency between lead times and releases is known as the planning circularity

The planning circularity has been addressed in the literature using different techniques. The most
common approaches, which will be discussed in Section 2, are the use of nonlinear clearing functions
(CF) and iterative multimodel approaches combining linear programn{iog) and simulation. In this
paper we use a fractional lead time based LP model (the FLT madel clearing function based model
(the CF model}o obtainproduction/release planaking the planning circularity into account. The FLT
model is adapted from the work of Kacar et al. (2@t the CF model from Asmundsson et al. (2009).
We also use a simulation optimization procedure (SOP), similar to that of Kacar and(REB)that
considers a more general fractional lead time model and searches for the set of planned lead times that
yield the highest profitAlthough ourSOP does not guarantee global optimality, its solution is used as a
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benchmark to investigate the solution quality of the two models and the lead time behaviour observed in
their respective optimal solutions.

The remainder of the paper is organized dsvicd. Section 2 briefly reviews the literature. Section 3
presents the production planning models and SOP. Section 4 presents the nex@eitaents, while
conclusions andirectionsfor future research apgesented in Section 5

2 LITERATURE REVIEW

There have been two basic approaches to the planning circularity in the literature to date. Clearing
functions (CF) explicitly represent the nonlinear dependency betleaehtimes and worklahas a
nonlinear function that can be incorporated into optimization modefgdduction planning Missbauer
and Uzso0y2010).Someauthors $rinivasa et al. 1988Karmarkar 1989Selcuk et al. 2007Jerive CFs
analytically for simple systems, whiletheis such as Asmundsson et a2009, considera complex
productionsystemand use oftine simulation to estimate the parameters of the Aey et al. (2014)
propose a family of product-based muliinensional CFs that use the disaggregated WIP levels for
individual products as state vasias. CFs that considtat sizing decisions are introduced by Kang et al.
(2014).

In iterative approaches, production/release planning is achieved by iterations between a LP model and
a simulation model. The estimates of the capacity refzdesimeters used in the LP model are updated at
each iteration untitonvergenc€Hung and Leachman 199Byrne and Bakir 199Kim and Kim 2001
Byrne and Hossain 200Bang and Kim 2010)However, the convergence behavior of these techniques
is often inconsistent and not well understoodém et al. 2010Albey et al. 2014).In addition,
computational experiments have shown that appropriately fitted CF models yield superior production
plans to those obtained by these iterative approastaes( et al. 2012

Tekin and Sbuncuoglu (2004)u (2002)and Zapata edl. (2010)presentomprehensive surveyf
simuation optimization techniques. They classify the existing techniques according to problem
characteristics (global vdocal optimization), objective functions (single or multiplbjectives) and
parameter spaces (discrete or continuous parametensiin@us parameter space methaoashkich are
relevant to this stugarefurther categorized into response surface methodology, gradient-based methods
and stochastic approximation methods. In this papeiyse a gradiettased approachhere thegradient
is estimagd using perturbation analygido et al. 1979)Our reasos for choosingperturbation analysis
are i) when applied proper)yit is able toestimate all gradients fromsingle simulation run(Tekin and
Sabuncuoglu 2004), henemore efficient thanothertechniques; ii) itperforms well fordiscreteevent
dynamic systemsthat can be modeled as queueing networks, hémasebeen used for manufacturing
systemgDonohue and Spearman 1993; Liberopoulos and CaramanisY1&94t al. 1994).

3 LEAD TIME MODELING: PLANNING FRAMEWORK

The production system under investigation is assumed to process a set of products, each requiring a
specified set of operations. Products that compieteessing at a pastilar machineimmediately
becomeavailableto the next operation athmeir process routing. The production/release plan considers a
predetermined number of periods and seeks to maximize the total net present value of the profit obtained
in each planning period, which is given by the difference of the period revenue and the sum of backorder,
finished good inventory (FGI) holding, work in process (WIP) holding and material (i.e. release) costs
incurred in the period. The central decision variables are the amount of each product to be released into
the production system in each period.

In our experiments, the two planning models are executed to obtain a release plan for the entire
horizon, yielding the quantity of each product to be released to the shop fleachnperiod. These
aggregate release quantities are disaggregated using the heuristic of Askin and Stéh@éidgand
releasediniformly overthe periodThe First Come First Served (FCR83$patchingule is used to select
parts from machine queue3he disaggregatedelease plan ighen simulated using the software
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environment ofAlbey and Bilge(2011).The realizedprofit at the end of the simulaticals well as the
observed lead times are recordedperformance comparison

To provide a benchmark, the FLT model is incorporated into a SOP that searches for the lead time
values that allow this model to obtain the maximum expected profit. In this mode, the framework is
operated as follows: Starting froam initial estimate of lead times for each period, the fractional lead time
model presented in Section 3.2 is solved to generegéease plan for the initial set of parameters. The
release plan is simulated and the resulting objective is recorded. The parameter vector is randomly
perturbed, following the SimultaneousrRirbation chasticApproximation approach of Spgl1998)
anda new parameter vector is obtained (the random perturbation approach is also used successfully in
Kacar and Uzsoy (2015pr a similar setting to oursp new iteration is triggered and the production
planning frameworkis executed for the new set of parameters. The execution termovatesthe
predefined iteration limit is reached. Details of the SOP are given in Section 3.3.
The following subsections present the mathematical models and the SOP

3.1 Fractional Lead Time (FLT) Modd

TheFLT model used in this study extenttlsit ofKacar et al(2014) by considerinfractional lead times
varying from period to period and maximizes discounted total profit. The notapoassnted in Table 1.

Table 1: Notation.

Indices: Sets:

t: Period index,t = 1,2,...T AllO(i): Set of all operations of product i

i: Product index AltM (0): Set of alternative machines for operation o
o,n : Operation index Opr(m): Set of operations that machine m can process
m, g : Machine index ImP(0): Immediate predecessor of operation o

L;: Terminal operation of product i

F;: First operation of product i

Decision Variables:

R;:: Release quantity of product i at the beginning of period t

I;;: Finished goods inventory (FGI)of product i at the end of period t

Bj;: Backorder for product i at the end of period t

Xome: Number of operation o completed on machine m in period t

W,:: WIP amount of operation o at the end of periodt

Parameters:

@;: Unit selling price of product i

p;: Unit material cost of product i

m;: Unit inventory holding cost of product i

Bi: Unit backorder cost of product i

di;: Demand of product i at the end of period t

Eom: Unit processing time of operation o at machine m

C;: Machine capacity in period t (planning period length)

L,:: Estimated time elapsing from the release of the raw material of producti at period t
to the completion of the o’th operation of product i

Y,¢: The fractional portion of the lead time L,; from the beginning of the process
to the start of operation o,i.e.9,; = Lot — [ Lot ]

FF;:estimated flow factor of product i,defined as the ratio of the average time
required for material started into the process to become available as FGI
f:Discount factor
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FLT Model:

1
Max z = Zmz ¢i(dit — Bt + Bir—1) — | milie + piRie + BiBie + z woWot (1)
t

T 0€ATI0 (i)
s.t.
lip—1 + Z Xiymt + Big = Big—1 — iy = dj¢ Vit (2)
mEAIEM(L;)
t t
Wor =z Ry — Z Z _ Xomp Vi,t,o €EF; (3)
p=1 meAltM(o) p=1
t t
Wor = Z  Xngp — z _ Xomp Vi,t,0 € AUO(D\F; (4)
nelmpP (o) geAltM(n) p=1 meAltM (o) p=1
Vi, t,o € AllO(Q),
Xome = DocRiz-f1 + (1= Bor)Rie- e oy © (5)
EomXome < Ct vm,t (6)
0€0pr(m)
[itlxomtJBitJRitJWOt =0 Vl, o,m,t

The FLT model maximizes the net present value of cash flows composed of revenue minus the sum
of holding, material, backorder and wadrkprocess costs. Constranf2) ensurefinished inventory
balance, Wherg e aitm) X1,m: represents the total completed amount of prodast the sum of the
amounts completed at the final operation for each product over all machines that can process this
operation. Constraiat(3) arethe WIP balance constrainfisr the first operation foproduct i Similarly,
constraintg4) ensuré/VIP balance for the remaining operations of produc@onstrairg (5) estimatehe
output of each operatianconsidering the noninteger lead times. In the FLT model, we assume constant
lead time estimates independent of planning peribdloughout the planning horizon, ilg; = L, Vt.

This assumption is based on the observation that in practice there is no clear way to predict future lead
times unless a release plan of some form is developed first. We compltevéthees for each operation

as Lo = &mFF; + Limp(o) Vi, 0 € AUO(D)\F; and Lg, = &, FF; Vi . Constrains (6) representthe

machine capacity

3.2  Clearing Function Modd: CF

Our CF model is based on the nonlinear alloc&&dmodel of Asmundsson et al. (2008here the
decision variableg,,,; are the fraction of the output of machmellocated to operatiomin periodt:

CFE Model:

Max (1)

s.t.

(2)-(4)
£0Xome < Zome |am (1 — e om0V ot/ Zom)| Vi,t,0 € AllO(i), m € AltM(0) 7
Zome =1 vm,t 8)

0€0pr(m)
Zome €{0,1} Vi, t, 0 € AllO(Q)
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However, unlike the final model of Asmundsson et al. (2008)ich is reduced to an LP by outer
linearization of the CF, we use the CF in nonlinear form, which results in a nonconvex optimization
model. We take this approach to eliminate the possible impact of alternative piecewise linearization
approaches on the model.

Our CF model is analogous to FLT in termsitsf objective function and flow balance equations.
Parameterst,, andb,, are found using a fitting procedure similar to that of Albey et(2014)
Constraint (8ensures the total allocated capacity cannot exceed the capacity of the machine.

We solve the resulting nonlinear model with the KNITRCP solver Versiory.0.0, which is a local
solver for general purpose nonlinear models (Byrd et al. 2B06)TRO is able to converge in all cases,
requiring CPU times that are similar in magnitude to those of the LP solver (CPLEX 11.2, with default
options) used to solve FLT model.

3.3  Simulation Optimization Procedure: SOP

Our SOP uitilizes the FLT model described in Section 3.2. However, the SOP does not assume constant
lead time estimates independent of planning pertatiroughout the planning horizon. Instead, SOP
seeksa set of values for # parametersk,, for all (o, t) thatmaximize theobjective function valuef the

FLT model in which they are inserted. Denoting plagameter vectoof lead time estimates,dby u and

an individual simulation replication for a giverby r, the SOP aseks to solve the maximization problem:

mﬁlx E.[z(u,1)]. 9)

In (9), E-[z(u, )] denotes the expected value of Eiel objective over all replications for a given set
of lead time parameterg,

The SOPRsearches the parameter getvhich is a continuous set bounded by the interval][Oxhere
A is anupper bound on the lead tirehose choice affects the SOP run time. In other words, for every
period pair (9t), the parametekLy is in the interval [Q\]. Since our SORs searching a continuous
parameter space, a gradient based approach with perturbation analysis is selected as mentioned in Section
2. The notation and the pseudocode for the &@Rjiverbelow.

Notation:

k: Iteration index

r: Replication index

ItLim: The iteration limit

A: Lead time upper bound.

a« andce The gain sequences at iterationThey are updated at each iteration using the following
relations:a, = a/(A + k)* andc, = c¢/(k)Y. The parameters in these recursive relations need to be
selected carefully before SGfRecution. In this workve seta = 0.602 and y = 0.101 following Spall
(1998). The valuesf 4, a and careset tol, 10°% and 1 respectively based on a set of pielary runs.

o,. Random perturbation vector at iteratibnin generating perturbationsBernoulli distribution with
probability of 0.5 is used as recommended by Spall (1998) outome values for each componest,

are selected as +0.1

Vz,: Estimated gradient vector at iterationBach componerifz. of the gradienis updated at each

i ; i + - -
iteration ag/z}, = Z(B+ CkOk) Zi(“k Ck k)
2Ck 0y,

ur: The parameter vector at iteratiBnconsistingof lead time estimategX, for all periods tin the
planning horizon. gis updated at each iteratiéwilowing the recursive relatiop, .1 = ux + a,Vzy.

H: User defined tolerance parameté&s in Kacar and Uzsoy (2015)his parameterH allows the
objective function value to decrease by some fraction of the previous iteration’s objective value. If a
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larger decrease is observed a newector is obtained by applying a new independent random
perturbation to the curreptvector.
The SOP can now be stated as follows:

Algorithm SOP
Step 1: Initialization: SetKl and initializelead time parameters.

Step 2: Constructy,, run FLT model and obtain release plan.
Simulatethe plan for each replication r and obta(py,).
Step 3: @nerate a perturbation vectyy.
Estimate the gradient &g, = 24" C"ng;ji”"_ k),
Step 4: Compute the new parameter vegtpr; = uy + a;Vzy.
Compute the objective valug(uy ).
Step 5: Check the tolerance:
If Z(Hk+1) <
z(ug)
Otherwise go to step 6.

Step 6: If k> ItLim, then STOP and report thé = mlleZ(Hk)-

Otherwise set k= k + 1 and go to Step 7.
Step 7: Update gain sequences usipga/(A + k)¢ andc, = ¢/(k)? , then go to Step 3.

H, then repedate above steps starting from Step 3.

The set of values for the parameters used in the&@®Bummarized in the next section, which presents
the experiments conducted to test the performance of SOP.

4 EXPERIMENTS

Experiments are conducteoh a scaled down mukistage multiproduct wafer fabrication system
previously studied by several auth@ayton et al. 1997lrdem et al. 2010Kacar et al. 2012 As shown

in Figure 1, he system used in these experiments is composgtimfichines producinthree products

The systemreflects the major characteristics sgmiconductowafer fabrication, including a reatrant
bottleneck process, batching machines, and multiple products. Each row in the figure represents the
routing of each product. The material flows from left to right, i.e. all products start the process at Station 1
and complete their processing at Station 10. Product 1 hage2dtionsncluding 6 visits to machine 4,

which is the bottleneck station for a system producing only preduand 2. Produst2 and 3 have 14
operationsProcessing time parameters and batch sizes are listed in Table 2. All processing times follow a
lognormal distribution and are given in minutes. The processing times for all opemticagiven
machine are the same, and we assume instantaneous material transfer between consecutive operations on
a routing.We use backorder cost of 50, WIP holding cost of 35, release c®sF@f holding cost of 15

for all products. Unitalling prices are set t&0, 90 and 120 for products 1, 2 and 3 respectively.

The base demand scenario, S1, assumes a 3:1:1 product mix. The mean and standard deviation of the
demand arg; = {60, 20,20} andg; = {6, 2,2} for Products 1, 2 and 3 respectively. For each product, a
demand series for a 26 week (six months) period is used. The workload scenarios S2 and S3 are generated
based on S1 byncreasingthe demand 10% and 20% for S2 and S@&spectively of all products
throughout the planning horizon while maintaining the 3:1:1 mix. résaltingoverall expectedsystem
utilization are 89%, 98% and 107% for S1, S2 and S3. For each workload scenario, 5 different demand
realizations are generated, hence in total 15 diffteworkload scenarios are used in the experiments.
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Figure 1: Produdiow routesover the machines for the studied semiconduetor

Table 2:Processing time distributions and batch sizes

Workcenter # Mean Std. Dev. Batch Size
1 80 7 4
2 220 16 4
3 45 4 1
4 40 4 1
5 25 2 1
6 22 2.4 1
7 20 2 1
8 100 12 1
9 50 4 1

10 50 5 1
11 70 2.5 1

The execution of the FLT and CF models consist of a single run whereas the number of iterations for
SOP is seto 250.In deciding the number of iterations, scenario S1 is used and the number of iterations is
increased starting from 50 by increments of 50 until the performances of two consecutive executions are
approximately equal. Fahe FLT and CF models, 10 simulation replications are performed. At each SOP
iteration we use two perturbations and simulate each of these for ten replications. The average of 10
replications is used to estimate the objective function value for gradients. The CPU time for a single
execution 6the simulation varies between 5 and 10 seconds on a computer with 1.60 GHz Intel Core i5-
2567M processor and 4GB RAM. The initial values of the backorder, FGI and WIP are taken &kezero.
parameter values used in SOP are due to Kacar and (2&1f) and summarized irable 3

Table 3: SOP parameter values used in the experiments.

A

a

A

a

C

H

[tLim

3

Y
0.101

0.602

1

10°

1

0.99

250

Table 4compares theealized profits fronSOP, FLT and CFThe mean and the standard deviation of
the profits obtained by 10 independent replications offthal release planare presented for all models.
The performances of CF and FLT are very close, with trexaye profit obtained by CF slightly higher
than that of FLT. Similarly, for all caseSOP hashigher average profit valugdhan the CF and FLT
models This is intuitive as SOP spends considerable time in segrte solution space to improve the
initial solution found by simply using FLT model with time independent lead time estimates. It is
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interesting to note the magnitude of the improvement between SOP and FLT. the result of SOP can be
interpreted as representing the performance of FLT with perfect a priori knowledge of the reatized le
times. The results in Tableiddicate that both the CF and the FLT models approach quite close to the
performance possible with perfect information. As pointed out by Ketcalr(2014), the use of fractional

lead times allows FLT to close the performance gap with the CF model. These results suggest that the
ability of the CF model to capture the effects of workload upon lead times does not result in a major gain
in expected profit, which requires further investigation to determine the causes.

Table4: Comparison of realized average profits and standard deviationd.(x 10

SOP CF FLT
Mean Stdev Mean Stdev Mean Stdev
S1 1203 1.1 1154 1.1 1146 0.9
S2 1145 0.8 109.5 0.5 1075 0.8
S3 934 15 854 0.7 814 0.8

To determinewhetherthereare statisticallysignificant differencedetween the realizegrofit values
of the methods, th&Vilcoxon rank sum tesfWilcoxon 1949 which is anonparametric alternative to
the paired-test when the populations cannot be assumed normally distributed or the data is on the ordinal
scale, is used. The testsults are presented in Table The cases where the performances of the
compared models are not statistically different indicated by “0”; and the cases where one of the models
outperforms the other is shown using “+”, where “+” indicates that the model shown in the row
outperforms the model in the column. It is seen that CF and FLT are alike in performance, except in the
very high wokload scenario, S3. SOP always outperforms FLT, but for scenario F1asd®CF are
indistinguishable.

Table5: Wilcoxon rank sum test results.

Scenario CF FLT
5 O
= &
ss T

The small differences in performance between the different production planning models and the SOP
suggest a closer investigation of the specific lead times resulting from each of the models. For this
purpose, we analyzed the average lead times at machines 1, 4 and 11 in scenario S1 as these machines
constitute a representative sample of batching, bottleneck anebatdaneck stations. Figure 2a-
present the realized machine lead times in periods 1 through 23 as a time series for these machines for all
three models. To test whether there is significant difference in realized lead times a setdofipsis
are executed. Tableghows the average and standard deviation values of the paired differences, as well
as the resulting palue for each possiblen#ay combination. At a gnificance level otr = 0.05, the
lead time estimates of SOP for machine 1 are significantly lower than those of CF and FLT (Figure 2a)
and both CF and SOP have lower lead time estimates than FLT for machine 11 (Figure 2c). All three
methods estimate the lead times for designed bottleneck machine 4 quite accurately. The realized lead
times at machine 1 vary widely across the three approaches, and have quite different dynamics. It is
striking that even though the FLT model assumes a constant lead time eestoredts all periods, the
realized lead times vary quite substantially as seen in Figufeo 2llustrate, the sample standard
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deviations of mean lead time for FLT are 0.83, 0.20 and 0.19 for machideant 11 respectively;
whereas the same values ae3$OPare 0.88, 0.20 and 0.26.

Table6: Paired ttest results.

Machine 1 Machine 4 Machine 11
SORCF SORFLT CFFLT | SORCF SORFLT CFFLT | SORCF SORFLT CKFLT
Avg. 0.95 1.22 0.99 0.22 0.21 0.25 0.29 0.29 0.33

St.dev.  0.83 0.88 0.64 0.15 0.18 0.19 0.21 0.23 0.21
p-value  0.042 0.002 0.129 | 0.760 0483 0.719 | 0.632 0.003 0.022

a-Realized Lead Times: Machine 1

A %ﬁ L\r\/ NaRy */ \7*7“ =

1 2 3 4 5 ] 7 B % 10 11 1z 13 14 15 16 17 18 18 20 21 22 123

b-Realized Lead Times: Machine 4

O A : fj‘ﬂ“‘\;\—\/\ /ﬁ(_\_v A\ I/_

—50P

—CF

FLT

1 2 3 4 5 & 7 8 & 10 11 12 13 14 15 16 17 18 18 20 21 22 23

c-Realized Lead Times: Machine 11

1 2 3 4 S5 6 7 8 89 10 11 12 13 14 ‘15 16 17 ‘18 19 20 21 22 23

Figure 2 Realized lead times.

5 CONCLUSIONSAND FUTURE RESEARCH

We have developed a gradient based SOP for estimating the set of lead times that maximize expected
profit when used in a LP model with dynamic fractional lead times. Although the developed approach
requires high computational time, it allows us to estirttadgperformance of models with perfect a priori
estimates of lead times. The results indicate that the use of fractional lead times, even when the same lead
time is assumed across the entire horizon, results in almost equal performance to the CF chalel, an
quite close to the performance achievable with perfect lead time estimates. The causes of this behavior are
not clear at present, and require further analysis of the lead time estimates obtained by each model in
order to clarify the situation. A number of possible explanations arise. There may be many different
release plans that lead to very similar realized lead times; it is well known that many production planning
formulations have many alternative optima. The use of an aggregate CF for the entire system which is
then allocated to products may reduce the effectiveness of the CF models. Taken as a whole, the very
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limited results in this paper suggest the possibility that the quality of the solutions produced by LP models
may be rather robust to ledthe estimates.

Recent innovations in computation increase the applicability of simulation optimization methods.
Despite its promising performance in our test environment, many issues still need to be investigated
before we can assess the actual value and applicability of SOP in production planning. Some future
research directions are:

e Systematically analyzing the sensitivity of S@® the initial parameter selection, threlsho
parameters and range of the perturbations.

o Comparing the performance of perturbation analysis to other gradient estimation techniques.

e Testing the developed SOP in larger, more realistic production systems.

Developing other simulation optimization procedures, which aim to optimize other decisions (such as
releases) in the productigplanning model. Approaches of this type have already been proposed by Liu et
al.(2011) and Homem de Mello et al. (Homem de Mello et al. 1999%50Asome performance
improvement can be achieved by changing the search space of SOP. For example, instead searching over
operation lead times, lead times over machines can be used, which would give a much smaller search
space for SOP

ACKNOWLEDGMENTS

Theresearch of Reha Uzsoy was supported by the National Science Foundation under Grant No. CMMI-
1029706. The opinions on this paper reflect those of the authors and not those of the National Science
Foundation.

REFERENCES

Albey, E.,and U. Blge. 2011. "A Hierarchical Approach to Fms Planning and Control with Capacity
Anticipation." International Journal of Production Research 49(11): 3319-3342.

Albey, E., U. Bilge, and R. Uzsoy. 2014. "An Exploratory Study of Disaggregated Clearing Fufwtions
Multiple Product Single Machine Production Environments." International Journal of Production
Research 52(18): 5301-5322.

Askin, R. G., and C. R. Standridge. 19880deling and Analysis of Manufacturing Systems. New York,
John Wiley.

Asmundsson, M., R. L. Rardin, C. H. Turkseveand R. Uzsoy. 2009. "Production Planning Models

with Resources Subject to Congestion." Naval Research Logisi6s 142-157.

Bang, J. Y., and Y. D. Kim. 2010. "Hierarchical Production Planning for Semiconductor Wafer
Fabication Based on Linear Programming and DiscEatent Simulation." IEEE Transactions on
Automation Science and Engineering 7(2): 326-336.

Byrd, R. H., J. Nocedaland R. A. Waltz. 2006 Knitro: An Integrated Package for Nonlinear
Optimization. In Large-Scale Nonlinear Optimization, edited by G. Di Pillo and M. Roma.
Heidelberg, 339. New York: Springer.

Byrne, M. D, and M. A. Bakir. 1999. "Production Planning Using a Hybrid Simuladinakytical
Approach."International Journal of Production Economics 59: 305311.

Byrne, M. D, and M. M. Hossain. 2005. "Production Planning: An Improved Hybrid Approach."
International Journal of Production Economics 93-94: 225-229.

Donohue, K. L., and M. L. Spearman. 1993. "Improving the Design of Stochastic Production Lines—an
Approach Using Perturbation Analysis." International Journal of Production Resear@i: 2789-
2806.

2005



Albey and Uzsoy

Elmaghraby, S. E. 2010. Production Capacity: Its Bases, Functions and Measurement. Planning
Production and Inventories in the Extended Enterprise: A Sate of the Art Handbook. K. G. Kempf, P.
Keskinocak and R. Uzsoy. New York, Springer. 1: -16®.

Fu, M. C. 2002. "Optimization for Simulation: Theory Vs. Practice." INFORMS Journal on Computing
14(3): 192-215.

Ho, Y. C., M. A. Eylerand T. T. Chienl979. "A Gradient Technique for General Buficrage Design
in a Serial Production Line." International Journal of Production Research 17: 557-580.

Homem de Mello, T., A. Shapirand M. L. Spearman. 199%inding Optimal Material Release Times
Using SimulatioBased Optimization.Management Science 45(1): 86102.

Hopp, W. J.,and M. L. Spearman2008 Factory Physics. Foundations of Manufacturing
Management. Boston Irwin/McGraw-Hill .

Hung, Y. F.,and R. C. Leachmarnl996. "A Production Planning Methodology for Semiconductor
Manufacturing Based on lIterative Simulation and Linear Programming Calculations." IEEE
Transactions on Semiconductor Manufacturing 9(2): 257269.

Irdem, D. F., N. B. Kacarand R. Uzsoy.2010. "An Exploratory Analysis of Two Iterative Linear
ProgrammingSimulation Approaches for Production Planning.” IEEE Transactions on
Semiconductor Manufacturing 23(3): 442-455.

Irdem, D. F., N. B. Kacarand R. Uzsoy. 2010. "An Exploratory Analysis of Two Iterative Linear
ProgrammingSimulation Approaches for Production Planning.” IEEE Transactions on
Semiconductor Manufacturing 23: 442-455.

Johnson, L. A., and D. C. Montgomery. 198erations Research in Production Planning, Scheduling
and Inventory Control. New York, John Wiley.

Kacar, N. B., D. F. Irdemand R. Uzsoy. 2012. "An Experimental Comparison of Production Planning
Using Clearing Functions and lterative Linear ProgramrSimgulation Algorithms." IEEE
Transactions on Semiconductor Manufacturing 25(1): 104-117.

Kacar,N. B., L. Moench, and R. Uzsoy. 2014. Modelling Cycle Times in Production Planning Models for
Wafer Fabrication.Technical Report,Edward P. Fitts Department of Industrial and Systems
Engineering. Raleigh, NC, North Catina State University.

Kacar, N. B, and R. Uzsoy. 2015. "Estimating Clearing Functions for Production Resources Using
Simulation Optimization.'|EEE Transactions on Automation Science and Engineering 12(2): 539-

552.

Kang, Y. H., E. Albey, S. Hwang, and R. Uzsoy. 2014. "The Impact of Lot Sizing in Multiple Product
Environments with Congestion." Journal of Manufacturing Syster38: 436444.

Karmarkar, U. S. 1989. "Capacity Loading and Release Planning with Wénogress (Wip) and Lead
Times." Journal of Manufacturing and Operations Management2(1): 105-123.

Kayton, D., T. Teyner, C. Schwarend R. Uzsoy. 1997. "Focusing Maintenance Improvement Efforts in
a Wafer Fabrication Facility Operating under Theory of Constraints." Production and Inventory
Management(Fourth Quarter): 51-57.

Kim, B., and S. Kim 2001. "Extended Model for a Hybrid Production Planning Approach." International
Journal of Production Economics 73: 165-173.

Liberopoulos, G.,and M. Caramanis. 1994. "Infinitesimal Perturbation Analysis Znd Derivative
Estimation and Design of Manufacturing Flow ControlledUrnal of Optimization Theory and
Applications 81: 297-327.

Liu, J., C. Lii, F. Yang, H. Wanand R. Uzsoy. 2011.Production Planning for Semiconductor
Manufacturing Via Simulatin Optimizatio. In Proceedings of the 2011 Winter Smulation
Conference, edited byS. Jain, R. R. Creasey, J. Himmelspach, K. P. White and R. Fu. 3617-3627.
Piscataway, New Jerseystitute ofElectrical and Electronics Engineers, Inc.

Missbauer, H. 2002. "Aggregate Order Release Planning for Yangng Demand."International
Journal of Production Research 40: 688-718.

2006



Albey and Uzsoy

Missbauer, H.and R. Uzsoy. 2010. Optimization Models for Production Planning. Planning Production
and Inventories in the Extended Enterprise: A Sate of the Art Handbook. K. G. Kempf, P.
Keskinocak and R. Uzsoy. New York, Springé87-508.

Pahl, J., S. Vossaand D. L. Woodruff. 2005. "Production Planning with Load Dependent Lead Times."
40R: A Quarterly Journal of Operations Research 3: 257-302.

Pahl,J., S. Voss, and D. L. Woodruff. 2007. "Production Planning with Load Dependent Lead Times: An
Update of ResearchAnnals of Operations Research 153: 297-345.

Selcuk , B., J. C. Fransoand A. G. de Kok2007. "Work in Process Cleagnin Supply Chain
Operations Planning." 1 E Transactior#0: 206220.

Spall, J. C.1998. "Implementation of the Simultaneous Perturbation Algorithm for Stochastic
Optimization." IEEE Transactions on Aerospace and Electronic Systems 34(3): 81-B23.

Srinivagn, A., M. Carey, and T. E. Morton. 1988. Resource Pricing and Aggregate Scheduling in
Manufacturing Systems. Graduate School of Industrial Administration, Carnegidellon University.
Pittsburgh, PA.

Tekin, E., and |. Sabuncuoglu. 2004. "Simulation Optititon: A Comprehensive Review on Theory and
Applications."llE Transactions 36: 1067-1081.

Voss, S., and D. L. Woodruff. 200Btroduction to Computational Optimization Models for Production
Planning in a Supply Chain. Berlin ; New York, Springer.

Wilcoxon, F. 1945. "Individual Comparisons by Ranking Methods." Biometrics Bul l&): 80-83.

Yan, H., G. Yin, and S. X. C. Lou. 1994. "Using Stochastic Optimization to Determine Threshold Values
for the Control of Unreliable Manufacturing Systems." Journal of Optimization Theory and
Applications 83: 511-539.

Zapata, J. C.J. Pekny, and G. V. Reklaitis. 2010. Simulat@ptimization in Support of Tactical and
Strategic Enterprise DecisiorRlanning Production and Inventories in the Extemnded Enterprise: A
Sate of the Art Handbook. K. G. Kempf, P. Keskinocak and R. Uzsdy593628. New York,
Springer.

AUTHOR BIOGRAPHIES

ERINC ALBEY received his B.Sc., M.Sc. and Ph.D. degrees in Industrial Engineering from Bogazici
University, Istanbul, Turkey. He was a researcher at Bogazici University Flexible Automation and
Intelligent Manufacturing Laboratory during his graduate education. He is currently a postdoctoral
researchassociatein the Edward P. Fitts Department of Industrial and Systems Engine&tint)

Carolina State University. His research interests are planning under uncertainty, forecasting and capacity
modeling in congested systems, predictive modeling and decision making in the presence of alternative
and flexible resources, optimization and simulation. His email addresfisy@ncsu.edu.

REHA UZSOY is Clifton A. Anderson DistinguisheBrofessor in the Edward P. Fitts Department of
Industrial andSystems Engineering at North Carolina State Universityhdigs BS degrees in Industrial
Engineering and Mathematiesmd an MS in Industrial Engineering from Bogazigiiversity, Istanbul,
Turkey. He received his Ph.D. Industrial and Systems Engineering in 1990 from maversity of
Florida. His teaching and research interestsimrproduction planning, scheduling, and supply chain
management. He was named a Fellow of the Institutiedofstrial Engineers in 2005, Outstanding Young
Industrial Engineer in Education in 199@nd has received awards tooth undergraduate and graduate
teaching. His email address is ruzsoy@ncsu.edu.

2007


mailto:ealbey@ncsu.edu
mailto:ruzsoy@ncsu.edu

