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ABSTRACT

We discuss copulas for incorporating dependence in the input distributions to a simulation model. We

start by motivating the need for incorporating dependence in the primitive inputs to a simulation. Copulas

are then introduced as a convenient and flexible model to incorporate dependence. We rigorously define

copulas, introduce some of their basic properties, illustrate popular copula families, and discuss methods

for copula estimation. Since this is an introductory tutorial, we have attempted to keep all exposition at a

basic mathematical level without omitting important technical details. The oral presentation of this tutorial

will include additional discussion on random variate generation, copula inference, and tail dependence.

1 INTRODUCTION

What is a simulation model? A precise answer to this question is difficult and we will not undertake an

explanation; instead, for the purposes of this tutorial, we will understand simulation models loosely, as

computerized abstractions of the functioning of some physical system of interest. The physical system may

be a portfolio of stock prices evolving in time, a large manufacturing plant engaged in the daily production

of widgets, or a small city reeling under the spread of an epidemic. Simulating these systems is usually an

attempt at faithfully but parsimoniously representing (on a digital computer) the system’s functioning with

the objective of estimating a well-defined performance measure. For example, in simulating the portfolio

of stocks, we may seek the expected revenue at the end of a specified time horizon; or we may simulate

the operations of a large production plant in an attempt at estimating the weekly expected throughput.

The examples just listed — evolution of a stock portfolio, the operations of a production plant, or

the spreading of an epidemic in a city — are all very different physical contexts but their simulations (or

computerized abstraction) are much less so. Nelson (1987) notes in his seminal work that virtually all

simulations, explicitly or implicitly, are subsumed by the simple simulation worldview depicted in Figure

1. The worldview consists of five essential components: a set of random seeds X0, a set of random numbers

U obtained from X0 using the generator Gr, a set of input data V obtained from U through an input model

I , a set of output data Y obtained from V using the simulation logic L , and finally the estimator set θ̂
that estimates the true set of performance measures of interest θ and obtained from Y using the statistical

estimation procedure S. (For brevity, we will not discuss the other elements of the simulation world-view

— see Leemis (2003) for a detailed explanation.)

This tutorial is about the choice of the crucial element I representing the input model used within the

simulation worldview (Figure 1). The input model is usually a probability model that results from applying

a process P to a set of data D collected from the physical system. So, for the context of simulating the

portfolio of stocks evolving in time, I might represent the joint distributions that simultaneously drive the

evolution of stock prices within the portfolio. In this tutorial, we address the question of how to incorporate
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Figure 1: A simulation worldview depicting the random seeds X0, the random numbers U , the input data

V , the output data Y and the estimator(s) θ̂ . A “correct” input model I is crucial to building simulations

that faithfully represent the system of interest. This tutorial focuses on incorporating dependence within

the input model I .

dependence within the collection of distributions comprising I . Furthermore, the focus is much less on

the (marginal) distributions that drive individual stock prices than on their interaction or dependence.

Is modeling dependence in simulation input important? Can dependence be ignored so that the

distributions that collectively comprise I in the simulation worldview be modeled independently? The

answer to this question is best illustrated using a simple example.

Example. Consider a multiple item production and inventory system that services a multi-product assemble-

to-order plant. The company makes and stocks only the components and not the final products, a common

setup in the electronics and automobile manufacturing industries (Glasserman and Wang 1998, Xu 1999,

Song and Zipkin 2003). Alternatively, the operations of a blood center that collects, stores, and delivers

blood and blood products to regional hospitals and clinics may be viewed in a similar vein. Such production

and inventory systems are often managed separately from the assembly lines, especially when component

manufacturing or procurement times are significantly longer than assembly leadtimes, or in the case of

perishable goods, the products’ shelf lives. While orders for different products may arrive independently,

ignoring the implied dependence between demands on the components comprising a product order can

lead to inefficient stocking policies in the inventory system.

For expository purposes, let us assume a two-item production system in which the true demands

come from a bivariate NORTA distribution (Law 2007) with exponential marginal distribution functions

D1 ∼ Exp(1/10),D2 ∼ Exp(1/90), and having correlation ρ = 0.9. Figure 2 shows two scatter plots of

simulated demand random vectors; the left panel shows generated demands with the correct marginal

distribution functions but with dependence ignored, and the right panel shows generated demands from the

true distribution where dependence is incorporated. As expected, the scatterplots show distinctly different

trends, with demands on the right panel being high or low together, unlike the left panel where there is no

discernible relationship.

How does ignoring dependence in the probability model for demand (D1,D2) manifest itself in decision-

making? To answer this question, suppose we use the demand probability model to make a decision on how

much inventory to hold. Specifically, suppose we wish to identify the minimum total inventory level that

will ensure that the stockout probability remains below a threshold. Formally, if s1 and s2 are the inventory

levels with corresponding holding costs c1 and c2, and α represents the threshold stockout probability, the

optimization problem to identify the optimal inventory levels is given as:
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Figure 2: Scatterplots of simulated demands D1 and D2 under two probability models: (a) ignore depen-

dence but incorporate the correct marginal distribution functions; and (b) incorporate the correct marginal

distribution functions and the dependence structure.

minimize c1s1 + c2s2

subject to Pr
{

D1 > s1

⋃
D2 > s2

}
≤ α. (1)

It is evident from the problem formulation in (1) that the assumed probability model will directly affect the

feasible region, potentially introducing errors in the optimal solution. Figure 3 depicts the feasible region

and the optimal solution of the problem in (1) for the incorrect and correct probability models. It can be

seen that ignoring the dependence in demands D1 and D2 results in a nontrivial change in the structure

of the feasible region, and consequently, substantially different inventory policies. The numbers shown on

the right and left panels of Figure 3 quantify this difference. For instance, the suggested inventory level

when ignoring dependence results in an error of almost 30 percent for s2, with a corresponding 10 percent

increase in holding costs. In this example, ignoring dependence seems to have little effect on the choice

of s1. �

The above example was constructed on a small scale for expository purposes, but delivers an important

message: ignoring dependence in simulation input, while convenient, can have a nontrivial impact on the

decisions made using the simulation output. In more complicated settings, there is reason to believe that

the effect of ignoring dependence can be more severe. Sound theoretical arguments based on the cascading

effects of modeling error, along with a number of high-profile negative examples bolster this view.

The idea that modeling dependence in simulation input can be important is clear to most academicians

and well-recognized among implementers. Yet, it appears that most existing discrete-event simulation

packages at the time of this writing have at best only rudimentary mechanisms to handle such dependence.

For example, the package Simio does not yet support methods for generation from general multivariate

distributions, although certain specific stochastic processes are supported. Similarly, the popular package

ARENA (Rockwell Automation) does not have any inbuilt mechanism for dependent random variate

generation; neither does the recently introduced SAS Simulation Studio, although support in the form of

interfacing ability with SAS JMP, which has copula modeling capabilities, is provided.
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Figure 3: The figure shows the feasible region and the optimal solution for the optimization problem in

(1) when (a) the marginal distribution functions are correctly chosen but the dependence ignored; and (ii)

both the marginal distribution functions and the correct dependence structure are incorporated.

1.1 Organization of the Tutorial

This tutorial undertakes a basic exposition of copulas as a flexible mechanism for incorporating dependence

in simulation input. After motivating copulas in the bivariate context in Section 2, we formally define

copulas and some of their key properties in Section 3. This is followed by Section 4 where we describe

and illustrate popular copula families. Sections 5 addresses estimation for copulas.

Since this is an introductory tutorial, we have attempted to keep all exposition at a basic mathematical level

without omitting important technical details. We do not treat more advanced theoretical and methodological

underpinnings of copulas, especially in high dimensions and for heavy tail dependence. We also do not

treat process copulas but instead limit ourselves to modeling random vectors. Section 6 provides some

concluding remarks.

1.2 Notation and Convention

We will adopt the following notation through the paper. (i) If x ∈ R
d is a vector, then its components are

denoted through x := (x1,x2, . . . ,xd). (ii) If a random variable U is uniformly distributed in the interval

[0,1], we write U ∼U [0,1]; (iii) We write F−1(t) = inf{s : F(s)≥ t} to represent the generalized inverse

of the cumulative distribution function (cdf) F . (iv) If ρ is a d×d matrix, then |ρ| denotes its determinant;

(v) Φ(·) and φ(·) denote the standard Gaussian distribution function (df) and the standard Gaussian density

function respectively; (vi) The L2-norm of a vector x is defined as ‖x‖2 =
√

x2
1 + x2

2 + · · ·+ x2
d .

2 INCORPORATING DEPENDENCE IN SIMULATION INPUT

For ease of exposition, let us consider the bivariate context. Suppose we wish to model a bivariate continuous

random vector (X ,Y ) that forms a primitive input to a simulation. Here, the phrase “model a bivariate

continuous random vector (X ,Y )” is meant in the statistical sense, that is, we wish to choose a bivariate

distribution that approximates the (true) unknown distribution H(x,y) = Pr(X ≤ x,Y ≤ y) of (X ,Y ). The

traditional way of accomplishing such approximation is to collect data (Xi,Yi), i = 1,2, . . . ,n, choose a

bivariate parametric family, e.g., the bivariate gamma (Kotz et al. 1997, Chapter 48), and then “fit a

distribution” from the chosen family using one of various available methods (Casella and Berger 2002,
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Chapter 7). While such a method is reasonable, it is limiting from the standpoint of distribution-family

choice. For instance, if the marginal data reveal that X should have an exponential distribution and Y

should have a normal distribution, the modeler is forced to search for a “named” bivariate family having

the exponential and normal families as marginal distributions (or worse, model X and Y as independent

random variables). This issue becomes more and more pronounced in higher dimensions, where the number

of existing predefined multivariate distributions, especially with different marginal df families, is small.

The above issue leads to a natural question: is there a systematic and flexible way of modeling

dependence in a random vector while preserving chosen marginal structures? The answer to this question

might (implicitly) lie in a powerful representation theorem due to Sklar (Nelsen 2007, Section 2.3). To

illustrate Sklar’s theorem, suppose the bivariate distribution H(x,y) = Pr(X ≤ x,Y ≤ y) is continuous with

marginal cdfs FX(x) = H(x,∞) and FY (y) = H(∞,y). We see that the random variables FX(X) and FY (Y ) are

distributed as U[0,1] since Pr(FX(X)≤ x) = Pr(X ≤ F−1
X (x)) = x and Pr(FY (Y )≤ y) = Pr(Y ≤ F−1

Y (y)) = y.

The analogous normalization in the bivariate space is provided by Sklar’s theorem (Nelsen 2007) which

states that if the joint distribution function H(x,y) is continuous, then it has the unique representation

H(x,y) =C(FX(x),FY (y)), (2)

where the function C : [0,1]× [0,1]→ [0,1] is called the copula associated with (X ,Y ).
The implication of the representation in (2) is that the joint cdf of (X ,Y ) at any point can be expressed

purely as a function of the marginal cdfs FX and FY through the copula C. For example, when X and Y

are independent, we can write

P(X ≤ x,Y ≤ y) = FX(x)FY (y) =C(FX(x),FY (y)), where C(u,v) = uv,(u,v) ∈ [0,1]× [0,1].

In this case, we say that the function C(u,v) = uv,(u,v) ∈ [0,1]× [0,1] is the copula associated with any

two independent continuous random variables X and Y . Similarly, when (X ,Y ) has a bivariate normal

distribution with covariance matrix Σ, we can write

P(X ≤ x,Y ≤ y) := ΦΣ(x,y) = ΦΣ

(
Φ−1(Φ(x)),Φ−1(Φ(y)

)
:=CG(Φ(x),Φ(y))

giving the 2-dimensional Gaussian copula CG(u,v) = ΦΣ(Φ
−1(u),Φ−1(v)),(u,v) ∈ [0,1]× [0,1]. (The in-

dependence copula and a Gaussian copula are illustrated in Figure 4.)

Remark 1 As we shall see in the next section, the representation for the df of a random vector (X ,Y ) that

is discontinuous takes a form that is identical to (2). The uniqueness of the copula, however, is no longer

guaranteed. In other words, for the discrete (or mixed) (X ,Y ) context, we can in principle find several

copulas that satisfy the representation (2).

Remark 2 As noted in Resnick (1987), the standardization of the marginal dfs of H to uniform dfs on

[0,1] is arbitrary.

The representation characterized through Sklar’s theorem is a powerful tool for modeling dependence

in simulation input. To see this, let us go back to the example of a bivariate continuous random vector (X ,Y )
that forms the input to a simulation. With Sklar’s theorem, we know that the bivariate df H(x,y) of (X ,Y )
can be written as H(x,y) = C(FX(x),FY (y)), where C(u,v) : [0,1]× [0,1]→ [0,1] is a copula satisfying

certain regularity conditions. A model for H(x,y) is thus completely specified upon individually modeling

the three ingredients that comprise the bivariate distribution function H(x,y): the marginal distribution

function FX , the marginal distribution FY , and the copula C(u,v). Such individual modeling is convenient

in that it allows the modeler to “mix and match” different choices of continuous marginal distributions

with copula functions that encode different dependence structures. For instance, a modeler might choose

a gamma(1,2) (Johnson et al. 1995, Chapter 17) distribution to model FX , an exponential(1) (Johnson

et al. 1995, Chapter 19) distribution to model FY , and a Gaussian copula to model the dependence between

X and Y . Such flexibility is in contrast to the more traditional way of modeling H(x,y) by a member
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Figure 4: The independence copula and the Gaussian copula

of a prespecified parametric family of bivariate distributions having gamma and exponential marginal

distributions. Such a specific bivariate family may not be readily available.

A second attractive feature that is implicit in the representation H(x,y) =C(F(x),F(y)) is the invariance

property associated with the copula C. Specifically, if ψ1 : R→ R and ψ2 : R→ R are real-valued strictly

increasing (or strictly decreasing) functions, then the random vector (ψ1(X),ψ2(Y )) has the marginal

distributions Fψ1(X)(x) = P(ψ1(X)≤ x) = FX(ψ
−1
1 (x)),Fψ2(Y )(x) = P(ψ2(Y )≤ y) = FY (ψ

−1
2 (y)), and the df

P(ψ1(X)≤ x,ψ2(Y )≤ y) = H(ψ−1
1 (x),ψ−1(y)) = C(FX(ψ

−1
1 (x)),FY (ψ

−1
2 (y)))

= C(Fψ1(X)(x),Fψ2(Y )(x)). (3)

We see from (3) that under the strictly increasing (or strictly decreasing) transformations (ψ1,ψ2), the

random vector (X1,X2) retains its dependence structure in the sense that the transformed random vector

(ψ1(X),ψ2(Y )) has the same copula as the original random vector (X ,Y ). As we shall see later, such

invariance under monotone transformations suggests that the relative rank (FX(X),FY (Y )) of the random

vector (X ,Y ) contains complete information on the dependence structure — a feature that can be exploited

for fitting copulas, since the sample relative ranks can be readily estimated from available data.
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A third implicit advantage is afforded by Sklar’s representation. Since the copula C associated with

a random vector (X ,Y ) is essentially a form of standardization of the dependence structure implicit in

(X ,Y ), the copula provides a coherent way to compare the extent of dependence of random vectors having

different marginal distributions. So, for example, the dependence implicit in a bivariate exponential having

specific parameter values can be compared against the extent of dependence implicit in a bivariate normal

having a specified covariance matrix, through their respective copulas. Admittedly, such comparison is

difficult in dimensions higher than two. In fact, even in two dimensions, interpreting the contours of a

copula for comparison against another can be an arduous task. There is reason to believe, however, that any

reasonable measure of comparison of dependence structures in high dimensions will face similar challenges

of interpretation.

3 COPULAS: FORMAL DEFINITION AND SOME BASIC PROPERTIES

In this section, we formally define copulas, state Sklar’s Theorem, and discuss some important properties.

Depending on the reader’s objective, the details of this section can be safely omitted, but only after

internalizing Definition 1 and Theorem 1.

We start with the definition of a copula.

Definition 1 A real-valued functionC : [0,1]d→ [0,1] is called a d-dimensional copula if it is a d-dimensional

df with uniform marginals, that is, it satisfies the following three properties.

P.1 C(u1,u2, . . . ,ud) is non-decreasing in each of its arguments u1,u2, . . . ,ud .

P.2 C(1,1, . . . ,1,ui,1, . . . ,1) = ui for i = 1,2, . . . ,d.

P.3 Suppose a j ≤ b j, j = 1,2, . . . ,d and u j,1 = a j,u j,2 = b j. The function C(u1,u2, . . . ,ud) satisfies the

rectangle inequality
2

∑
i1=1

· · ·
2

∑
id=1

(−1)i1+i2+···+idC(u1,i1 , . . . ,ud,id )≥ 0.

The property P.1 is the usual restriction imposed on one-dimensional dfs. The property P.2 stipulates that

the ith marginal function, obtained by setting all arguments except the ith to one, corresponds to the U[0,1]
distribution. The property P.3 is a formal restatement that the measure P(U1 ∈ [a1,b1], . . . ,Ud ∈ [ad ,bd ])≥ 0

associated with rectangular sets Πd
j=1[a j,b j] is non-negative. Apart from P.1, P.2, and P.3, the definition

of the copula endows it with the other natural property that if 1≤ j1 ≤ j2 ≤ ·· · ≤ jk ≤ d are the labels of

k arguments, then the function C(1, . . . ,1, j1,1, . . . ,1, j2,1, . . . ,1, jk, . . .) obtained by setting all arguments

other than those at positions j1, j2, . . . , jk to one constitutes a k-dimensional copula.

We are now ready to formally state Sklar’s theorem (Nelsen 2007, Section 2.3).

Theorem 1 (Sklar’s Theorem) Let H be a d-dimensional cdf with corresponding (univariate) marginal

dfs H1,H2, . . . ,Hd . Then, there exists a d-dimensional copula C such that

H(x) =C(H1(x1),H2(x2), . . . ,Hd(xd)).

The copula C is unique if H is a continuous df. Otherwise, C is unique on the set D1×D2×·· ·×Dd ,

where Di is the range of Hi, i = 1,2, . . . ,d.

From the definition of the df H, it is easy to see that a copula C satisfies

C(u) = H(H−1
1 (u1),H

−1
2 (u2), . . . ,H

−1
d (ud)). (4)

Sklar’s theorem notes that the above copula is unique when the df H is continuous. Using the representation

of the copula in (4), and assuming that the df H has a joint density h := (h1,h2, . . . ,hd), the density function

c : [0,1]d → [0,1] associated with the copula C is given as

c(u1,u2, . . . ,ud) =
h(H−1

1 (u1), . . . ,Hd−1(ud))

h1(H
−1
1 (u1)) · · ·hd(H

−1
d (ud))

. (5)
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Being distribution functions, copulas are often difficult to interpret visually; their densities, when

existent, are more amenable to visual interpretation. Contour plots of some examples of copula densities

appear in the ensuing section.

An important property that makes the copula an attractive measure of dependence is its invariance

under monotone transformations. This property is formally stated in the following theorem.

Theorem 2 (Invariance Under Monotone Transforms) Suppose the random vector X := (X1,X2, . . . ,Xd)
has the df H := (H1,H2, . . . ,Hd) and the associated d-dimensional copula C : [0,1]d → [0,1], that is,

H(x) =C(H1(x1),H2(x2), . . . ,Hd(xd)).

Let ψi : R→R, i = 1,2, . . . ,d be strictly increasing functions. Then, the copula associated with the random

vector (ψ1(X1),ψ2(X2), . . . ,ψd(Xd)) remains C, that is,

P(ψ1(X1)≤ x1,ψ2(X2)≤ x2, · · · ,ψd(Xd)≤ xd) =C(Hψ1(X1)(x1),Hψ2(X2)(x2), . . . ,Hψd(Xd)(xd)),

where Hψi(Xi)(x) = H1(ψ
−1
1 (x) is the df of ψi(Xi).

Theorem 2, in a sense, points to the copula as the correct measure of dependence. Loosely speaking,

the copula of a random vector is its df with arguments measured on the “marginal scale”; Theorem 2

simply asserts that the relative ranks (as measured on the “marginal scale”) of random variables remain

unchanged under strictly monotone transformations.

The maximum and minimum possible (Pearson) correlation between any two (real-valued) random

variables having the respective dfs F1 and F2 are given by Corr(F−1
1 (U),F−1

2 (U)) and Corr(F−1
1 (U),F−1

2 (1−
U)) respectively, where U ∼U [0,1] (Whitt 1976). This result is well-known among simulationists in a more

practical sense. Namely, in order to induce the maximum and minimum amount of correlation between

two random variates X1 and X2 having dfs F1 and F2, generate (X1,X2) (using the cdf-inverse method) with

common random numbers or antithetic variates respectively, that is, generate X1← F−1
1 (U),X2← F−1

2 (U)

for maximum correlation, and generate X1 ← F−1
1 (U),X2 ← F−1

2 (1−U) for minimum correlation. A

corresponding result holds in the context of copulas and is known as the Fréchet-Hoeffding bound.

Theorem 3 (Fréchet-Hoeffding bound) The d-dimensional copula C satisfies

max{
d

∑
i=1

ui +1−d,0} ≤C(u1,u2, . . . ,ud)≤min{u1,u2, . . . ,ud}.

The upper bound comes from the simple calculation that C(u1,u2) = P(U1 ≤ u1,U2 ≤ u2) ≤ P(U1 ≤
u1,U1 ≤ u2) = min(u1,u2). A similar calculation holds for the lower bound for d = 2 by setting U2 = 1−U1;

the lower bound calculation for dimensions higher than 2 is more involved.

Remark 3 The Fréchet-Hoeffding bounds are attained (for d = 2) by many of the popular families that

will be listed in the subsequent section. The Fréchet-Hoeffding lower bound cannot be attained for d > 2

since the lower bound is not a copula.

4 POPULAR COPULA FAMILIES

Recall the setting of modeling simulation input. The premise is that there exists a primitive input random

vector (X1,X2, . . . ,Xd) whose df H(x) we wish to approximate (or “model”) with an appropriate choice.

To facilitate such choice, we relied on Sklar’s theorem to write

H(x) =C(H1(x1),H2(x2), . . . ,Hd(xd)),

where the His are the marginal dfs and C is a d-dimensional copula that encodes the dependence structure

in standardized form. The advantage of Sklar’s decomposition is that the marginal dfs can be chosen
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individually, and based on the available marginal data on each dimension. The big question is how should

one model the dependence that is inherent in (X1,X2, . . . ,Xd), which essentially amounts to choosing the

copula C that connects the chosen marginal dfs. Since the copula is standardized, that is, it is a df having

uniform marginals, a discussion about its choice can happen without reference to the chosen marginal dfs.

In this section, in an attempt to guide the choice of a copula, we discuss common copula families.

Just as is the case with choosing univariate marginal distributions, choosing a copula family is at least in

part based on subjective measures. The appropriateness of a (parameterized) copula family depends on

the ability of the family to model different shapes, the ease with which parameters are chosen (or “fitted”

using data), and the ease with which random variates can be generated from the family. In what follows,

we list a number of common copula families along with a discussion on their general shapes and structural

properties. For easier interpretation, we depict the density functions of the copulas we discuss (rather than

the copulas themselves). The question of estimation is taken up in later sections.

4.1 Independence Copula

As the name suggests, the independence copula amounts to specifying no dependence structure between the

random variables X1,X2, . . . ,Xd , that is, the independence copula is the copula associated with independent

random variables X1,X2, . . . ,Xd . For this reason, the independence copula has limited modeling value,

although important for understanding as one of the simplest copulas. Since X1,X2, . . . ,Xd are independent,

we can write

H(x) =
d

∏
i=1

Hi(xi) :=CI(H1(x1),H2(x2), . . . ,Hd(xd)),

leading to the independence copula CI(u) = ∏
d
i=1 ui,u∈ [0,1]

d and corresponding constant density function

cI(u) = 1.

4.2 Implicit Copulas

An easy way to induce dependence between random variables having (any specified) marginal dfs is by

incorporating copulas derived from “named” multivariate distributions. For example, the Gaussian copula

is the copula associated with the multivariate Gaussian df. Specifically, suppose

φρ(x) =
1√

2π|ρ|
exp

(
−

1

2
xT ρ−1x

)

is the d-dimensional Gaussian density having standard normal marginals, then the corresponding df Φρ(x)
can be decomposed as

Φρ(x) = Φρ(Φ
−1(Φ(x1)),Φ

−1(Φ(x2)), . . . ,Φ
−1(Φ(xd))) =CG(Φ(x1),Φ(x2), . . . ,Φd(xd));

CG(u) = Φρ(Φ
−1(u1),Φ

−1(u2), . . . ,Φ
−1(ud)), u ∈ [0,1]d (6)

where the d-dimensional function CG(u) is called the Gaussian copula. The density associated with the

Gaussian copula can be calculated explicitly using the formula in (5).

Remark 4 A Gaussian distribution having the correlation matrix ρ , mean vector µ , and marginal variances

σ 2
i , i = 1,2, . . . ,d has the same copula CG(u) as a Gaussian with standard Gaussian marginal dfs and

correlation matrix ρ . This is evident through the usual standardizing argument applied to the general

Gaussian random vector, or by directly applying Theorem 2.

Owing to Remark 4, notice that the Gaussian copula has no location or scale parameters; it is in this

sense that the Gaussian copula (or any other copula) is purely a measure of the extent of the dependence

that exists between the random variables constituting the random vector being modeled. Figure 5 depicts

the bivariate Gaussian copula density functions associated with a few different parameter settings.
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Figure 5: Gaussian Copula Densities

More generally, and following the arguments leading to (6), the copulaCH associated with any continuous

df H(x) is given as

CH(u) = H(H−1
1 (u1),H

−1
2 (u2), . . . ,H

−1
d (ud)), (7)

where Hi, i = 1,2, . . . ,d is the ith marginal associated with H. Using (7), we see that the Student’s T copula

is given as

CT (u) = tν ,ρ(t
−1
ν (u1), . . . , t

−1
ν (ud)),

where ρ is a correlation matrix, tν is the df of the one-dimensional Student’s T distribution, and tν ,ρ is

the df of the multivariate Student’s T distribution (Kotz et al. 1997). Since a Student’s T random vector

(T1,T2, . . . ,Td) with ν degrees of freedom has the same distribution as ( Z1

‖Z/ν‖2
, Z1

‖Z/ν‖2
, · · · , Z1

‖Z/ν‖2
), where

(Z1,Z2, . . . ,Zd) has the multivariate Gaussian df with standard normal marginals, the Student’s T copula

has d× (d−1)/2 parameters. Figure 6 depicts the density function associated with the Student’s T copula

for various parameter settings and d = 2.

A copula that appears to be very useful from the standpoint of modeling flexibility is the generalized

gamma copula CΓ, derived from one of the numerous multivariate gamma distribution definitions (Viraswami

1991, Kotz et al. 1997). We do not go into further detail here but note that since all of the available
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Figure 6: Student’s T Copula Densities

forms of the multivariate gamma are continuous, the corresponding copula density follows along the lines

outlined for the Gaussian and the Student’s T copulas.

Copulas associated with named families of multivariate distributions provide for a convenient way

of incorporating dependence modeling. We emphasize that the copula associated with any continuous

multivariate family, e.g., Gaussian or the generalized gamma, can be used alongside any set of chosen marginal

distribution functions. Thus, a modeler choosing marginal dfs F1,F2, . . . .Fd and (say) the generalized gamma

copula CΓ to model dependence has implicitly chosen the multivariate df CΓ(F1(x1),F2(x2), . . . ,Fd(xd)) as

the model for her simulation input.

4.3 Archimedean Copulas

In contrast to copulas derived from other “named” multivariate distributions, copulas can be defined directly

and in such a way that the regularity properties listed in Definition 1 are satisfied. The Archimedean copulas

constitute one such family, and are defined in a way that facilitates easy construction of new copulas.

Formally, a 2-dimensional copula is called an Archimedean copula if it admits the representation

CA(u) = η−1(η(u1)+η(u2)), (8)

where the generator function η : [0,1]→ [0,∞) is a continuous strictly decreasing convex function (Boyd

2004) satisfying η(1) = 0 and

η−1(t) =

{
η−1(t) if 0≤ t ≤ η(0);
0 if η(0)≤ t ≤ ∞.

(9)

(The function CA(u) is a copula if and only if η : [0,1]→ [0,∞] is continuous, strictly decreasing, and

convex, with η(1) = 0 (Nelsen 2007, pp. 91,92).) Archimedean copulas form a metafamily in the sense that

they are defined to facilitate easy construction of new copulas by specifying different generator functions

η(t), which are themselves usually parameterized with one of more parameters.

Commonly considered Archimedean copulas include the two-parameter Clayton copula with the

generator η(t) = θ−δ (t−θ − 1)δ ,θ ≥ 0,δ ≥ 0; the Frank copula with the generator function η(t) =

− ln
(

e−θ t−1
e−θ−1

)
,θ ∈ R; and the Gumbel copula with the generator function η(t) = (− ln t)θ ,θ ≥ 1. The

Frank and Clayton copulas are comprehensive in the sense that they interpolate between the lower and

upper Fréchet-Hoeffding bounds as the parameter θ tends to 0 and ∞.
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The natural extension of the bivariate Archimedean copula to higher dimensions is

CA(u) = η−1(η(u1)+η(u2)+ · · ·+η(ud)), (10)

where, again, the generator function η : [0,1]→ [0,∞) is a continuous strictly decreasing convex function

satisfying η(1) = 0. It so happens, however, that an additional condition is needed on the generator inverse

function to guarantee that the d-dimensional function in (10) is indeed a copula. Specifically, the generator

inverse η−1 : [0,∞]→ [0,1] should be completely monotonic, that is, (−1)k dk

dtk η−1(t)≥ 0,k ∈ N, t ∈ [0,∞]
in order that the function CA in (10) is a copula (Kimberling 1974). The generator functions for Gumbel,

Clayton, and Frank copulas are completely monotonic. Archimedean copulas have seen limited success in

dimensions greater than 2 or 3, primarily due to the fact that the structure imposed through (10) has been

recognized to be restrictive (McNeil et al. 2005).

5 COPULA ESTIMATION

In this section, we consider the question of fitting a df, that is, estimating a specific distribution to model

the primitive input vector X to a simulation. For concreteness, assume that the data vectors X1,X2, . . . ,Xn,

which are identically distributed copies of the random vector X, are available to us. Following the framework

we have proposed in this paper, we assume that the model df takes the form

H̃(x) =Cθ (F1(x1),F2(x2), . . . ,Fd(xd)),

where Cθ is a chosen (parametric) copula family, θ is the parameter vector, and Fi, i = 1,2, . . . ,d are the

chosen marginal dfs which may or may not have their own parameters. Fitting the model H̃ then means

estimating the copula parameters θ and the marginal dfs.

Remark 5 Just as in the univariate case, one can obtain a non-parametric estimate of the joint df in the

usual manner

H̃(x) =
1

n

n

∑
t=1

I(Xi ≤ x), (11)

or through the kernel method

H̃(x) =
1

n

n

∑
t=1

K(
x−Xi

h
) (12)

with a d-dimensional kernel K satisfyingK(x) =
∫ x1

−∞ · · ·
∫ xd

−∞ K. Both of these estimates lead to corresponding

notions of empirical copulas.

5.1 Method of Moments

A straightforward way of estimating the parameters θ of the chosen copula Cθ is by matching all pairwise

rank correlation(s) associated with the distribution Cθ (F1(x1),F2(x2), . . . ,Fd(xd)) to the empirical rank

correlation obtained from the observed data. The suggested rank correlation is usually either Spearman’s

rank correlation, denoted here as ρS, or Kendall’s rank correlation, denoted here as ρτ . (See (Stuart et al.

1996) for a full treatment of rank correlations.) The sample estimators of the Spearman’s and Kendall’s

rank correlations between the ith and jth components of X are given by

ρ̂S(i, j) =
12

n(n2−1)

n

∑
t=1

(
Fi,n(Xt,i)−

1

2
(n+1)

)(
F j,n(Xt, j)−

1

2
(n+1)

)

and

ρ̂τ(i, j) =

(
n

2

)−1

∑
1≤t<s≤n

sign((Xt,i−Xs,i)(Xt, j−Xs, j)),
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where Fi,n is the empirical df of the ith marginal distribution.

Given a sample estimate of the (Spearman’s or Kendall’s) rank correlation, a parameter estimate for

θ can be obtained by equating the theoretical value of the rank correlation for the assumed copula Cθ

with the sample estimate, and then solving for a parameter estimate. For example, if the assumed copula

is a Gaussian copula, the theoretical value of the (i, j)th Spearman’s correlation is given as 6
π arcsin

ρ(i, j)
2

,

where ρ(i, j) is the (i, j)th element of the matrix ρ used in the Gaussian copula. (For the Gaussian copula

ρ := θ .) Equating this to the sample Spearman’s rank correlation yields the estimate ρ̂(i, j) = 2sin(ρ̂S ∗
π
6
).

A similar calculation for the Student’s T copula but using Kendall’s rank correlation yields the estimate

ρ̂(i, j) = sin(ρ̂τ
π
2
). Closed-form solutions for the parameter estimates (obtained through the method of

moments and using Kendall’s rank correlation) for various bivariate Archimedean copulas can be obtained

through Table 5.5 in McNeil et al. (2005).

Remark 6 In the above treatment for estimating parameters, we could have used the more traditional

Pearson (linear) correlation instead of the rank correlation. We emphasize, however, that the Pearson

correlation is generally considered inferior to the rank correlation as a measure of dependence. Unlike rank

correlation, Pearson correlation is generally not invariant with respect to strictly monotone transformations.

(Pearson correlation is invariant under linear transformations.) Pearson correlation is a natural measure of

dependence only in the context of elliptical distributions.

Four comments regarding the estimation of parameters using the method of moments are noteworthy.

(i) Parameter estimates obtained by equating sample rank correlation estimates with the theoretical

expressions for the rank correlation do not always yield closed-form solutions. For example, when

using Spearman’s rank correlation, the parameter estimate for the Student’s T copula cannot be

solved in closed-form. In such cases, the parameter estimates are obtained numerically, using one

of numerous available techniques (Ortega and Rheinboldt 1970).

(ii) When the chosen marginal distributions are continuous, the parameter estimates obtained using the

method of moments do not depend on the marginal distributions. It is in this sense that inference

about the copula parameters in such a case is said to be “margin free.” When the marginal dfs

are not continuous (as is often the case), the parameter estimates are a function of the marginal

dfs, implying that the marginal dfs need to be estimated before applying the method of moments.

See Avramidis et al. (2009) for more on this.

(iii) The method of moments equates all pairwise sample rank correlations with the theoretical values,

yielding a nonlinear system of d× (d− 1)/2 equations in d× (d− 1)/2. Clearly, if there are

not enough number of parameters in the chosen copula, that is, if there are not enough degrees

of freedom, the method of moments will not apply and an alternate method such as maximum

likelihood estimation should be undertaken.

(iv) Inference on the parameters obtained using the method of moments is now well-understood (Genest

et al. 1995).

5.2 Maximum Likelihood Estimation

Maximum Likelihood Estimation (MLE) is the more general method of estimating parameters for the

parametric copula Cθ ). Assuming that the marginal dfs have been estimated, the MLE problem becomes

max
θ

n

∑
t=1

lncθ (F1(Xt,1),F2(Xt,2), . . . ,Fd(Xt,d)), (13)

where cθ is the density of the copula Cθ . For example, for the Gaussian copula, the problem in (13)

becomes

max
ρ

n

∑
t=1

lnφρ(Φ
−1(F1(Xt,1)),Φ

−1(F2(Xt,2)), . . . ,Φ
−1(Fd(Xt,d)))−

n

∑
t=1

d

∑
j=1

lnφ(Φ−1(F(Xt, j))), (14)
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where ρ is a correlation matrix, and φρ is the multivariate Gaussian density with standard Gaussian

marginal dfs and correlation matrix ρ . (The second term in (14) is a constant that will not play a role in

the optimization.)

The solution of the problem (13) is almost never in closed-form implying that a suitable numerical

optimization technique (Boyd 2004) needs to be invoked. Inference on the solution obtained through MLE

is now understood; see, for instance, Joe (1997) and Genest and Rivest (1993).

6 CONCLUDING REMARKS

When representing a physical system of interest using a simulation model, it is crucial to ensure that the

dependence structure inherent in the primitive inputs to the simulation is faithfully represented. Ignoring

such dependence, as is often done for the sake of convenience, can result in substantial modeling errors and

consequent poor decision-making. Copulas constitute a flexible and convenient way to model dependent

inputs because they standardize dependence structures and provide a mechanism to break down multivariate

distribution functions into their marginal and dependent elements. Such a breakdown and standardization

allows the modeler to individually select and estimate the marginal and dependent elements of the input

model, thereby allowing for a more faithful representation. Estimation, inference, and random variate

generation in the copula setting are now well-understood. Interestingly, there appears to be only a limited

adoption of copulas into discrete-event simulation software packages at the time of this writing.
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