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ABSTRACT

At The Boeing Company, stock levels for maintenance spares with substantial lead times must be
established before fielding new aircraft designs. Initial calculations use mean time between demand
estimates developed by the engineeriggpartment. After sufficient operating hours, stock levels are
recalculated using atistical forecastsof maintenance history. A Bayesian forecasting method was
developed to revise engineering estimates in light of actual demand on new aircraft programs.

Three forecasting methods were evaluated: Engineering Estimates, traditional Statistical Forecasting,
and Bayes’ Rule. Stock levels were established using inventory optimization, and fill rate performance
was evaluated using warehouse simulation. The proposed Bayesian approach outperforms the other
methods, enabling the inventory wpization model to establish stock levels that achieve higher fill rate,
resulting in better initial inventory investment decisions.

This paper’s contribution is comparirgparesforecasting approaches for a we#fined set of
airplane parts using a carefully constructed inverwptimization and simulation test environment.

1 INTRODUCTION

The Boeing Company manages aerospace service parts for customers through Performance Based
Logistics (PBL) programs, in which the company holds inventory in order t@mfiee an agreed upon
service level.If the inventory of service parts, which comprises the most costly portion of these PBLs, is
insufficient then contractual goals may be missed and aircraft availability impacted. An effective
stocking policy requires an accurate forecast of future demeiosvever,most service partexperience
slow-smoving or intermittentdemand, whichchallenges traditional forecasting methods, in addition to
having long lead times.

New programs need to establish stock levels for maintenance spardsngitiead tims before
aircraft are fielded. Engineering Estimates, an engineer’s prediction of mean time between demand
(MTBD), are utilizedbeforeforecasts based on demand history which adme®xistyet Thistechnique
is also called Judgmental ForecastingSource of these estimates includgipplier estimates, reliability
analysis, and comparisons with similar equipmeMthen managing large numiseof parts, manual
adjustmentso demand become difficult, andsgstematic approach is necessary.

After a significant amount of demand data is colleci#tdtistical Forecastingis employed This
method assumes that past behavior represents future ddmareVer initial demand can vary from long
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term experience. Thus, there is concern thatdlrrent metod maylead to poor performance early in
the life of an aircraft programAs explainedbelow in Section 2.4The Poisson Assumption, this study
assumes that demand follows a Poisson process in which demand th&e number of demands
occurring in a given time interval. Hence,

Demand Rate (1) using Statistical Forecasting 1 = ——nber of demands

Number of operating hours

Number of operating hours

Mean Time Between Demand using Statistical Forecastinq1 = Number of demands

Bayesian Forecastingvas developed by Thomas Bayes (1701-1761) to evaluate how people update
religious beliefs and independently rediscovered by Pierre-Simon Laplace (1749-1827). Bayes’ Rule
allows us to update our initial belief with new information, resulting in a newirapdoved belief
(McGrayne 2012). Muioz et al. (201®esent a Bayesian framework to estimate stock levels based on
simulation experiments where uncertainty exists in the demand forecast; we instead use Bayes’ to revise
the demand forecast itself. We both conclude that Bayes' is particularly relevant with few observations.

Bayes’ Rule provides an intelligent way of combining prior knowledge (such as Engineering
Estimates) with observed dafsuch as actual demandsBayes’ Rules is commonly expressedtzes
probability of prior belief A given new knowledge B:

rev (2

Bayes’ Rule P (g) =@

The Bayesian forecasting approach learns from observed demand, handles increasing operating hours
occurring on new aircraft programs, and gives credenddeooriginal engineering estimates. The
following formula, derived by Bergman, et. al. (2015), applies Bayes’ rule to demand forecasting:

Mean Time Between Demand using Bayes’ RuleMTBD = % = 1+;;" —, where
i=1*i

A: The unknown demand rate lambda, defined as 1/mean time between demand (MTBD)
r: Engineering Estimte (mean time between demand)

n: The number of operating hours in observed data

x: The number of demands in observed data over the operating period

Is one of these three methods of demand forecasting clearly superior for new programs? In Section 2,
we describe amaircraft scenariofor evaluating these methods using inventory optimization and
simulation In Section 3, we validatine simulation model. In Section 4, we evaluate the forecasting
methods. Section 5 describes next steps for implementing Bayes’ Rubgesultsare summarizeth
Section 6.

2 EVALUATING BAYES RULE THROUGH A CASE STUDY

A case studyvas developed tevaluatethe proposed Bayesian model for estimaspgre parts demand
on new aircraft programs. HEtase study is based on the first three and a quarter years of maintenance
data for anew internationalaircraft tanker program comprised of four aircraft. The thi@ecasting
methods compared in the caseidy are Engineering Estimates (judgmental forecasting), Statistical
Forecastingtbe current method, whichalculates MTBD from historical data and uggsireflight hours
as a causal factdo forecast requiremenisand BayesRule (combining Enginegng Estimates with
observed data)

The case study was conducted bydaterminingstock levels usingn inventory optimization model
in order to understand eaaiethods’impacton inventory, and by (b@valuatingthesestock levels in a
warehousesimulaion model in order to understamdichmethods’impacton fill rate. The impacibn
inventory was measured by the value of the required stoestment. The impact ofill rate was
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measured by the percentage of parts ordered which were filled fréranghinventory. This iterative
processof combining inventory optimization and simulatiovas described by Bradley and Goentzel
(2012).

2.1 Scenario

The baseline scenario modétsir aircraft operated byan international tankgurogram flying 75 flight

hours per aircraft per month. dommercial inventory optimization model usedto establish the stock
levels necessary achieve an 80% fill rate goal for groups of paes majority ofitems and the bulk of

the inventory investmenare for parts which can be repairéhis evaluationfocuseson the groumg of

239 unique repairablparts. The inventory optimization model was configured to analyze engineering
estimates, along with himtical demand data from March 2011 through March 2014, in order to estimate
the stock levels required to support 80% fill rate beginning in April 2014.

2.2 Inventory Optimization

The use of multechelon inventory optimization for service parts, characterized by low demand
probabilities, high cost, and high priority for service measured by “response time servicé Isvels,
described by Cohen, Kleindorfeand Lee (2006). This inventory optimization technique is embodied in
the commercidly available Service IBnning and Optimization (SPO) softwadeveloped by MCA
Solutions of Philadelphia, PA, which wased to compute stock levels. MCA Solutions was acquired by
PTC of Needham, MAn 2013. hputs for this model include &nTime BetweenDemand (MTBD),
repairtime to fix a broken part, condemnation rate, procurement lead time to buy a new part, and unit
price.

The inventory optimization model determithe mix of parts at stocking locations. The objective
function minimizesinventory investment cost subject achieving thalesired fill rate goal. Demarid
the model follows a Poisson process, and fill rate is computed using this assusiptitar, to the
marginal analysis algorithm to reduce backorders found in Sherbrooke .(Z8l0dbrooke (2004)roves
that this algorithm produces an optimal backomdssuseost curve. This approach uses one value in
each step of the algorithm to determine whether the next part should be stocked. This valugads equal
the increase in overall effectiveness achieved when another unit of an item is bought. In other words,
select thenext partthat resultdn the greatest “bang for the buck.” This incremental approatehrised
marginal analysis.

This case study is based on data for a program that manages only certain parts on the aircraft, making
fill rate the appropriate inventory optimization goal. If the program managed all parts, inventory could be
optimized to an aircraft availability goal. Optimizing invegtéo an availability goal is common in a
multi-indenture (parenthild relationships between service parts), medtielon (multiple levels of
maintenance capability) environment wheraltiple stocking locations supporting a fleet ougment,
which may haveequirementshat varyby operating location.

The inventory optimization model was exercised to set stock levels under three cases, which differed
only in MTBD for the parts in the data set

¢ Demand specified by Engineering Estimates.
e Demand estimatom the Statistical Forecasting engine in the inventory optimization model.
¢ Demand estimated by revising engineering estimates in light of actual demand using Bayes’ Rule.

A number of business rulegereincorporated into the current inventory optimization model, which
are reflected in the results for Engineering Estimates and Statistical Forecasting:

e Set $ock levels for 27 parts with demand, but missing cost, to 80% fill rate each.
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o Ensure a minimum 90% fill rate for 30 critical parts.

e Ensure that eachapt is assigned a minimum stock level equal to the total forecast over the
effective lead time for the part. The effective lead time is a weighted average of the repair time *
percent of parts repaired + the procurement lead time * percent of parts oeadem

2.3  Warehouse Simulation

The Boeing Advanced Logistics ANalysis CapabilitiEnvironment (BALANCE) is adiscreteevent
simulation modeldeveloped at The Boeing Company and written in the ExtendSim language. This
model, descrbed by Saylor and Dailey (2010), wasodified (3 to accept a user defined cumulative
probability density function describing an empiridaimand distribution, and (b) to allow stock levels and
the empirical demand distribution to be updated periodically, in this case annuiadige modifications
enable multivear simulatioa with varying stock levels and demand distributions by period. dite
driven aspects of the BALANCEimulationare described by Diamond, et. al. (2010). The reader is
referred tahese companion articles for additional details.

The BALANCE simulation model has two components: supply chain and warehouse. The supply
chain portion models equipment operations and creates demand for spabagedtsn eithahe part’s
mean time between demand (MTBD) or an empirical demand distribution. Failed parts are either repaired
in the repair turnaround timegr condemned with a replacemed¢livered lead time away. The
warehouse component supplies replacement parts from stocking locatidnen orders up to stock
level when inventory position drops to or below re-order point. The stock level amderepoint for
each part arset with aseparaténventory optimization model Satistics such as fill rate over timee
calculated

The simulation process invadg these steps:

o Establish ordepoint s and order-up-level S fora (s, S) continuous review inventory system
using aninventory optimization model to achieve thesiredfill rate goalat minimum cost.

e For repairable parts, orders golaced in quantities of oneo our inventory policy iglentical to
an orderpoint sand order-quantity Q policy (s, Q) with a fixed order quantity Q of one.

¢ Runmultiple simulatios, representing different vieswof how a typical year might play out.

e Calculate fillrate the fraction of demand over the duration of the simuldhiahis net from

stock on hand without backorders il Rate = 2¢mands filled jrom stock - i rafarred to as
Total demands

type-2 service level by Muioz et al. (2013), and in chapter 7 of Silver, Pyke, and Petersgn (1998
o Compare different scenarios through statistical evaluation of multiple runs using Stutkestt's t
to determine our confidence in achieving the desired fill rate goal over time.

2.4  The Poisson Assumption

We assume that demand follows a Poisson distribution for both the inventory optimization model and the
demand generator in the simulation. A Poisson process calculates the number of demands occurring over
a time interval. It assumdhat the random time between consecutive events is independent with an
exponential distributionand that variance equals mearTwo reasons motivate usirthe Poisson
assumption. First, demand is expected to rise as aircraft are delivered and neathlyght hours
increase. Time series techniques based on past demand history would result in a lagging forecast that
would understate futunequirements. Flight hours are therefased as a causal factdfuturedemand

is simply calculated as expectegerating hours divided by MTBD. Thus, forflaet schedulé to fly

1,000 operating houranda part with MTBD of 200 hours, we would expect five (5) demands. Second,
while current data collection systems capture operating hours per aircraft over time, they do not capture
time between demand by part. Without knowing the interval between demand on a part by part basis, we
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cannot characterize the demand distribution. We therefore calculate the mean and assume that variance
equals mean. Thus, a part removed and replaced five (5) times over 1,000 flight hours would have a
calculated MBD of 200 hours.

The Statistical Forecastingngine in the inventory optimization model is capable of assuming
different demand distributions for time series analysis based on the ratio of variance to the mean. The
model can also be configured to use a blend of exponential smoothing and demands per operating hour to
forecast demand. For this study, the engine was configured to run with 100% causal forecasting, in which
demand is based on calculatd@BD and future operating hours.

The Bayes’ Rule calculation also assumes Poison distiubut only because demand data is not
collected in a way that enables determining that actual time between demands dyygpdrbasis.

3 VALIDATING WAREHOUSE SIMULATION

3.1  Methodology

The warehouse simulation was validated by checking whether stock levels generatedniggrtoey
optimization model achieved the expected fill rate goal. The process to validate the simulation model is
illustrated Figure &nd isbased on the approach described by Bradley and Goentzel (2012).

--------------------------------------------------------------------------------------------------------------------------------------

5 l.n%l{etiired Fill Rate (1) | Inputs: | Inputs: .
e Part Level/Scenario i o Target Stock Levgls 3) Lole Estabhshed F_|II Rate (4)
! i e Part Level/Scenario Data (2) : | e Cumulative Fill Rate (5)
Data (2) - P
v v \i
Inventory Warehouse Student’s
Optimization Simulation t-Test
l l R 2 —
i Outputs:

oM Y e (4) = (5) Do Not Reject Null !
i Outputs: : Outputs: . | Hypothesis; Model Validated

| e Target Stock Levels (3)
|« Established Fill Rate (4)

_____________________________________________________________________________________

| o (4) # (5) Reject Null Hypothesis; |
Model Not Validated :

...................................................

i o Cumulative Fill Rate (5)

Figure 1: The methodology for testing the null hypothesis that the mean of a numbereliouse
simulations equals the expected fill rate established in an inventory optimization model using a Student’s
t-Test. The numbers in parentheses refer to specific input and output data elements.

The inventory optimization model minimizes inventory investment subject to achieving a user
specified fill rate goal (80% in this study). These target stock levels are inputs for the simulation, along
with the operating scenario (number of aircraft and flight hours per aircraft) and part level data (MTBD,
price, repair turnaround time, condemnation rate, and procurement lead fione)alidation, genyear
steady state simulation is conducted. The model is steady state because the @geratnng revains
constant each month. If the simulation fill rate is equivalent to the established fill rate goal from the
inventory optimization model, the simulation is considered validated. The null hypothesis, that the mean
fill rate of ten warehouse simulations equals the fill rate achievatidipventory optimization model,
will be evaluated using a Student'$ast at a 95% confidence level.
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3.2 Validation

A validaton is performedto verify whetherthe stock levels generated by the inventory optimization
modelachieve the expected fill rate the warehouse simulation. $tudent’s tfestis used to determine
whether the simulati fill rate equals that of the optimizer.

The inventory optimization model onfigured to compute target stock levels for partaiged in
therepairable partaetwork. The objective functios to minimize inventory investment and back orders
subject to the constraint of achieving an 80% target fill rate goal. The optimizer overshot and achieved an
80.58% fill rate. Next, these computed stock levels are loaded in the simulation. The opeestanp
and part level dateemain the sameBoth the optimization and simulation assume Poisson deriiand.
simulationsare run as shown in Table 1, resultingarmean cumulative fill ratef 80.45%.

Tablel: Simulated Cumulative Fill Rate over Terafk.

Simulation Run| Cumulative Fill Rate Simulation Run| Cumulative Fill Rate
1 81.4% 6 79.2%
2 82.0% 7 81.5%
3 80.6% 8 80.3%
4 79.6% 9 79.8%
5 78.6% 10 81.5%

A Student’s tTest is used to test the null hypothesis that riiean cumulative fill rateof ten
simulations 80.45%) is equivalent to the fill ratehieved by the optimizer (80.58%0he test was run at
the 5% significance level, meaning that the null hypothesis is only rejected when it is true 5% of the time;
thisis termed a Type | error in statistics. At a 95% confidence level, there is no reason to reject the null
hypothesis. Thus, the warehouse simulation fill rate (80.45%}henthventory optimization modéill
rate (80.58%)are considered equivalerand the simulation model is validated. The inputs and outputs
for the Student’s Fest are illustrated in Table 2.

Table2: Student's fFestinputs(left) and Outputs (right) for the Null Hypothesis that Simulated Fill Rate
is Equal to the Optimizer Fill Rate of 80.58%.

Input Name Input Value Output Name Output Value
Mull Hypothesis { Hy ) p =.0858 Test statistic -0.3689
Alternative Hypothesis | Hy ) p = 0858 P-value 0.721
Level of Significance (a) 0.05 Reject Null P-value (.721) > Level of Significance (a)
Sample Size (n} 10 Hypothesis? DO NOT Reject Null Hypothesis (. = .0858)
Sample Mean (x) 0.804467
Sample Standard Deviation (s) 0.011428

4 EVALUATING FORECASTING METHODS

Stock levels based on Engineering Estimates, Statistical Forecasting, and Bayes’ Rule were analyzed to
determine whether there wadasiness cas®r implementing Bayes’ Rule on the international aircraft
tankerprogram The inventory optimization modeetermined the stock levels required to achieve an
80% fill rate goal, and simulation estimated the fill rate achievable given the demand that actually
occurred. Differences were evaluated by assessing the impact to inventory position (financial impact)
using inventory optimization, and the impact to fill rate (performance impact) using simulation.
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4.1  Evaluating Fill Rate for Engineering Estimates sing Warehouse Simulation

SinceThe Boeing Company relies on engineering estimates to forecast future demasu faircraft
programs, itis important to know how wetheseestimates support customers’ operating requirements.
In the upper left hand picture Figure2, Engineering Etimateswere usedo establish stock levels to
support an 80% fill rate on the international airctaftker program

To see how this mix of spare parts supported the fleetwarehoussimulation modelvas runto
evaluate the ability of these stock levels to support the actual demands experiencethienniigonal
tanker progranietween delivery of the first aircraft March 2011 and March 2014. We assumed that
“robbing” needed parts from the production line was not allowReferring to the upper right hand chart,
the 90day moving average is shovim red and the cumulative fill rate in bludhis stocking strategy
average only a37.7% fill rate.

Given the low performancé, seemed prudent to validate the analysis. To validate the stock levels,
the warehousseimulationwas run againthis time assuming that demand followed a Poisson distribution
with a mean of the engineering estima#es shown in the lower left hand chart, the simulatchieved
80.45% fill rateclose to the 80.58% predictég the optimizatior{which overshot the 80% goal). So if
demand had been the same as the engineering estimates, the stock levels would have supported the fleet.

To ensure that there was no issue with not hitting steady, statdower right hand chart shows
simulating the stock levels against an empirical demand distribution created from the actual 2011-2014
historical data to drive &n year simulatiorachieving 37.9% fill rate.

Cum Fill Rate
= 37.7% (Blue)

7 90 Day Moving
y Average (Red)

i I$B 5M Inventory
Investment

(Nermalized to 100%)

N Jremergr ey

|| ey ——————

Fill Rate

Fill Rate = 50.58% - g =
Optlmlze Inventory to 80% Fill Rate Actuel Demand from 2/2011-3/2014

1 g 0 T ]
e L] e ey |

CELE T
o = B e [l 2 e[l AT ]

i 1 : ke | Cum Fill Rate

E bﬁM}!ﬁﬂh i r’Lhﬂy ?1,, r*‘a wk I = 37.9% (Blue)

ng Cum Fill Rate = g' Il IL i Lll J -H il l AL ‘

|3 80.45% (Blue) = U Ml Wl a lrwﬂ J”H
(Mean of 10 Sims)

SR o e S e O G .—-u-“-"-;..-r- B ST S T L TR T -

Validate Model with Eng Estimates Empirical Demand Distribution

Figure 2: The fill rate achieved when the inventory was optimized to 80% fill fapper left)was
validated by running a warehousenulation in which the MTBD was se&qualto the engineering
estimateglower left). Theexpected actudlll rate was then estimated by (a) evaluating the stock levels
againstthree years ofictual demand historfupper right) and (b) evaluating the stock levels against an
empirical demand distribution based on actual demand history (lower right) in stataly
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The conclusions artnat (a) Engineering fimatesare inaccurate and unlikely to support new fleets
or flight test programs, and (b) there are periodic cycles in the 90-day moving average, or short term fill
rate. Bayes’ Rule fills the need tmwe away from Engineering Estimates.

4.2  Evaluating Inventory Investment and Fill Rate using Inventory Optimization

Stock levels were calculategsing inventory optimization, varying only the Mean Time Between Demand
(MTBD) between the three scenarios: Engineering Estimates, Statistical Forecastirigyes’ Rule.

We analyzed annual inventomyvestmentandyear end fillperformancdo assess thbusiness case for
implementing Bayes’ Rule. Figu® Inventory Investment and Fill Ra@ver Time,is color coded to
reflect required buys/¢ ), existing inventorydreer), and excess inventorye().

In 2011,all scenarios rely on Engineering Estimates because new programandthus sart with
the same required inventory investmeritl/(0w), normalized to 100%. The inventory optimization model
was then run in an evaluation mode to estimate the full rate achievable when demand instead reflected the
Bayesian forecast. The resulting fill rate estimate is representeddypkame inFigure 3.

In 2012, the Statistical Forecasting engine continues tcengieering Estimates due to business
rules. BayesRulerequires an additional 25%vestment ( ) over previously purchased inventory
(green).

In 2013, both Statistical Forecastingd BayesRule result in revisions tatock levelsThe former
now requires an additional 25% investmejat/iQw).

In 2014, we again revisgtock levels. Statisticdtorecastingand Bayes’ Rul@ow identify excess
inventory (ed) due to changing demand patterns.

In the reconciliationset, we address whether we are buying the same parts in different years, or
different collections of parts. if®e forecast accuracy is best for Bayes’, we reconcile the Engineering
Estimates and Statistical Forecastioghe Bayes’ stock leveld-or Engineering Estimates, we hahe
expectedshortfall to close( ), indicating the cost of revising stock levels based on better estimates
For Statistical Forecasting, we have a small required bayo(v) and onlya modest amount of excess
inventory (ed over Bayes’, indicating that over time stock levels are similar to Bayes’ on a paatiby-
basis.

Inventory Investment (Bar) and Fill Rate (Airplane) Over Time

90%
80%

150%
125%

60%

100%

% HEH

50%

50%
40%
30%
20%

Fill Rate

10%

0%

25%

Inventory Investment
(Normalized to 100%)

0%

Year + Forecasting Method

Green Yellow Red
W Optimal Shortfall W Excess

Figure3: Bayes'Rule provides better early operating performance for a similar investment (vertical bars)
in inventorywhen comparedo Statistical Forecastingvhile both techniques significantly outperform
Engineering Estimates based on fill rate (airplaoa).
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Both Statistical Forecastingnd Bayes’ Rule outperform Engingwy Estimates in supporting new
aircraft programs. Whil&tatistical Forecastingnd Bayes'Rule require similar inventory investments
over time Bayes’ outperformghe current process aftdirst fielding new aircraft because it ingmrates
the experience ogarly demands Additional quantities of spar@ars ( ) may be neead when
Engineering Estimatesre revisedand nanagement must budget for these periodic adjustméntsher,
management can expect excess inventany) on new aircraft programs as demassiimatesare refined
over time, a consideration when including clauses for buying back excess inverdongracts.

4.3 Inverse Transform Sampling of Histaical Demand Data for Warehouse Simulation

The inverse transform sampling techniqgue was used to take random samples from the empirical
cumulative demand distribution for each part in the dataset, as shéiguie4. By drawing a random
number between zero and one, representing the cumulative fill rate ortige gne can read across on

the x-axis to find the resulting demands per month.

Inverse Transform Sampling for Part 020-807-0, Nose Landing Gear Tire
008
m ']
Bl -

Cumulative Probability
PR=020 8070+
v

o @ % » @ @ A @ a & 5 @ & g

oL

Demands Per Month

Figure 4: Inverse transform samplinfpr Part Number 020-807-0, the nose landing gear tifde
empirical demand distribution is sampleg drawing a random number between zero and one, and
returning the corresponding demands per month from the cumulative distribution function (CDF).

Historical demand in the period of interest is represented by an empirical distribution. The example
above reflects actual demand occurring in the third year of operations for one part. Inverse transform
sampling is used instead of replaying actual demand because it allows running multiple random scenarios
in order to calculate confidence intervals, and running stetadg scenarios representing future periods.

The process used for inverse transform dengpby time period, is:

1. Sum the historical demands per month for each part number, including months with zero demand.
2. Create a cumulative histogram withagual bins for each part number where each bin
corresponds to the actual monthly demand. The resulting histogram shows the cumulative
probability of having 0 to n demands. This histogram is showiguré 4, where the axis is
demands per month and thewis is the cumulative probabilityAlthough histograms usually
have equal bin size®yr creating an empirical demand distributitms histogram uses bins that
are equal toite actual monthly demands that occur. The number of bins is equal to the number
of unique values of demands per month (plus one if there are months with zero demand).
3. Each month, for each part, the demand generating function in the simulation draws a random
number between 0 and 1 and looks up the cumulative probability to determine the corresponding
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demands per month. In this way, the demand generating function randomly determines monthly
demands per part following the same empirical demand distribution as the actual data.
4. Repeat steps for each period.

4.4  Evaluating Fill Rate using Warehouse Simulation

Jackknifed datasets are frequently used to evaluate different forecasting methods. Demand from an
earlier period is used to forecast demand from a later period. The method with the lowest forecast error is
then used to forecast the entire dataset in order to predict the future, a statistical method also referred to as
crossvalidation. In this study, the jackknifing technique was employed to estimate the demand used in an
inventory optimization model to set stock levels. Demand from the later validation period was used to
evaluate fill rate. First mentioned by Tukey (1958), this technique is more fully described by Abdi and
Williams (2010). Thepurpose of the jackkniig technique is to eliminate bias. For example, suppose a
program started in 2012. The forecastZ0i4would bebased on historical demand from 2022013.

If the forecast of 2014vas compared with observed demand from 2012-2014, there would be a bias
because the forecast and thieserved dathoth included 2014. The jackknife approach uses observed
data from2012-2013 tdorecast requirements for 2Q1tthen evaluates that forecasjainst observed data

from 2014only. Thiseliminates the bias. Historicabohandin the period of interest is thus split in two
components to create the jackknifed forecda}t earlierdemandor forecastingand ) laterdemand for
evaluation

In 2012, the Statistical Forecasting engine icas to usdéengineering Estimates due to business
rules, starting the year at 28% and ending the year at 42%ind3s rules requiellecting two years of
actual demand history before switching from Engineering Estimateghandnly when there arbree
or more demands within a 12 month period. Bayade performs significantly better, also starting at
28% but ending the year at 70% fill rates simulatedver time in Figure 5.

In 2013, Statistical Forecastinmproves from 42% to 72%, while Bayes’ improves from 70% to
78%, as both methods result in revised stock levalgh three or more demands in a 12 month period,
Statistical Forecasting switches from Engineering Estimatdsrt@nd history.

In 2014, we again revisgock levels. Statistical Forecastingproves from 72% to 81%, and Bayes’

Rule stays relatively constant from 78% to 82%.

2012 2013 2014
Statistical Forecasting Statistical Forecasting Statistical Forecasting
2 2 OT2%FR| | | 9 ~O 81%FR
E (42% FR : o £ - 7% FR
i - i o B " = o
O 28% FR M
Stock=100% Stock=127% Stock=113%
Bayes' Rule Bayes' Rule Bayes' Rule
8- O 70%FR|| |8 @~ "OTRFR| | | o |ZO=AAOBZRFR
=- ) S- T0%FR ©C 78%FR
O 28% FR B
Stock=125% Stock=125% Stock=106%

Figure5: Comparison of simulated fill rate when inventory is optimized based on Sttisti@casting
(top row)vs. when inventory is optimized based on Bayes' Rule (bottom row). Each box shows simulated
fill rate at the start of the year and the end of the.year
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5 NEXT STEPS

The near terngoal isautomation: create computer cdderead tablge containing engineering estimates
and transactional demand history from the company standard inventory optimization catméate
revised demand estit@susing Bayes’ Rule, and return these estimates toplimizerto revise stock
levels. The long term goal is to seamlesstggrate Bayes’ Rule intihe supply chain process.

Future research will be conducted to determitether the Poisson demand assumption needs to be
revised Demand dataollectedincludesoperating hours paircraft permonth, andtransactional order
dates and order quantitieg part This only allows for calculatg a single parameter (average operating
hours per demand) with an assumed demand distribution. As a result, this research assumed the time
between demanid exponentially distributed, which is equivalent to Poisson demanddetgands per
time). Howeverthe literature finds that the Poisson distribution is a poor estimator of actual variance
(Sherbrooke, 2004). A lpt to calculate thedemand distribution based on observed demand could
determine whether this Poisson assumption needs revision. The desired data set to do this would show
the operating hours between demé#émdeach failed asset. This could be obtaihgdime stamping the
installation of asset Y on aircraft tail ahdby time stamping the demarmd asset Y on aircraft tail X.
Then, the flight hours for aircraft tail X could be computed ftbesetwo time stampsnd flight hour
records. This type ofala set could allow for a more appropriate representation of demand and could
potentially increase the accuracy of predicted demand.

6 CONCLUSION

This paper’s contribution is toveluatemethods forforecasting service parts for a new airplane model
using anintegrated inventory optimization and simulation environment. We evalaBayesian
approach to demanarecasting showing it to be superior to both Engineering Estimates and Statistical
Forecasting

For a definedcollection of repairable part©n an international tanker program at The Boeing
Company, we demonstrated thvethen compared to Statistical Forecasting, BajRge providesbetter
early operating performance as measured by fill ki, similar inventoryover a multiyear period as
measured by investmerbst Engineering Estimates performed popihut were improved through
revisions in light of observed demand using Bayes’ Rule.

Our multiyear simulation showed thas alemand estimates are refined over timanagement
should budget foperiodicadditional hvestmergin inventoryon new aircraft programsAs all forecasts
containforecasterror, management should also budget for excess inventory building up over time.

In conclusion, we showed that Bayes' Rule revistock lewls more responsively than current
business rules for forecasting on a new aircraft program, impreusigmer performance by improving
fill rate during the first few years of operations.
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