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ABSTRACT

Conceptual modeling is the abstraction of a simulatimdel from the part of the real world it is repre-
senting; in other words, choosing what to model, and what not to model. This is generally agreed to be
the most difficult, least understood and most importanttiagle carried out in a simulation study. In this
tutorial the problem of conceptual modeling is fillststrated through an example of modeling a hospital
clinic. We define the term ‘conckal model’ and go on to identify the artefacts of conceptual modeling
and hence the role of conceptual modeling in theukition project life-cycle. The discussion then fo-
cuses on the requirements of a conceptual modehehefits and approaches for documenting a concep-
tual model, and frameworks for guiding the concaptaodeling activity. One specific framework is de-
scribed and illustrated in more detail. The tutoz@icludes with a discussion on the level of abstraction.

1 INTRODUCTION

One of the most difficult issues in simulation mordglis determining the content of the simulation mod-
el. The job of the modeler is to understand the resibay that is the subject of the simulation study and
to turn this into an appropriate simulation mod€&he chosen model could range from a very simple sin-
gle server and queue, through to a model that triem¢apsulate every aspecttbé system. In effect,
there are an infinite number of models that couldsélected within this rangeach with a slightly, or
even very, different content. The question is: whiaddel should we choose? We explore the answer to
this question in this tutorial.

On the surface we might suggest the answerlisild the model that contains as much detail as pos-
sible. After all, this model will be the closest t@ tfeal system and so surely the most accurate. This
might be true if we had complete knowledge of thad sgstem and a very large amount of time available
to develop and run the model. But what if we dmye limited knowledge of the real system and limited
time? Indeed, we rarely have the luxury of vasirdities of either knowledge or time, not least because
the real system rarely exists at the time of mode{ihis a proposed world) and a decision needs to be
made according to a tight time schedule. Furthaimpler model is often sufficient to address the prob-
lem at hand and so there is no need for a more complex model.

So, if we need to develop a simpler model, we need to determine the level of abstraction at which to
work. This process of abstracting a model fromréed world is known as conceptual modeling. We
shall define conceptual modeling, its requirementstae process of conceptual modeling in more detalil
in a while, but first it is useful to illustrate the issunvolved in conceptual modeling with a practical ex-
ample.
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2 CONCEPTUAL MODELING EXAMPLE: SSIMULATING AN OUTPATIENTSCLINIC

Our simulation and modeling team was asked to develop a simulation model for a hospital in Birming-
ham, UK. The hospital was investing in a newpatients building, a multi-million dollar project, and
their key question was how many consultation roamesrequired? They had performed some calcula-
tions based on expected patient flows and on obengaof the current outpatients system. However,
there was obviously some concern with making major investment decisions based on these limited data.

We were quick to point out the problems of making calculations based on static data which do not
take into account the effects of variability in patient flows and consultation times. This is something for
which discrete-event simulation is very well suited.

When asked to build a model such as this, the&@pproach would be to start collecting data and
to develop a detailed model of the system. Howsliermore we investigated how an outpatients system
works the more we realized just how complex thetesy is. There are many specialties using the facility,
each with its own clinical team. Patients can peegrthrough a series of tests and consultations. For
some specialties, such as ophthalmology, specialist equipment and dedicated rooms are required. Sched-
uling patient appointments is a significant task anehtthere is the matter of late arrivals and non-
attendances. Staff shifts, working practices and siilisnpact upon the functioning of the system.

Given appropriate data, it would be quite possible to build a simulation model that took account of all
these details. There were, however, two issues that made such a model infeasible:

e Lack of data much of the necessary data had not previously been collected and even if we were
to try, issues of patient confidentiality (e.g. y@annot sit in a consultation room timing consulta-
tion times) would make it impossible to collect all the data we needed.

e Lack of time the hospital required an answer witlirfew weeks and we had very limited time
and resource to devote to the modeling woslegithe number of parallel activities in which we
were engaged.

So what did we do? We focused on the critisslie of how many rooms were required and designed

a simple model that would give at least an intiicaupon which the hospital magers could base a deci-
sion. Our world view was that the additional information a basic simulation could offer would be more
beneficial than no simulation at all.

The simple model we constructed took a coupldayfs to build and experiment with. It provided a
lower bound on the rooms required. In doing so it glediinformation that would give a greater level of
confidence in making the decision that the hospital facBdis was all that was possible given the data
and resource available, but it was still valuable.

The model we designed is outlined in Figure ltigRaarrivals were basegh the busiest period of
the week — a Monday morning. All patients scheduled to arrive for each clinic, on a typical Monday, ar-
rived into the model at the start of the simulation that is, 9.00am. For this model we were not con-
cerned with waiting time, so it was not necessary edehwhen exactly a patient arrived, only the num-
ber that arrived.

Did not attend

Patients schedule Consultation
to arrive _— —S room 5
(by clinic type)

Figure 1: Process flow diagram of the simple outpatients building model.
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A proportion of patients do not attend their allotbéidic. Typical proportions of patients that do not
attend were sampled at the start of the simulatiorand these were removed before entering the waiting
line.

Data on the time in a consultation room were lidhitgince they had not specifically been timed, but
there were norms to which the clinical staff aimed to work. These data were available by clinic type and
we used these as the mean of an Erlang-3 distribution to give an approximation for the variability in con-
sultation time.

The input variable for the simulation experimewts the number of consultation rooms, which were
varied from 20 to 60 in steps of 10. The mainpoatitvariable was the time it took until the last patient
left the system. A key simplification, which alivimlved recognized, was that there were no limitations
on staff or equipment availability. Albeit extremelglikely that this would be the case, the model was
predicting a lower bound on the rooms required. heiotwords, shortages of staff and equipment would
only increase the need for consultation rooms itients waiting in the rooms while the resource be-
came available.

For each room scenario theodel was replicated 1000 times and a frequency chart was generated
showing the probability that the system would be €@éan under 3 hours — the hospital’s target. Figure
2 shows an example of these results.
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Figure 2: Example of results from the outpatients building model: frequency distributions for time until
last patient leaves.

This example illustrates the very essence of conceptual modeling; abstracting a model from the real
system. In this case, the real system was notigtegice, but it was a proposed system. The model in-
volved simplifications such as modeling only Monday morning’s clinic and not modeling staff and
equipment. It also involved assumptions about, among others, the consultation times. Because of the
constraints on data and time, the conceptual mowelved a great deal of simplification; as such, it
might be described as a ‘far’ abstraction.

Whether we got the conceptual model righinisarge measure a matter of opinion and one we will
leave the reader to judge. It is certain that read#éirform quite different judgments on the credibility of
the model and so whether it was a good model or not.
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3 WHAT ISCONCEPTUAL MODELING?

Conceptual modeling is the abstraction of a simulatiaadlel from the part of the real world it is repre-
senting (‘the real system’). The real system maymay not, currently exist. Abstraction implies the
need for a simplified representation of the real systethe simulation model. The secret to good con-
ceptual modeling is to get the level of simplificatorrect, that is, to abstract at the right level.

Because all models are simplifications of the real world, all simulation modeling involves conceptual
modeling. Even the most complex and detailed Eitian still makes various assumptions about the real
world and chooses to ignore certain details.

3.1  Definition of a Conceptual Model

More formally we define a conceptual model as follows: ‘... a non-software specific description of the
computer simulation model (that will be, is or haei developed), describing the objectives, inputs, out-
puts, content, assumptions and simplifications of the model.” (Robinson 2008a)

Let us explore this definition in some more detdiirst, this definition highlights the separation of
the conceptual model from the computer model. Ttterlgs software specific, that is, it represents the
conceptual model in a specific computer code. ddwceptual model is not specific to the software in
which it is developed. It forms the foundation for developing the computer code.

Second, the conceptual model describes the computer simulation model. It describes how we con-
ceive the model; it does not describe the real systarother words, the caeptual model describes how
we have abstracted the model away from our undwetistg of the real world. This distinction is im-
portant because of the need for model abstractigimialation. Consider the model described in section
2. Our conception of this model (conceptual modelery distinct (and ‘far’) from our description of the
real world.

Third, it is stated that the description is of a computer simulation model that ‘that will be, is or has
been developed.” This serves to highlight the persisi@inire of the conceptual model. It is not an arte-
fact that gets created and is then dispensed wih thre computer code has been written. It describes the
concept of the computer model prior to development, during development and after development. Indeed,
the conceptual model persists |dmgyond the end of the simulation study, since we cannot dispose of the
model concept. Of course, because the modelingepsois iterative in nature (Balci 1994; Willemain
1995; Robinson 2014), the conceptual model is coritineabject to change throughout the life-cycle of
a simulation study.

Finally, the definition is completed by a list of what a conceptual model describes. It is vital that the
objectivesof the model are known in forming the conceptual model. The model is designed for a specific
purpose and without knowing this purpose it is impossiblcreate an appropriate simplification. Con-
sider what would have happened if the purposth@foutpatients building model had not been properly
understood. We would almost certainly have beeredrte a more general purpose, and by nature much
more complex, model. Poorly understood modeling objectives can lead to an overly complex model. In-
stead, because the purpose of the model was clear we were able to create a very simple model.

It is useful to know the modéhputs and outputsprior to thinking about the content of the model.

The inputs are the experimental factors that are altered in order to try and achieve the modeling objec-
tives. In the example above, this was the numbeoon§ultation rooms in the outpatients building. The
outputsare the reports that inform us as to whether the modeling objectives are being achieved (e.g. the
time to clear all patients from the outpatient systend) iinot, why they are not being achieved (e.g. the
utilization of the consulting rooms).

Knowing the objectives, inputs and outputs of the model help inforreahntof the model. In
particular, the model must be able to receive the inputs (e.g. it must modehthdtation rooms) and it
must provide the outputs (e.g. it must model the flow of patients until all have exited the system). The
model content can be thought of in terms of two dimensions:
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e The scope of the modéhe model boundary or the breadth of the real system that is to be includ-
ed in the model.

o The level of detailthe detail to be included for each component in the model’s scope.

The final two items in the list of vélt a conceptual model describes areadsumptiongandsimplifi-

cationsof the model. These are quite distinct concepts (Robinson 2008a):

o Assumptionsre made either when there are uncetitssnor beliefs about the real world being
modeled.

e Simplificationsare incorporated in the model to enafvlere rapid model development and use,
and to improve the transparency of the model.

So, assumptions are a facet of limited knowledge or presumptions, while simplifications are a facet of

the desire to create simple models.

3.2  Artefactsof Conceptual Modeling

To understand conceptual modeling further it is uskfidet it within the wider context of the modeling
process for simulation. Figure 3 shows the key artefaictonceptual modeling. The ‘cloud’ represents
the real world (current or future) within which the peh situation resides; this is the problem that is the
basis for the simulation study. The four rectangigsesent specific artefacts of the (conceptual) model-
ing process. These are as follows:
e System descriptiora description of the problem situation and those elements of the real world
that relate to the problem.
o Conceptual modehs defined in section 3.1
¢ Model design: the design of the constructs for the computer model (data, components, model exe-
cution, etc.) (Fishwick 1995).
¢ Computer modela software specific representation of the conceptual model.
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Figure 3: The artefacts of conceptual modeling (Robinson 2011).
These artefacts are quite separate. This is not to say that they are always explicitly expressed, with

the exception of the computer model. For instance, the system description, conceptual model and model
design may not be (fully) documented and can remdtimn the minds of the modeler and the problem
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owners. ltis, of course, good modeling practice to document each of these artefacts and to use this as a
means of communicating their content with the simulation project clients.

The model design and computer model are not sttty of conceptual modeling, but they do em-
body the conceptual model within the design and afdke model. These artefacts are included in Fig-
ure 3 for completeness. Our main interest heie iee system description and conceptual model which
make up the process of conceptual modeling; as repegsby the shape with a dashed outline in Figure
3. Unlike the model design and computer model, these two artefacts are independent of the software that
will ultimately be used for developing the simulation model.

It is important to recognize the distinction betwéam system description and the conceptual model.
The system description relates to the problem dortia,is, it describes the problem and those elements
of the real world that relate to the problem. The conceptual model belongs to the model domain in that it
describes those parts of the system description thaheluded in the simulation model and at what level
of detail. The author’s experience is that these two artefacts arecoitdused and seen as indistinct.
Indeed, a major failure in any simulation projectasry and model the system description (i.e. every-
thing that is known about the real system) and to ttetrgt any form of model abstraction; this leads to
overly complex models.

The arrows in Figure 3 represent the flow of imation, for instance, information about the real
world feeds into the system description. The processésitive the flow of information are described as
knowledge acquisition, model abstraction, design alihg. The arrows are not specifically representa-
tive of the ordering of the steps within the modglprocess, which we know are highly iterative (Balci
1994; Willemain 1995; Robinson 2014). In other words, a modeler may return to any of the four process-
es at any point in a simulation study, although there is some sense of ordering in that information from
one artefact is required to feed the next artefact.

The specific and different roles of assumptions anphkiications are highlighted in Figure 3. As-
sumptions relate to knowledge acquisition, that isy tfill in the gaps in the knowledge that can be ac-
quired about the real world. Meanwhile, simplificatioakate to model abstraction, since they are delib-
erate choices to model the world more simply.

The dashed arrow in Figure 3 shows that tlege correspondence between the computer model and
the real world. The degree of correspondence riepen the degree to which the model contains as-
sumptions that are correct, the simplifications maintain the accuracy of the model, and the model design
and computer code are free of errors. Becausentduel is developed for a specific purpose, the corre-
spondence with the real world only relates to thacHjz purpose. In other words, the model is not a
general model of the real world, but a simplified representation developed for a specific purpose. The is-
sue of whether the level of correspondence betweemditel and the real world is sufficient is an issue
of validation (Landry, Malouin, and Oral 1983; Balci 1994; Robinson 1999; Sargent 2013). Both concep-
tual modeling and validation ar@mcerned with developing a simulation of sufficient accuracy for the
purpose of the problem being addressed. As a reseig tha strong relationship between the two topics,
conceptual modeling being concerned with developing an appmpniatiel and validation being con-
cerned with whether the ddeped model is appropriate.

The artefacts described in this section are simil&eigler’'s concepts of the real system, the experi-
mental frame, the base model, the lumped model, anddimputer. The interested reader is referred to
Zeigler (1976).

4 REQUIREMENTSOF A CONCEPTUAL MODEL

Before discussing how to perforrarceptual modeling, let us considenat makes for a good conceptual
model. The key requirements are that the model should be valid, credible, feasible and have utility (Rob-
inson 2008a). By these we mean the model should:
¢ Produce sufficiently accurate results for the pegpainderstanding the number of rooms required
in the building yalidity);
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e Be believed by the clientsredibility);

e Befeasibleto build within the constraints of the available data and time;

o Haveutility, that is, sufficiently easy to udéexible, visual and quick to run.

Overarching all of this is the requirement to bukld simplest model possible to meet the objectives
of the simulation study. According to Innis aRexstad (1983), Ward, (198%Balt (1993), Chwif, Barre-
to, and Paul (2000), Lucas and McGunnigle (2003, Bhomas and Charpentier (2005), simpler models
are preferred because:

e Simple models can kaeveloped faster;

Simple models are more flexible;

Simple models require less data;

Simple models run faster;

The results are easier to interpret since the structure of the model is better understood.

As such, the need to abstraatonceptual model from the system description becomes even more per-
tinent. This does not, of course, mean that we should never develop moiexcorogels, but that we
should only develop them if they are required to meet the modeling objectives. For further discussion on
the topic of model complexity, with respect to how a model is used, see Pidd (2010).

Figure 4 illustrates the relationship between model accuracy and model complexity (scope and level
of detail). It shows that with increasing levels ofmexity we obtaining diminishing returns in terms of
accuracy, never reaching 100% accuracy. Eventuallynes even find that the accuracy of the model
reduces. This is because we do nathihe knowledge or data to suppibre complexity that is being in-
cluded in the model and we start to make assumptions that are incorrect.

1009~ --==============mmmmme e oomoeeo o

Yy

Model accurac

X
Scope and level of detail (complexity)

Figure 4: How simulation model accuracy changih the complexity of the model (Robinson 2008a).

So which conceptual model should we choose? migit argue that the model at point x in Figure 4
is the best. At this point we have gained a higkllef accuracy for a low level of complexity. Moving
beyond x will only marginally increase accuracy autling further complexity generally requires ever
increasing effort. Of course, if we have a specific rfeedn accuracy level greater than that provided by
X, we will need to increase the complexity of the model. Indeed, Sargent (2013) suggests that a model’s
‘acceptable range of accuracy’ should be determesety in the modeling process so it can guide both
model developmentra model validation.

The difficulty is in finding point x. Conceptuatodeling frameworks, such as the ones listed below,
aim to help us in that quest, but conceptual modelimgaee of an art than a science (we might prefer to
use the word ‘craft’). As a result, we can only redlbpe to get close to x. In other words, there may be
a ‘best’ model, but we are extremely unlikely to find it among an infinite set of models. What we should
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hope to do is identify the best model we can. Ashsour quest is for better models, not necessarily the
best.

5 DOCUMENTING THE CONCEPTUAL MODEL

As stated above, the conceptual model is not aleapscitly expressed, but can remain within the mind
of the modeler. That said, it is good practice to document the conceptual model and in so doing to pro-
vide a means of communication between all partiessimulation study (e.g. the modeler, code develop-
ers, domain experts, end users and clients). In g dtohelps to build a asensus, or least an accom-
modation, about the nature of the model and its use. A documented conceptual model:

¢ Minimizes the likelihood of incomplete, uear, inconsistent and wrong requirements
Helps build the credibility of the model
Guides the development of the computer model
Forms the basis for model verification and guides model validation
Guides experimentation by expressing the nindebjectives, and model inputs and outputs
Provides the basis of the model documentation
Can act as an aid to independent veaiion and validation when it is required
Helps determine the appropriateness of the model or its parts for model reuse and distributed sim-
ulation

There are no set standards for documenting discrete-event simulation conceptual models, but a range
of approaches have been proposed, includirfgréreces to examples are provided in brackets):

e Component list (appendix)
Process flow diagram (Robinson 2014)
Activity cycle diagram (Robinson 2014)
Logic flow diagram (Robinson 2014)
List of assumptions andmsplifications (appendix)
Unified modeling language (UL) (Richter and Mérz 2000)
Petri nets (Torn 1981)
Condition specification (Overstreet and Nance 1985)

The documentation for a conceptual model should be kept simple and focus on idenifgitg to
be modeled anavhatis not to be modeled. There is no need for elaborate documentation because de-
tailed decisions aboutow to model something are not being taken during conceptual modeling. These
decisions are taken while creating the model design thentonceptual model. For example, in concep-
tual modeling a decision is taken to model a flight schedule; in model design the way in which that flight
schedule is to be modeled is determined. Hence, the conceptual model documentation only needs to state
that the flight schedule is to be modeled, while todel design documentatioreds to provide the de-
tail of how to model the flight schedule.

6 FRAMEWORKSFOR CONCEPTUAL MODELING

A framework for conceptual modeling provides a sesteps and tools that guide a modeler through the
development of a conceptual model. It is also useful for teaching conceptual modeling, especially to
novice modelers. The simulation literature, howevesyides very few such frameworks. Some exam-
ples, that the reader may wish to explore further are:

e Conceptual modeling framework for manufacturing (van der Zee 2007)

e The ABCmod conceptual modeling framework (Arbez and Birta 2011)

e Karag6z and Demirérs (2011) present a number of conceptual modeling frameworks: Conceptual

Model Development Tool (KAMA), Federation Development and Execution Process (FEDEP),
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Conceptual Models of the Mission Space (CMMS), Defense Conceptual Modeling Framework

(DCMF), and Base Object Model (BOM)

Conceptual modeling with Onto-UML (Guizzardi and Wagner 2012)
Conceptual modeling using the Structured Asi and Design Technique (Ahmed, Robinson,

and Tako 2014)

The PartiSim framework (Tako and Kotiadis 2015)

a very brief outline and illustration of Robinson’sifiework for conceptual modeling is given. For a
more detailed account, and an illustration offtaenework in use, see Robinson (2008b).

Problem
situation
A
......................................... Il P
...... . <
vvvvvvv . Modelling and % <,
o general projec Qw%’%
o objectives vy,
) Ox} S,
. 9:‘ %
%A@ S,
()
; Amw&“mmmmmumM% -
Experimental “=>"51  scope and ———— Responses
factors level of detail
“ Loputs Quiputs .
Conceptual Model

Figure 5: A framework for conceptual modeling (Robinson 2008b).

Figure 5 outlines Robinson’s conceptual modefiagnework. In this framework, conceptual model-
ing involves five activities that are performed roughly in this order:

Understanding the problem situation

Determining the modeling and general project objectives

Identifying the model outputs (responses)

Identify the model

inputs (experimental factors)

Determining the model content (scope and lle¥aletail), identifying any assumptions and sim-

plifications

Starting with an understanding of the problem situation, a set of modeling and general project objec-
tives are determined. These objectives then drive tieatien of the conceptual model, first by defining
the outputs (responses) of the model, then the inputs (experimental factors), and finally the model content
in terms of its scope and level of detail. Assumptions and simplifications are identified throughout this
process.
The ordering of the activities described above is not strict. Indeed, we would expect much iteration
between these activities and with the other activitieslived in a simulation study: data collection and

analysis, model coding, verification and validn, experimentation and implementation.

The framework is supported by a conceptual meelaplate which provides a set of tables that de-
scribe each element of the concepptmodel. These tables describe:
Modeling and general project objectives (orgaimisel aim, modeling objectives, general project

objectives)

1828



Robinson

e Model outputs/responses (outputs to determine aehient of objectives, outputs to determine
reasons for failure to meet objectives)

Experimental factors

Model scope

Model level of detall

Modeling assumptions

Model simplifications

Beyond completing these tables, it is also usefydrtavide a diagram of the model. For instance,
process flow diagrams, similar to that presented in Figure 1, are useful for communicating the conceptual
model.

The modeler works through theséles with the support of the stakeholders and domain experts, it-
eratively improving them to the point that the modeled stakeholders are sé#s that the conceptual
model meets the requirements for validity, credibilfeasibility and utility. Tls provides a structured
framework for making the conceptual modeling decisiexplicit (documentation) and for debating ways
of improving the conceptual model.

An illustration of the conceptual model templéttat accompanies this framework, using the example
of a simple fast food restauranbptem, is provided in the appendix.

7 LEVELSOFABSTRACTION

The conceptual modeling example in section 2 is descdbedl ‘far’ abstraction. By this we mean that

the conceptual model involves many simplifications and so it is removed a long way from the system de-
scription. The implication of this is that the gomter model is a highly simplified representation of the

real world. At the extreme, a far abstraction @adlto a (conceptual) modéht bears little resemblance

to the real world. A good illustration of this ist&tling’s model of segregation, which contains no real
world data and only the simplest possible representaf the phenomena undstudy (Schelling 1971).
Although a far abstraction, Schelling’s modakttertainly attracted a lot of attention.

However, we would not want to leave the impresgitat conceptual models have to be so far ab-
stracted. Indeed it is not always desirable to absto this degree and for some simulation studies it is
appropriate to model much of the scope and detail in the problem dokvaimefer to this as ‘near’ ab-
straction. For an example, see the Ford engimet phodel described in Robinson (2008a, 2008b). These
papers describe a simulation that was designetkbtermine the throughput of a new engine assembly
plant. The model contained much detail about the real system and took a considerable time to develop.

The level of abstraction should be determinedheyrequirement for the model to be valid, credible,
feasible and have utility. One danger with far audion is that whilst the odel may be valid, it may
lack credibility. Hence, we may neéal reduce the level of abstraction, making the model nearer to the
system description, to increase the credibility of the model.

8 CONCLUSION

Conceptual modeling is the abstraction of a simulatiaadel from the part of the real world it is repre-
senting. It is probably the most important aspect of any simulation study. Get the conceptual model right
and the rest of the simulation work will be moreasgthtforward, providing the right information in the

right time-scale.

This tutorial provides an illustration of how appropriate conceptual modeling, through far abstraction,
made a simulation study feasible within the constsagftdata and time avalile. The discussion that
follows defines conceptual modeling, its artefactd @s requirements; it also discusses the benefits and
approaches to documenting the conceptual model. Hrsnbase, some frameworks for conceptual mod-
eling are listed and Robinson’s framework is outlifiednore detail. The framework aims to guide a
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modeler through the process of creating and documentiogaeptual model. We also discuss levels of
abstraction, from near to far.

Conceptual modeling is not a science, but a craft enew art. As with any craft, it can be learned
and it can be improved upon witkperience. Frameworks provideyaod way of learning about concep-
tual modeling and for helping to do it better. gkesent, however, there are very few examples of con-
ceptual modeling frameworks and this is an areare/imore researaieeds to be undertaken.
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A APPENDIX: EXAMPLE OF CONCEPTUAL MODEL TEMPLATE

This appendix provides an illustration of the cortaap model template that accompanies Robinson’s
conceptual modeling framework.

The problem: a fast food restaurant is experiencinflpms with one of the branches in its network.
Customers regularly complain about the length of tiney thave to queue at the service counters. It is
apparent that this is not the result of shgein food, but a shortage of service personnel.

Proj ect
Fast Food Restaurant \

Modding and General Project Objectives

Organisational Aim
] To improve customer service levels \
Modeling Objectives
The number of service staff required during each periddeoflay to ensure that 95% of customers queue
for less than 3 minutes for service. Due to space constraints, a maximum of 6 service staff can be em-
ployed at any one time.
General Project Objectives

Time-scale 5 working days

Flexibility Limited (extensive changes unlikely)
Run-speed Many experiments to be run
Visual display Simple 2D

Ease-of-use Use by modeler only

Model Outputs/Responses
Outputs (to determine achievement of objectives)

Percentage of customers queuing for less than 3 minutes
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Outputs (to determine reasons failure to meet objectives)

Bar chart of waiting time for each customer in theeues, mean, standard deviation, minimum and max-

imum

Time-series of mean queue size by hour
Staff utilisation (cumulative percentage)

Experimental Factors

Staff rosters (total number of staff in each holithe day), varied over a range of 1 to 6

Ifi-

=
1

M odel Scope
Component Include/Exclude Justification

Entities:

Customers Include Flow through the service process

Activities:

Service points Include Experimental factor, required for staff utilizatio
response

Tables Exclude Not related to waiting for food

Cooking Exclude Assumption: material shortages are not a sign
cant problem

Cleaning Exclude Not related to speed of service

Queues:

Service point queues Include Required for waiting time and queue size re-
sponse

Table queues Exclude Tables are not being modeled

Queues of food Exclude Assumption: material shortages are not a sign
cant problem

Resour ces:

Service staff Exclude Simplification: represented by service points

Kitchen staff Exclude Cooking not being modeled

Cleaning staff Exclude Cleaning not being modeled
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Model Level of Detail

A

ns

e

I

Include/
Component Detail Exclude Justification
Entities:
Customers Quantity: 1 entity represents | Include Simplification: removes need to
customer group model individual customers and
then to group them
Arrival pattern: inter-arrival Include Required to model customer demand
time distribution varying
over the day
Attributes: size of customer or{ Exclude Simplification: represented in the
der service time
Routing: to shortest queue Include Impacts on waiting time and queue
size responses
Activities:
Service points Quantity: number available | Include Experimental factor
each hour of the day
Nature (X in Y out) Exclude Simple 1 in 1 out
Cycle time: service time distri-| Include Represents workload and so utiliz:
bution (accounts for order tion of staff (response)
size and variability in staff
performance)
Breakdowns/repairs Exclude Assumption: assume no breakdow
Set-up/changeover Exclude | n/a
Resources Exclude | Noresourcesnodeled
Shifts: number available each | Include Experimental factor
hour of the day
Routing:to world Include Not modeling further activities in th
restaurant e.g. tables
Other: Absenteeism Exclude Simplification: if required can be
modeled by perturbations to the
number of staff available
Queues:
Service point Quantity: one for each service| Include Required for queuing responses
queues point
Capacity: unlimited Exclude Simplification: no limit to number g
people who can wait
Dwell time Exclude n/a
Queue discipline: FIFO Include Simplification: no pushing in to
gueues and no balking, jockeying
leaving from queues.
Breakdown/repair Exclude | n/a
Routing: to service point Include Flow of entities through the systen
Resour ces:
n/a
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Modeling Assumptions

Material shortages are not a significant problem
Assume no breakdowns of service points

Model Simplifications

Service staff represented by the service points

1 entity represents 1 customer group

Size of customer order represented in the service time distribution
Absenteeism modeled through perturbatit;mthe number of staff available

No pushing in to queues, no balking, no jockeying or no leaving from queues
No limit to number of people who can wait in a queue
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